
Scientific Programming 11 (2003) 263–272 263
IOS Press

An interactive environment for supporting the
transition from simulation to optimization1

Christian H. Bischof, H. Martin Bücker, Bruno Lang and Arno Rasch

Abstract. Numerical simulation is a powerful tool in science and engineering, and it is also used for optimizing the design
of products and experiments rather than only for reproducing the behavior of scientific and engineering systems. In order to
reduce the number of simulation runs, the traditional “trial and error” approach for finding near-to-optimum design parameters
is more and more replaced with efficient numerical optimization algorithms. Done by hand, the coupling of simulation and
optimization software is tedious and error-prone. In this note we introduce a software environment called EFCOSS (Environment
For Combining Optimization and Simulation Software) that facilitates and speeds up this task by doing much of the required
work automatically. Our framework includes support for automatic differentiation providing the derivatives required by many
optimization algorithms. We describe the process of integrating the widely used computational fluid dynamics package FLUENT
and a MINPACK-1 least squares optimizer into EFCOSS and follow a sample session solving a data assimilation problem.

1. Introduction

Traditionally, simulation software has been used
mainly for reproducing–as exactly as possible–the be-
havior of scientific and engineering systems, thus com-
plementing the two classical categories of scientific
methodology: theory and experiment. While this kind
of use certainly will remain important, there is increas-
ing demand for embedding the simulation in a larger
optimization framework.

A prominent example is design optimization, where
one is looking for parameters x for a system such that
some cost function f(x) is minimized. Replacing ex-
periments with simulation in the optimization process
can drastically reduce the number of prototypes to be
built before the final product emerges, and thus leads to
considerable savings in money and time. Another opti-
mization problem, data assimilation, stems from mod-
eling and simulation itself. Here, the task is to try to
adjust the values of certain model or simulation param-
eters such that the computed values f(x) best match
the data d obtained from actual experiments. Thus, the

1This research is partially supported by the Deutsche Forchungsge-
meinschaft (DFG) within SFB540 “Model-based experimental anal-
ysis of kinetic of phenomena in fluid multi-phase reactive systems,”
Aachen University, Germany.

objective function of the corresponding optimization
problem is given by ‖f(x)−d‖ in data assimilation and
f(x) in design optimization. In both cases, weighted
norms may be used to emphasize selected components.

Traditionally, such optimization problems are often
tackled by running the simulation over and over again
with varying parameter sets and selecting the set lead-
ing to the “best” results. While easy to implement
from a programming point of view, this procedure is
not very efficient with respect to the number of simula-
tion runs. Moreover, the selection of an “appropriate”
parameter set may require experience. Numerical op-
timization routines, by contrast, typically make better
use of available information and can also be used by
non-experts. Unfortunately, optimization software and
simulation software often follow different conventions
for passing parameters, and therefore it is a tedious and
error-prone task to combine these two components. In
particular, switching to another optimizer or another
simulation package requires rewriting the interfacing
software, often from scratch.

This situation is addressed in [10], where a prelim-
inary version of a framework for automatically com-
bining large-scale simulation and optimization soft-
ware via the Common Object Request Broker Archi-
tecture (CORBA) is proposed.

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208551788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

264 C.H. Bischof et al. / An interactive environment for supporting the transition

The structure of this note is as follows. Sophisti-
cated optimizers make use of derivative information
in order to reduce the number of iterations. In Sec-
tion 2 we discuss several methods for computing these
derivatives. In particular, the so-called forward mode
of Automatic Differentiation (AD) is reviewed. The
structure of the Environment For Combining Optimiza-
tion and Simulation Software (EFCOSS) is described
in Section 3. Section 4 presents a detailed case study
showing the steps that are necessary to integrate new
simulation and optimization codes into EFCOSS and
to run the optimization, including simple and efficient
access to derivatives via AD. This section also includes
results from numerical experiments. Our findings are
summarized in Section 5.

2. Providing derivative information

This section addresses the problem of providing
derivative information for large-scale simulations, as
required by sophisticated optimization algorithms. We
will briefly discuss the problems with three well-known
methods for computing derivatives: analytic, symbolic,
and numerical differentiation. Automatic differentia-
tion is presented as a fourth alternative offering crucial
advantages in the context of large-scale simulations.

If a function is given by an explicit formula or defined
by simple differential or integral equations then the
derivatives of that function may also be described in
terms of formulæ. The mathematical description is
then easily turned into code by hand. For functions
given in the form of large-scale computer programs,
complex effects such as turbulence typically preclude
this analytic differentiation technique.

Due to the sheer size of the simulation packages to-
taling hundreds of thousands of lines and because of the
complexity of the codes with their numerous branches,
loops, and subroutine calls, current tools for symbolic
differentiation–aimed at expressing derivatives as ex-
plicit formulæ, and then automatically producing code
for evaluating the derivatives at arbitrary points x of
interest–also fail [22].

If applicable, computer programs obtained from an-
alytic and symbolic differentiation generate derivatives
that are accurate except for rounding errors. Numeri-
cal differentiation based on Divided Differences (DD),
by contrast, always involves an approximation error
which grows with increasing step size, say h. Taking
the first-order forward divided difference

∂

∂xj
f(x) (1)

≈ f(x1, . . . , xj−1, xj + h, xj+1, . . . , xn) − f(x)
h

as an example, it is evident that this problem cannot
be solved by using smaller step sizes h because, then,
catastrophic cancellation in the numerator of Eq. (1)
reduces the quality of the computed values. As a result,
derivatives approximated via DD are often only valid
to one half of the available digits, even with an optimal
choice for h. The main advantage of the DD approach is
that it is independent of the complexity of the function
f , which is used only in a black-box fashion to be
evaluated at certain points x.

Automatic Differentiation (AD) is a fourth technique
for the evaluation of derivatives capable of providing
accurate values even for functions defined by arbitrar-
ily complex codes. AD comprises a set of techniques
for automatically augmenting a given computer pro-
gram with statements for the computation of deriva-
tives. That is, given a computer program C that com-
putes a function

f(x) = (f1(x), f2(x), . . . , fm(x))T ∈ R
m,

automatic differentiation generates another program
C′ that, at any point of interest x ∈ R

n, not only
evaluates f but also its Jacobian

J(x) :=




∂
∂x1

f1(x) · · · ∂
∂xn

f1(x)
...

. . .
...

∂
∂x1

fm(x) · · · ∂
∂xn

fm(x)


 ∈ R

m×n

at the same point x.
The AD technology is applicable whenever deriv-

atives of functions given in the form of a high-level
programming language, such as Fortran, C, or C++,
are required. The reader is referred to the recent book
by Griewank [23] and the proceedings of AD work-
shops [7,12,24] for details on this technique. In au-
tomatic differentiation the program is treated as a–
potentially very long–sequence of elementary state-
ments such as binary addition or multiplication, for
which the derivatives are known. Then the chain
rule of differential calculus is applied over and over
again, combining these step-wise derivatives to yield
the derivatives of the whole program. This mechanical
process can be automated, and several AD tools are
available for transforming a given code C to the new
differentiated code C ′ [8,9,20]. Other AD tools use
operator overloading as implementation mechanism [4,
25]. In this way, AD requires little human effort and

C.H. Bischof et al. / An interactive environment for supporting the transition 265

produces derivatives that are accurate up to machine
precision.

When accumulating the derivatives of elementary
operations step by step, the associativity of the chain
rule offers several alternatives, all leading to the same
overall derivatives for the whole program, but at differ-
ent cost with respect to computation and storage. One
well-known strategy for applying the chain rule is the
so-called forward mode of AD. If one is interested in
obtaining derivatives of f with respect to n scalar vari-
ables (called independent variables hereafter), a gradi-
ent object u∇ ∈ R

n is associated to every intermediate
scalar variable u involved in the evaluation of the func-
tion f . The pair ud = [u,u∇] is called a doublet. In the
sequel, u is called function part and its associated u∇

is referred to as gradient part. Note that the gradient
part of a doublet stores the gradient of the function part
with respect to the independent variables.

For every operation of the original code C involving
a scalar variable u, there is a corresponding operation
on the doublet ud = [u,u∇] in the differentiated code
C′. For instance, a binary addition statement u = v+w
in C is transformed in C ′ into

u = v + w

u∇ = v∇ + w∇;

that is, the separate addition of the function and gra-
dient parts. A multiplication statement u = v · w is
transformed into

u = v · w
u∇ = vw∇ + wv∇,

where the gradient part is defined in a product rule-like
manner. Since any programming language consists of
only a small set of operations, the set of corresponding
operations on doublets is easily constructed.

Except for very simple cases, the function f cannot
be evaluated within a single routine. Instead, evaluat-
ing f typically involves a large subtree of the whole
program, the “top-level” routine of this tree invoking a
multitude of lower-level routines and finally providing
the function value. For example the computation of
some characteristic number of a stationary flow may
involve a nonlinear solver, which in turn calls a pre-
conditioned linear solver, and so on. In such a case
automatic differentiation must be applied to the whole
subtree, often totaling several hundreds of routines and
tens or even hundreds of thousands of lines of code, in
order to obtain the function’s derivatives.

In contrast to the forward mode, the so-called re-
verse (or backward) mode of AD generates derivative

objects whose length is equal to the number of output
or dependent variables, m, and can be more efficient
than the forward mode if m < n.

Sophisticated forward mode AD tools are capable
of generating code for the computation of J(x) · S,
where S is a so-called seed matrix of appropriate di-
mension [23]. That is, besides computing the Jacobian
matrix explicitly by setting S to the n × n identity,
the seed matrix offers the option to compute any linear
column combination of the Jacobian at a cost that is
proportional to the number of columns of S. Thus, ap-
propriately initializing S, called seeding, is often criti-
cal in terms of performance, provided that the full Ja-
cobian J is not needed explicitly. Reverse mode AD
tools typically allow the computation of any linear row
combinations ST · J(x) of the Jacobian.

3. The structure of EFCOSS

To give a better understanding of the structure of
EFCOSS we first review the steps necessary for the
solution of a typical data assimilation problem. Here,
f denotes a subroutine evaluating the simulation func-
tion, and opt is used to refer to some optimization
routine. We further assume that opt takes as input a
user-supplied function u which is needed to compute
the objective function. For instance, u might represent
the difference vector f(x) − d or its norm.

– First, a driver for opt has to be implemented,
which provides an initial guess x0 and potentially
additional control parameters specifying stopping
criteria, constraints, etc.

– The function u has to be implemented such that f
is called, then the return values f(x) are compared
with the measurements d, and finally the results
are returned. Note that the calling sequence of
u is usually prescribed by the developers of the
optimization software. Hence, the user has to fit
his particular optimization problem into a given
scheme.

– There is often a similar scheme for the routine
du computing the derivative of u. Therefore a
mechanism for evaluating the derivatives of f is
needed.

– To increase flexibility it is often desired to keep
some of the input parameters of f at fixed values,
i.e., only a subset of the parameters of f should be
optimized. Hence, there is need for a mechanism
to specify fixed parameters p.

266 C.H. Bischof et al. / An interactive environment for supporting the transition

The computational scientist often considers various
simulation packages and, more importantly, different
optimization codes in order to validate the robustness
of the numerical solution. Instead of implementing the
above requirements several times by hand, we suggest
an automated way for easily combining different soft-
ware packages and experimenting with varying prob-
lem configurations.

A related approach is the Toolkit for Advanced Op-
timization (TAO) [5,6] designed as a component-based
optimization software for the solution of large-scale op-
timization applications. It is based on the Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc) [1,
2], an object-oriented implementation for the parallel
solution of large problems arising from partial differ-
ential equations. A different approach is the NEOS
project [14]. The NEOS environment allows users to
solve an optimization problem remotely on an opti-
mization server, which offers a rich variety of opti-
mization algorithms. The user submits an initial guess,
possibly some control parameters, and a subroutine for
evaluating the objective function to the NEOS server,
where the problem is solved with the selected optimizer.
This approach is easy to use, highly flexible, and ad-
justable to large heterogeneous clusters of workstations
using a batch processing mechanism [16].

However, it is not applicable to our class of prob-
lems, where the evaluation of the objective function
involves a complete run of a typically very large sim-
ulation code. In addition to sheer size, the simulation
code might be tuned for a specific architecture, e.g.,
for a parallel or vector supercomputer; or it might be
protected by copyright laws and therefore cannot be
submitted via the Internet. There is a recent attempt to
circumvent these difficulties for optimization problems
where the objective function is evaluated locally while
the optimization algorithm runs on a remote server [21].

Other Projects involving object-orientation and inter-
operability in the context of computational science in-
clude the Parallel Object-Oriented Methods and Appli-
cations (POOMA) framework [28] and Overture [11];
see also the contributions in [26] for more details. The
CAPE-OPEN initiative provides an open standard for
software interoperability in chemical process engineer-
ing. More details about this project can be found in [3].
Commercial process simulation environments like As-
pen Plus provide integrated optimization routines and
allow users to hook up their own optimizers. Further-
more, design optimization tools, e.g., iSIGHT, can be
used together with several different commercial simu-
lation codes.

In [10] we proposed a preliminary version of EF-
COSS, a software environment especially designed
for automatically combining optimization routines and
large-scale simulation codes. Our approach treats the
evaluation of the function f, the execution of one it-
eration of the optimizer opt, and the computation of
the user-defined function u as basic tasks and provides
an infrastructure for controlling the interplay of these
tasks. To achieve maximum flexibility in supporting
different platforms and languages, EFCOSS is based
on the CORBA technology. The overall structure is
depicted in Fig. 1.

The user specifies the input and output variables of
the simulation code as well as the variables needed to
optimize the objective function. From this specifica-
tion, C++ interfaces for the evaluation of the function
f and its derivatives are generated automatically. They
are needed to set up a so-called “simulation server”,
which is able to drive the evaluation of the simulation
function as well as the specified gradient or Jacobian.
All requests to the simulation server come from a stan-
dard module called “wrapper” hereafter. The wrapper
is responsible for transferring data between the sim-
ulation and optimization components and also for the
computation of the user-defined function u. Also mak-
ing use of the specification mentioned above, the wrap-
per sends a request to the simulation server for evaluat-
ing either f(x,p) or the derivative of f(x,p) w.r.t. x.
Here, the variables needed for optimization are denoted
by x, whereas p represents additional fixed parameters
of the simulation. The specification of the simulation’s
input parameters also includes the values for such fixed
parameters.

The whole computation is driven by the optimiza-
tion component which repeatedly calls the user-defined
subroutine u and, possibly, du for the evaluation of
the objective function and its derivative, respectively.
In EFCOSS, these two routines are just stubs that per-
form no computational work on their own but only call
a standardized C++ interface, which in turn makes
use of CORBA to send an evaluation request, together
with an argument x, to the wrapper. The wrapper then
forwards this request to the simulation server, comple-
menting the free simulation parameters x with the fixed
values p.

The complete optimization process is invoked via a
user interface, which also makes the measurements d
available to the wrapper. The user interface is imple-
mented via the Python shell and provides some auxil-
iary functions, e.g., for communication with the wrap-
per module and for specifying input and output param-

C.H. Bischof et al. / An interactive environment for supporting the transition 267

CORBA

CORBA

C
O

R
B

AWrapper (Python)

Client & Server

(Python shell
 + toolbox)

User interface:

client

Client
(Python module)

Result

User invokes
Optimization

Server (C++)
Simulation code (F77)

Simulation interface (C++)

Optimization code (F77)

Optimization interface (C++)

Fig. 1. Overall structure of EFCOSS.

eters of the simulation. This allows users to experi-
ment with different problem configurations either in-
teractively or through scripts. The actual implementa-
tion of EFCOSS uses omniORB3.0 [27] for C++ and
Fnorb [13] for Python.

4. Case studies

In this section we describe the integration of partic-
ular software components into EFCOSS, namely the
widely used FLUENT computational fluid dynamics
(CFD) package [17], and an optimization routine from
the MINPACK-1 library [18]. Then we show the use
of EFCOSS by means of a test example taken from the
FLUENT tutorial guide [17].

4.1. Integration of the FLUENT solver

In order to integrate any simulation package into
EFCOSS, we must be able to control the simulation
through one single routine, the so-called “top-level rou-
tine”. This does not mean that the complete simulation
code must be contained in one routine but that the in-
put and output values of the simulation are accessible
within that routine.

For FLUENT, we had to turn off the graphical user
interface. The remaining text-based version of FLU-
ENT can be controlled via a so-called log file provid-
ing a complete specification of the simulation problem.
Furthermore, we had to replace the main program by
a top-level routine, which takes the relevant input pa-
rameters, executes the commands given in the log file,
and returns the results.

As a test problem, we consider the flow through a
filter cartridge as described in the FLUENT tutorial.
Here, we want to adjust the five scalar model parameters
c1ε, c2ε, cµ, σk, σε of the k-ε turbulence model such
that the pressure distribution in the filter best matches
some given experimental data. Therefore, the top-level
routine filter calculating the simulation function
has the following structure:

subroutine filter(c1,c2,cmu,
+ eprnd,dprnd,
+ ldpressure,pressure)
integer ldpressure
double precision c1,c2,cmu,

+ eprnd,dprnd
+ pressure(ldpressure)

c- open log file: channel 5 (= stdin)
c- is redirected to file.

268 C.H. Bischof et al. / An interactive environment for supporting the transition

c- Problem specification is given
c- in FILTER_LOGFILE

open(unit=5,
+ file=’FILTER_LOGFILE’)

c- original FLUENT code

c- close channel 5 (stdin)
close(5)
end

Here, the input variables c1, c2, cmu, eprnd, and
dprnd correspond to the turbulence parameters c1ε,
c2ε, cµ, σk, and σε. Note that we further changed the
original FLUENT code such that it uses the values of
these input variables instead of the internal default val-
ues for the turbulence parameters. On exit, the routine
filter computes the output variable pressure by
executing the FLUENT code.

The next step is to provide a specification of the
input and output variables. For simplicity, all variables
are assumed to be double precision. Hence,
the specification just consists of array size information.
Furthermore, the top-level routine of the simulation and
a set of variables to optimize, which is a subset of the
simulation’s input variables, must be defined. In our
test example we want to enable all input variables for
optimization.

The specification is given via the user interface, and
is needed to generate the CORBA/C++ interface con-
necting the simulation routine to the wrapper. It will
be also used later during the optimization process.

The generated CORBA/C++ routine takes a se-
quence of input variables (possibly vectors) from the
wrapper, allocates memory for the output variables,
then calls the simulation’s top-level function with the
input values, and finally returns one or more solu-
tion vectors to the wrapper. An excerpt from the
CORBA/C++ interface generated for our particular
test example is given below:

// input: sequence of input
// vectors ’’x_in’’
// output: sequence of solution
// vectors ’’all_solutions’’

double c1,c2,cmu,eprnd,dprnd;
int ldpressure = 336;
double *pressure =

new double[ldpressure];
c1 = x_in[0][0];
c2 = x_in[1][0];
cmu = x_in[2][0];

eprnd = x_in[3][0];
dprnd = x_in[4][0];
filter(&c1,&c2,&cmu,&eprnd,

&dprnd,&ldpressure,pressure);
// copy pressure to
// all_solutions[0]
...
delete[] pressure;
return all_solutions._retn();

If desired, EFCOSS additionally creates a control
script which can be used by the automatic differen-
tiation tool ADIFOR [8] to transform the simulation
source code into new code with additional statements
for the computation of the derivatives of the sim-
ulation’s outputs w.r.t. the input variables selected
for optimization. In the test example, we are in-
terested in the derivatives of the dependent variable
pressure w.r.t. the five independent variables rep-
resenting the turbulence parameters. This information
is passed to the AD tool by specifying the directives
AD DVARS, AD IVARS, and AD PMAX. The top-level
routine filter is indicated by the directive AD TOP.
EFCOSS generates a control script for ADIFOR con-
taining the following directives:

AD_TOP=filter
AD_PMAX=5
AD_IVARS=c1,c2,cmu,eprnd,dprnd
AD_DVARS=pressure
AD_PROG=filter.cmp

Here, filter.cmp is the name of a so-called compo-
sition file listing the names of all source files of the sim-
ulation. For programs fully adhering to the Fortran 77
standard, applying the ADIFOR tool results in Fortran
code for the desired derivatives. However, in practice,
legacy code may need some manual rearrangements be-
fore the ADIFOR tool can be successfully applied. For
the FLUENT code with its approximately 1, 500, 000
lines of mostly Fortran 77, some additional code mas-
saging was necessary in order to obtain standard For-
tran 77. Note that this preparation of the code has to
be done only once, even if many different optimization
problems are considered later on.

The calling sequence of the differentiated top-level
routine generated by ADIFOR is given below:

subroutine g_filter(g_p_,
+ c1,g_c1,ldg_c1, c2,g_c2,
+ ldg_c2, cmu,g_cmu,ldg_cmu,
+ eprnd,g_eprnd,ldg_eprnd,
+ dprnd,g_dprnd,ldg_dprnd,
+ ldpressure,pressure,
+ g_pressure,ldg_pressure)

C.H. Bischof et al. / An interactive environment for supporting the transition 269

It is easy to see how the calling sequence of the aug-
mented routine g filter is determined by the origi-
nal top-level routine: all variables appearing in the pa-
rameter list of filter reappear in g filter; each
variable v corresponding to an independent or depen-
dent variable (as listed in AD IVARS and AD DVARS
in the ADIFOR script) is immediately followed by
two additional variables g v and ldg v where the
derivatives of v are stored in an array g v with lead-
ing dimension ldg v. In the above parameter list,
the seed matrix S, introduced in Section 2, consists
of the input variables g c1, g c2, g cmu, g eprnd,
and g dprnd with corresponding leading dimen-
sions ldg c1, ldg c2, ldg cmu, ldg eprnd, and
ldg dprnd. The derivative of the pressure field is
returned in g pressure, a two dimensional array of
size (ldg pressure,ldpressure).

Similar to the interface of filter, EFCOSS gener-
ates the CORBA/C++ interface for g filter which
also performs the proper seeding of the independent
variables according to the user’s specification. For this
reason, the CORBA/C++ interface routine for the dif-
ferentiated code gets not only the input values for the
simulation from the wrapper but also the actual seed
matrix in a condensed representation. The seeding is
then done automatically within the interface routine.
The other tasks of this routine are similar to the one
described above for the simulation–wrapper interface,
except that now the differentiated top-level routine is
called, and the derivatives are returned instead of the
corresponding solution vectors. This “automatic seed-
ing” allows the user to interactively reduce the set of
parameters to optimize, even after the generation of the
AD code and the CORBA interfaces.

To further illustrate this issue, we consider two basic
strategies for choosing parameters for optimization.

Method 1: The user specifies only those parameters
that are definitely to be optimized, and generates the
differentiated program suitable for this particular case.
If, later on, it turns out that more (or other) parame-
ters should be considered for optimization then the AD
code must be regenerated, and the CORBA interface
for the new differentiated code must be generated as
well. Since both tasks are carried out in a completely
mechanical fashion, the only disadvantage of this ap-
proach is the processing time to be invested. In the case
of very large codes like FLUENT, automatic differen-
tiation and compilation may take several hours.

Method 2: The user specifies all input parameters
that might possibly become relevant for optimization,
and generates AD code as well as CORBA interfaces

for this configuration. The number of parameters to
optimize may now be reduced. Since the current set of
optimization parameters is always known to the wrap-
per module, the seed matrix can be used to filter out
the corresponding partial derivatives. Thus, whenever
the set of optimization parameters is changed, the seed
matrix is changed respectively. This approach does
not need any recompilation at all, i.e., the set of opti-
mization parameters can be changed interactively. On
the other hand, this approach typically requires more
memory at run-time.

Of course, mixing the two strategies is possible.
In order to build the complete simulation server

shown in Fig. 1, the simulation function, the differen-
tiated code, and the corresponding CORBA/C++ in-
terfaces have to be linked with a small main program,
which is independent from the actual simulation.

4.2. Integration of a MINPACK-1 optimization routine

Typical optimization routines require subroutines for
the evaluation of the objective function or its deriva-
tive. These subroutines must be provided by the user.
Thus, these two subroutines provide the means for cou-
pling the optimizers with the simulation software. In
EFCOSS, this is done via the wrapper; see Fig. 1.

To give an example, we discuss the process of inte-
grating the least squares optimization routine lmder1
from the MINPACK-1 library into EFCOSS. The
MINPACK package is publicly available, e.g., from
http://www.netlib.org. According to [18] the
user-defined subroutine must have the following struc-
ture:

subroutine fcn (m,n,x,fvec,
+ fjac,ldfjac,iflag)
integer n, m, ldfjac, iflag
double precision x(n), fvec(m),
+ fjac(ldfjac,n)
if (iflag .eq. 1) then

c --- calculate the functions at x
c --- return this vector in fvec

end if
if (iflag .eq. 2) then

c --- calculate the Jacobian at x
c --- return this matrix in fjac

end if
end

Usually the user implements the code for the required
computations in this routine. In EFCOSS, by contrast,
the user only needs to put the following subroutine calls
at the appropriate places:

270 C.H. Bischof et al. / An interactive environment for supporting the transition

call calcfvec(n,x,m,fvec)

for the function, and

call calcjac(n,x,m,fjac)

for the Jacobian. These external routines perform
no computational work, but send a request to the wrap-
per for evaluating the objective function and the Ja-
cobian, respectively. The routines can be used when-
ever a function f : R

n −→ R
m or its Jacobian has to

be computed. For convenience, we also provide spe-
cialized interface routines tailored to the evaluation of
scalar-valued functions and gradients.

The header of the main optimization routine is given
below:

subroutine lmder1(fcn,m,n,x,
+ fvec,fjac,ldfjac,tol,
+ info,ipvt,wa,lwa)
integer m,n,ldfjac,lwa,info
integer ipvt(n)
double precision tol
double precision x(n), fvec(m),

+ fjac(m,n), wa(lwa)
external fcn

To make this routine available from within Python
we employ the Pyfort tool [15]. Since Pyfort can-
not handle function names in a subroutine’s calling se-
quence, we remove the first argument. After this mod-
ification, we utilize Pyfort to create a shared library
minpackmodule.so, which can be accessed from
Python. Note that the resulting optimization module
is independent from the actual problem configuration
because the evaluation of the objective function and
the Jacobian is separated from the optimization part.
Therefore, the steps described in this subsection have
to be carried out only once, and from this point on the
generated Python module is usable for solving arbitrary
optimization problems within EFCOSS.

4.3. A sample optimization session

In the following we will show how EFCOSS can
be used to solve a typical data assimilation problem.
For the sample problem of a flow through a filter car-
tridge [17], we consider a turbulent flow at a Reynolds
number Re ≈ 105 using the k-ε turbulence model.

We want to determine values for three of the turbu-
lence parameters, c1ε, c2ε, and cµ, such that the pres-
sure distribution computed with FLUENT best matches
given experimental data at certain grid points. For the
time being, the remaining two parametersσk = 1.0 and

σε = 1.3 are considered fixed. But as we do not know
if these two values are correct, they might be included
in later optimization problems.

In our example, the test data d has been generated
artificially by running the simulation with the parameter
set

c1ε = 1.44, c2ε = 1.92, cµ = 0.09, σk = 1.0,

σε = 1.3

and saving the results for the pressure distribution to a
file.

The following extract from a Python session shows
how we set up the optimization problem:

1. c1 eps = newInputVar(wrapper,
"c1", 1,[1.44])

2. c2 eps = newInputVar(wrapper,
"c2",1,[1.92])

3. cmu = newInputVar(wrapper,
"cmu", 1,[0.09])

4. sigma k = newInputVar(wrapper,
"eprnd",1,[1.0])

5. sigma eps = newInputVar(wrapper,
"dprnd",1,[1.3])

6. setInputVars(wrapper,[c1 eps,
c2 eps,cmu,sigma k,sigma eps])

7. pressure = newOutputVar(wrapper,
"pressure",336,1)

8. setOutputVars(wrapper,[pressure])
9. setOptVars(wrapper,[c1 eps,

c2 eps, cmu,sigma k,sigma eps])

In lines 1–6 the input variables are specified. For
each input variable we indicate its name in the simula-
tion code, its size, and its default value. In lines 7 and
8 we specify the output variable. The solution vector
pressure is defined as an array of size 336, corre-
sponding to the number of cells in the underlying grid.
In line 9 we specify all the input variables that might
be optimized later on.

At this point we can generate a control script for AD-
IFOR as well as the CORBA interfaces for the routines
filter and g filter. Then, ADIFOR is applied
to obtain the differentiated code for g filter. Note
that, due to our definition of the optimization variables
in line 9, g filter will be able to compute deriva-
tives with respect to all five parameters or any subset
of them, depending on the actual seeding. Considering
σk and σε to be fixed, we are going to optimize the
subset c1ε, c2ε, and cµ. Hence, we redefine the set of
optimization variables and provide an initial guess for
these three variables:

C.H. Bischof et al. / An interactive environment for supporting the transition 271

setOptVars(wrapper,
[c1_eps,c2_eps,cmu])

x = array([1.1,1.2,0.1],Float64)

After setting further control parameters for the MIN-
PACK optimizer and providing the test data d to the
wrapper, we call the optimization routine lmder1
from the MINPACK module. In addition, we print the
result x and the final Euclidean norm of the residual
vector.

import minpack
fvec,fjac,info,ipvt=

minpack.lmder1(336,3,x,ldfjac,
tol,wa,lw)

print x,minpack.enorm(336,fvec)

After six function calls and five evaluations of the
Jacobian, the optimization algorithm produces the out-
put

[1.44000001 1.91999998 0.09000001]
3.39489005512e-06

Here, the first three numbers are the final approxi-
mations for the variables c1ε, c2ε, and cµ whereas the
fourth number is the Euclidean norm of the residual
vector. Indeed, the solution shows a good agreement
with the parameter set that was used to generate the test
data. However, in general, users may want to verify
the robustness of the solution, e.g., by trying a differ-
ent optimization package. Thus we let the same prob-
lem be solved again by another optimizer, namely the
bound-constrained least squares optimization routine
dn2gb from the PORT [19] library, which has been
integrated in EFCOSS as well. We import the corre-
sponding Python module, and provide the initial guess
as above. The array bounds will be used to pass the
constraints to the optimization routine. For sake of
brevity the initialization of the remaining variables is
omitted here.

import port
x = array([1.1,1.2,0.1],Float64)
lower_bounds = [0.01]*3
upper_bounds = [2.0]*3
bounds = array([lower_bounds,

upper_bounds],
Float64)

port.dn2gb(336,3,x,bounds,iv,liv,
lv,v,ui,ur)

In this optimization problem, the solution found by
dn2gb agrees with the solution computed bylmder1.
The crucial point here is that another optimizer can

be used with minimal human effort. More precisely,
any optimization algorithm accessible from within EF-
COSS can be used by interactively specifying its con-
trol parameters.

5. Conclusions

We have presented EFCOSS, a software environment
for facilitating the combination of simulation and opti-
mization software by enabling much of the interfacing
work to be done automatically. Our approach treats
the evaluation of the simulation function, one iteration
of the optimizer, and the computation of the optimiz-
er’s objective function as basic tasks and provides an
infrastructure for the interplay of these tasks.

A considerable number of languages and tools play
together in EFCOSS. Object-oriented languages are
used for managing the data and control flows be-
tween the different components at the executable level,
whereas we rely on highly optimizable imperative lan-
guages, e.g., Fortran, for the computationally intensive
tasks. One reason for selecting CORBA is that it greatly
simplifies distributed execution. For example, in our
experiments the simulation ran on a SUN Fire 6800
high-end compute server, whereas a standard PC was
used for the optimizer and the user interface. The C++
interfaces to the Fortran codes are added to simplify
the remote calls via CORBA. The wrapper and the user
interface are written in Python because of its flexibility
and ease of use. Finally, the ADIFOR automatic differ-
entiation tool is employed for automatically augment-
ing the simulation code such that it computes derivative
information together with the function values. Note
that, due to the use of CORBA, the simulation and
the optimization can be implemented in different lan-
guages. The optimizer is required to be callable from
Python which holds at least for Fortran, C, and C++.
In order to use automatic differentiation, the simulation
code should be written in a language that is supported
by some AD tool. Otherwise, one can still use EF-
COSS, but with a loss of accuracy when approximating
the derivatives by numerical differentiation.

In addition to the FLUENT simulation package and
the least squares optimizers from the MINPACK-1
and PORT libraries which are mentioned in this note,
we have integrated another large simulation package,
SEPRAN [30], as well as optimizers for scalar-valued
objective functions like, e.g., L-BFGS-B [31] and
UNCMIN [29], thus showing the versatility of EF-
COSS. Due to its modular structure, components can

272 C.H. Bischof et al. / An interactive environment for supporting the transition

easily be replaced with others providing comparable
functionality. Thus, experimenting with different sim-
ulation packages and/or different optimization algo-
rithms is greatly simplified.

References

[1] S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, PETSc
2.0 users manual, Technical Report ANL-95/11-Revision
2.0.24, Argonne National Laboratory, 1999.

[2] S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, PETSc
home page, http://www.mcs.anl.gov/petsc, 1999.

[3] J.-P. Belaud, B. Braunschweig and M. White, The CAPE-
OPEN standard: Motivations, development process, techni-
cal architecture and examples, in: Software Architectures and
Tools for Computer Aided Process Engineering, B. Braun-
schweig and R. Gani, eds, Elsevier, Amsterdam, Netherlands,
2002, pp. 303–332.

[4] C. Bendtsen and O. Stauning, FADBAD, a flexible C++
package for automatic differentiation, Technical Report IMM-
REP-1996-17, Department of Mathematical Modelling, Tech-
nical University of Denmark, Lyngby, Denmark, August,
1996.

[5] S. Benson, L. Curfman McInnes and J. Moré, TAO users
manual, Technical Report ANL/MCS-TM-242 Revision 1.2,
Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 2001.

[6] S.J. Benson, L.C. McInnes and J.J. Moré, A case study in the
performance and scalability of optimization algorithms, ACM
Trans. Math. Softw. 27(3) (2001), 361–376.

[7] M. Berz, C. Bischof, G. Corliss and A. Griewank, Computa-
tional Differentiation: Techniques, Applications, and Tools.
SIAM, Philadelphia, PA, 1996.

[8] C. Bischof, A. Carle, P. Khademi and A. Mauer, ADIFOR
2.0: Automatic differentiation of Fortran 77 programs, IEEE
Computational Science and Engineering 3(3) (1996), 18–32.

[9] C. Bischof, L. Roh and A. Mauer, ADIC – An extensible
automatic differentiation tool for ANSI-C, Software: Practice
and Experience 27(12) (1997), 1427–1456.

[10] C.H. Bischof, H.M. Bücker, B. Lang, A. Rasch and J.W. Risch,
A CORBA-based environment for coupling large-scale simu-
lation and optimization software, in: Proceedings of the In-
ternational Conference on Parallel and Distributed Process-
ing Techniques and Applications, H.R. Arabnia, ed., PDPTA
2001, Las Vegas, USA, CSREA Press, Vol. 1, June, 25–28,
2001, pp. 68–72.

[11] D.L. Brown, G.S. Chesshire, W.D. Henshaw and D.J. Quin-
lan, OVERTURE: An object-oriented software system for solv-
ing partial differential equations in serial and parallel envi-
ronments, in Eighth SIAM Conference on Parallel Processing
for Scientific Computing, Minneapolis, MN, March, 1997,
pp. 14–17.

[12] G. Corliss, C. Faure, A. Griewank, L. Hascoët and U. Nau-
mann, eds, Automatic Differentiation of Algorithms: From
Simulation to Optimization, Springer, New York, 2002.

[13] CRC for Distributed Systems Technology, The University
of Queensland, Australia, The Python CORBA ORB, 1999,
http://www.fnorb.org.

[14] J. Czyzyk, M.P. Mesnier and J.J. Moré. The NEOS server,
IEEE Computational Science and Engineering 5(3) (1998),
68–75.

[15] P.F. Dubois and T.-Y. Yang, Extending Python with Fortran,
Computing in Science and Engineering 1(5) (1999), 66–73.

[16] M.C. Ferris, M.P. Mesnier and J.J. Moré, NEOS and Condor:
Solving optimization problems over the internet, ACM Trans.
Math. Softw. 26(1) (2000), 1–18.

[17] Fluent Inc., Lebanon, NH. FLUENT Tutorial Guide, 1995.
[18] B.S. Garbow, K.E. Hillstrom and J.J. Moré, User Guide for

MINPACK-1, Report ANL-80-74, Argonne National Labora-
tory, Argonne, 1980.

[19] D.M. Gay, Usage summary for selected optimization routines,
Computing Science Technical Report 153, AT&T Bell Labo-
ratories, Murray Hill, 1990.

[20] R. Giering and T. Kaminski, Recipes for adjoint code con-
struction, ACM Trans. Math. Softw. 24(4) (1998), 437–474.

[21] M. Good, J.-P. Goux, J. Nocedal and V. Pereyra, iNEOS: An
interactive environment for nonlinear optimization, Applied
Numerical Mathematics 40(1–2) (2002), 49–57.

[22] A. Griewank, On automatic differentiation, in: Mathematical
Programming: Recent Developments and Applications, M. Iri
and K. Tanabe, eds, Kluwer Academic Publishers, Dordrecht,
1989, pp. 83–108,

[23] A. Griewank, Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, SIAM, Philadelphia,
PA, 2000.

[24] A. Griewank and G. Corliss, Automatic Differentiation of
Algorithms, SIAM, Philadelphia, PA, 1991.

[25] A. Griewank, D. Juedes and J. Utke, ADOL-C, a package for
the automatic differentiation of algorithms written in C/C++,
ACM Trans. Math. Softw. 22(2) (1996), 131–167.

[26] M.E. Henderson, C.R. Anderson and S. L.Lyons, eds, Proceed-
ings of the 1998 SIAM Workshop on Object Oriented Meth-
ods for Interoperable Scientific and Engineering Computing,
Philadelphia, PA, 1999, SIAM.

[27] S.-L. Lo, D. Riddoch and D. Grisby, The om-
niORB Version 3.0 User’s Guide, AT&T Bell Laborato-
ries, Cambridge, May 2000, Available from http://www.
uk.research.att.com/omniORB.

[28] J.V.W. Reynders et al., POOMA: A framework for scientific
simulations on parallel architectures, in: Parallel Program-
ming Using C++, G.V. Wilson and P. Lu, eds, MIT Press,
Cambridge, 1996, pp. 547–588.

[29] R.B. Schnabel, J.E. Koontz and B.E. Weiss, A modular system
of algorithms for unconstrained minimization, ACM Trans.
Math. Softw. 11 (1985), 419–440.

[30] G. Segal, SEPRAN Users Manual, Ingenieursbureau Sepra,
Leidschendam, NL, 1993.

[31] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal, Algorithm 778:
L-BFGS-B, Fortran subroutines for large-scale bound con-
strained optimization, ACM Trans. Math. Softw. 23 (1997),
550–560.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

