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Given a graph 𝐺, the general sum-connectivity index is defined as 𝜒𝛼(𝐺) = ∑𝑢V∈𝐸(𝐺)(𝑑𝐺(𝑢) + 𝑑𝐺(V))𝛼, where 𝑑𝐺(𝑢) (or 𝑑𝐺(V))
denotes the degree of vertex 𝑢 (or V) in the graph 𝐺 and 𝛼 is a real number. In this paper, we obtain the sharp bounds for general
sum-connectivity indices of several graph transformations, including the semitotal-point graph, semitotal-line graph, total graph,
and eight distinct transformation graphs 𝐺𝑢V𝑤, where 𝑢, V, 𝑤 ∈ {+, −}.

1. Introduction

In this paper, we consider simple, undirected, and connected
graphs. Let 𝐺 be the graph with vertex set 𝑉(𝐺) and edge
set 𝐸(𝐺). The order and size of 𝐺 are denoted by 𝑛 and𝑒, respectively. For a vertex 𝑎 ∈ 𝑉(𝐺), 𝑑𝐺(𝑎) denotes the
degree of 𝑎. Two vertices in 𝐺 are adjacent if and only if they
are end vertices of an edge, and each of the two vertices is
called incident to the edge. Besides, two edges are adjacent
to each other if and only if they share a common vertex. The
minimum and maximum degrees of graph 𝐺 are denoted by𝛿(𝐺) and Δ(𝐺), respectively. We will use the notations 𝑃𝑛, 𝐶𝑛,
and 𝐾𝑛 for a path, cycle, and complete graph of order 𝑛 [1],
respectively.

The complement of 𝐺, denoted by 𝐺, is the graph with
𝑉(𝐺) = 𝑉(𝐺) and two vertices in 𝐺 are adjacent if and only if
they are not adjacent in 𝐺. Thus, the size of 𝐺 is ( 𝑛2 ) − 𝑒 and if
𝑎 ∈ 𝑉(𝐺) then 𝑑𝐺(𝑎) = 𝑛 − 1 − 𝑑𝐺(𝑎).

A topological index is a numeric quantity associated
with a graph which characterizes the topology of graph.
A topological index Top(𝐺) of a graph 𝐺 is equal to the
topological index Top(𝐻) of 𝐻, if and only if two graphs 𝐺
and𝐻 are isomorphic. The idea of topological index appears
from work done by Wiener in 1947, this index is called
Wiener index. The first and second Zagreb indices have been
introduced by Gutman and Trinajestić [2]. These indices are
defined on the ground of vertex degrees as follows:

𝑀1 (𝐺) = ∑
𝑎∈𝑉(𝐺)

(𝑑𝐺 (𝑎))2 ,
𝑀2 (𝐺) = ∑

𝑎𝑏∈𝐸(𝐺)

𝑑𝐺 (𝑎) 𝑑𝐺 (𝑏) .
(1)

The Randić connectivity index was defined in 1975 by Randić
[3]. It has been extended to the general Randić connec-
tivity index. The general Randić connectivity index (general
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product-connectivity index) was defined by Bollobás and
Erdős [4] as follows:

𝑅𝛼 (𝐺) = ∑
𝑎𝑏∈𝐸(𝐺)

(𝑑𝐺 (𝑎) 𝑑𝐺 (𝑏))𝛼 , (2)

where 𝛼 is a real number. Then 𝑅−1/2 is the classical Randić
connectivity index.The sum-connectivity indexwas proposed
in [5]. This concept was extended to the general sum-
connectivity index in [6], which is defined as

𝜒𝛼 (𝐺) = ∑
𝑎𝑏∈𝐸(𝐺)

(𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑏))𝛼 , (3)

where 𝛼 is a real number. Then 𝜒−1/2(𝐺) is the classical
sum-connectivity index. The sum-connectivity index and the
product-connectivity index correlate well with the 𝜋-electron
energy of benzenoid hydrocarbons [7].

The total graph 𝑇(𝐺) of the graph 𝐺 is a graph whose
vertex set is the union of 𝑉(𝐺) and 𝐸(𝐺) such that 𝑎𝑏 ∈𝐸(𝑇(𝐺)) if and only if 𝑎 and 𝑏 are either adjacent or incident
in 𝐺 [8]. Let 𝑢, V, and𝑤 be the variables having values + or −.
The transformation graph 𝐺𝑢V𝑤 is a graph whose vertex set is
the union of 𝑉(𝐺) and 𝐸(𝐺), and 𝑎𝑏 ∈ 𝐸(𝐺𝑢V𝑤) if and only if

(1) 𝑎, 𝑏 ∈ 𝑉(𝐺); then𝑢 = + or𝑢 = − if 𝑎 and 𝑏 are adjacent
or nonadjacent in 𝐺, respectively;

(2) 𝑎, 𝑏 ∈ 𝐸(𝐺); then V = + or V = − if 𝑎 and 𝑏 are adjacent
or nonadjacent in 𝐺, respectively;

(3) 𝑎 ∈ 𝑉(𝐺) and 𝑏 ∈ 𝐸(𝐺); then 𝑤 = + or 𝑤 = − if 𝑎 and𝑏 are incident or nonincident in 𝐺, respectively.
There are eight different transformations of the given

graph 𝐺. For instance, 𝐺+++ is the total graph 𝑇(𝐺) of 𝐺 with
number of vertices 𝑛 + 𝑒 and number of edges (1/2)𝑀1(𝐺) +2𝑒, and 𝐺−−− is the complement of total graph 𝐺+++. For
other transformations of graph,𝐺++−,𝐺+−+, and𝐺+−− are the
complements of 𝐺−−+, 𝐺−+−, and 𝐺−++, respectively.

The concepts of semitotal-point graph and semitotal-line
graph are introduced by Sampathkumar and Chikkodimath
[9]. The semitotal-point graph 𝑇1(𝐺) is a graph whose vertex
set is the union of 𝑉(𝐺) and 𝐸(𝐺), and 𝑎𝑏 ∈ 𝐸(𝑇1(𝐺)) if and
only if (i) 𝑎 and 𝑏 are adjacent vertices in 𝐺 or (ii) one is a
vertex of 𝐺 and the other is an edge of 𝐺 incident to it. Thus,
semitotal-point graph has 𝑛 + 𝑒 number of vertices and 3𝑒
number of edges.

The semitotal-line graph𝑇2(𝐺) is a graphwhose vertex set
is the union of𝑉(𝐺) and 𝐸(𝐺), and 𝑎𝑏 ∈ 𝐸(𝑇2(𝐺)) if and only
if (i) 𝑎 and 𝑏 are adjacent edges in 𝐺 and (ii) one is a vertex of𝐺 and the other is an edge of𝐺 incident to it.Thus, semitotal-
line graph has 𝑛 + 𝑒 number of vertices and (1/2)𝑀1(𝐺) + 𝑒
number of edges.

Eventually, many properties of these transformation
graphs can be determined. For example, the Zagreb indices of
transformation graphs and total transformation graphs were
calculated by Basavanagoud and Patil [10] andHosamani and
Gutman [11], respectively. Wu and Meng [12] investigated
the basic properties (connectedness, graph equations and
iteration, and diameter) of total transformation. Xu and Wu
[13] determined the connectivity, the Hamiltonian, and the

independence number of 𝐺−+−. Yi and Wu [14] determined
the connectivity, the Hamiltonian, and the independence
number of 𝐺++−.

In this paper, we obtain lower and upper bounds for
the general sum-connectivity indices of the above-defined
transformation graphs.

2. Main Results

In this section, we discuss the lower and upper bounds for the
general sum-connectivity indices of transformation graphs
defined in Section 1.

Theorem 1. For 𝛼 < 0, we have 𝛾1 ≤ 𝜒𝛼(𝑇1(𝐺)) ≤ 𝛾2, where
𝛾1 = 2𝛼𝜒𝛼 (𝐺) + 2𝛼+1𝑒 (Δ (𝐺) + 1)𝛼 ,
𝛾2 = 2𝛼𝜒𝛼 (𝐺) + 2𝛼+1𝑒 (𝛿 (𝐺) + 1)𝛼 ; (4)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. Since𝑇1(𝐺) has 𝑛+𝑒 vertices and 3𝑒 edges, it holds that
𝜒𝛼 (𝑇1 (𝐺)) = ∑

𝑎𝑏∈𝐸(𝑇1(𝐺))

(𝑑𝑇1(𝐺) (𝑎) + 𝑑𝑇1(𝐺) (𝑏))𝛼

= ∑
𝑎𝑏∈𝐸(𝑇1(𝐺)),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝑇1(𝐺) (𝑎) + 𝑑𝑇1(𝐺) (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝑇1(𝐺)),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝑇1(𝐺) (𝑎) + 𝑑𝑇1(𝐺) (𝑏))𝛼 .
(5)

Note that if 𝑎 ∈ 𝑉(𝐺) then 𝑑𝑇1(𝐺)(𝑎) = 2𝑑𝐺(𝑎) and if 𝑎 ∈𝐸(𝐺) then 𝑑𝑇1(𝐺)(𝑎) = 2. It is clear that 𝛿(𝐺) ≤ 𝑑𝐺(𝑎) andΔ(𝐺) ≥ 𝑑𝐺(𝑎). And these equalities hold if and only if 𝐺 is a
regular graph. Therefore,

𝜒𝛼 (𝑇1 (𝐺)) = 2𝛼 ∑
𝑎𝑏∈𝐸(𝑇1(𝐺)),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑏))𝛼

+ 2𝛼 ∑
𝑎𝑏∈𝐸(𝑇1(𝐺)),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝐺 (𝑎) + 1)𝛼

≥ 2𝛼𝜒𝛼 (𝐺) + 2𝛼+1𝑒 (Δ (𝐺) + 1)𝛼 .

(6)

Similarly, we can compute

𝜒𝛼 (𝑇1 (𝐺)) ≤ 2𝛼𝜒𝛼 (𝐺) + 2𝛼+1𝑒 (𝛿 (𝐺) + 1)𝛼 . (7)

The two equalities in (6) and (7) obviously hold if and only if𝐺 and𝐻 are regular, respectively.

Example 2. By Theorem 1, the general sum-connectivity
indices of some semitotal-point graphs are given below:

(1) 𝑛(8𝛼 + 2 × 6𝛼) − 3 × 8𝛼 ≤ 𝜒𝛼(𝑇1(𝑃𝑛)) ≤ 22𝛼𝑛(2𝛼 + 2) +2 × 6𝛼 − 3 × 8𝛼 − 22𝛼+1.
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(2) 𝜒𝛼(𝑇1(𝐶𝑛)) = 2𝛼𝑛(4𝛼 + 2 × 3𝛼).
(3) 𝜒𝛼(𝑇1(𝐾𝑛)) = 2𝛼𝑛(𝑛 − 1)[2𝛼−1(𝑛 − 1)𝛼 + 𝑛𝛼].

Theorem 3. If 𝛼 < 0 then 𝛾1 ≤ 𝜒𝛼(𝑇2(𝐺)) ≤ 𝛾2, where

𝛾1 = 22𝛼−1𝑀1 (𝐺) Δ𝛼 (𝐺) + 𝑒Δ𝛼 (𝐺) [2 × 3𝛼 − 4𝛼] ,
𝛾2 = 22𝛼−1𝑀1 (𝐺) 𝛿𝛼 (𝐺) + 𝑒𝛿𝛼 (𝐺) [2 × 3𝛼 − 4𝛼] ;

(8)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. Since |𝑉(𝑇2(𝐺))| = 𝑛 + 𝑒 and |𝐸(𝑇2(𝐺))| = (1/2)𝑀1(𝐺) + 𝑒, we have

𝜒𝛼 (𝑇2 (𝐺)) = ∑
𝑎𝑏∈𝐸(𝑇2(𝐺))

(𝑑𝑇2(𝐺) (𝑎) + 𝑑𝑇2(𝐺) (𝑏))𝛼

= ∑
𝑎𝑏∈𝐸(𝑇2(𝐺)),
𝑎,𝑏∈𝐸(𝐺)

(𝑑𝑇2(𝐺) (𝑎) + 𝑑𝑇2(𝐺) (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝑇2(𝐺)),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝑇2(𝐺) (𝑎) + 𝑑𝑇2(𝐺) (𝑏))𝛼 .

(9)

Note that if 𝑎 ∈ 𝐸(𝐺) then 𝑑𝑇2(𝐺)(𝑎) = 𝑑𝐺(𝑤𝑖) + 𝑑𝐺(𝑤𝑗) and if𝑎 ∈ 𝑉(𝐺) then 𝑑𝑇2(𝐺)(𝑎) = 𝑑𝐺(𝑎). Therefore, we have

𝜒𝛼 (𝑇2 (𝐺)) = ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[(𝑑𝐺 (𝑤𝑖) + 𝑑𝐺 (𝑤𝑗))

+ (𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘))]𝛼 + ∑
𝑎𝑏∈𝐸(𝑇2(𝐺)),
𝑎∈𝑉(𝐺),
𝑏=𝑎𝑥∈𝐸(𝐺),
𝑥∈𝑉(𝐺)

[𝑑𝐺 (𝑎)

+ (𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑥))]𝛼 = ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[𝑑𝐺 (𝑤𝑖)

+ 2𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘)]𝛼 + ∑
𝑎∈𝑉(𝐺),
𝑏=𝑎𝑥∈𝐸(𝐺),
𝑥∈𝑉(𝐺)

[𝑑𝐺 (𝑎)

+ (𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑥))]𝛼 .

(10)

Since 𝑑𝐺(𝑎) ≥ 𝛿(𝐺) and 𝑑𝐺(𝑎) ≤ Δ(𝐺), each equality holds if
and only if 𝐺 is a regular graph.

After simplification we get

𝜒𝛼 (𝑇2 (𝐺)) ≥ [4Δ (𝐺)]𝛼 ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

1

+ [3Δ (𝐺)]𝛼 ∑
𝑎𝑏∈𝐸(𝑇2(𝐺)),
𝑎∈𝑉(𝐺),
𝑏=𝑎𝑥∈𝐸(𝐺),
𝑥∈𝑉(𝐺)

1

= [4Δ (𝐺)]𝛼 ⋅ [𝐸 (𝑇2 (𝐺)) − 2𝑒]
+ [3Δ (𝐺)]𝛼 ⋅ (2𝑒)

= 22𝛼−1𝑀1 (𝐺) Δ𝛼 (𝐺)
+ 𝑒Δ𝛼 (𝐺) [2 × 3𝛼 − 4𝛼] .

(11)

Similarly, we can calculate

𝜒𝛼 (𝑇2 (𝐺)) ≤ 22𝛼−1𝑀1 (𝐺) 𝛿𝛼 (𝐺)
+ 𝑒𝛿𝛼 (𝐺) [2 × 3𝛼 − 4𝛼] . (12)

Obviously the equalities in (11) and (12) hold if and only
if 𝐺 is a regular graph.

Example 4. By Theorem 3, the general sum-connectivity
indices of some semitotal-line graphs are given below:

(1) 2𝛼𝑛(4𝛼+2×3𝛼)−2𝛼+1(4𝛼−3𝛼) ≤ 𝜒𝛼(𝑇2(𝑃𝑛)) ≤ 𝑛(4𝛼+2 × 3𝛼) − 2(4𝛼 + 2 × 3𝛼).
(2) 𝜒𝛼(𝑇2(𝐶𝑛)) = 2𝛼𝑛(4𝛼 + 2 × 3𝛼).
(3) 𝜒𝛼(𝑇2(𝐾𝑛)) = 𝑛𝛼(𝑛 − 1)𝛼+1[22𝛼−1𝑛 + 22𝛼 + 3𝛼].

Theorem 5. Let 𝛼 < 0. Then 𝛾1 ≤ 𝜒𝛼(𝑇(𝐺)) ≤ 𝛾2, where
𝛾1 = 2𝛼𝜒𝛼 (𝐺) + 22𝛼−1𝑀1 (𝐺) Δ𝛼 (𝐺) + 4𝛼𝑒Δ𝛼 (𝐺) ,
𝛾2 = 2𝛼𝜒𝛼 (𝐺) + 22𝛼−1𝑀1 (𝐺) 𝛿𝛼 (𝐺) + 4𝛼𝑒𝛿𝛼 (𝐺) ; (13)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. Since |𝑉(𝑇(𝐺))| = 𝑛+𝑒 and |𝐸(𝑇(𝐺))| = (1/2)𝑀1(𝐺)+2𝑒, we have
𝜒𝛼 (𝑇 (𝐺)) = ∑

𝑎𝑏∈𝐸(𝑇(𝐺))

(𝑑𝑇(𝐺) (𝑎) + 𝑑𝑇(𝐺) (𝑏))𝛼

= ∑
𝑎𝑏∈𝐸(𝑇(𝐺)),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝑇(𝐺) (𝑎) + 𝑑𝑇(𝐺) (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝑇(𝐺)),
𝑎,𝑏∈𝐸(𝐺)

(𝑑𝑇(𝐺) (𝑎) + 𝑑𝑇(𝐺) (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝑇(𝐺)),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝑇(𝐺) (𝑎) + 𝑑𝑇(𝐺) (𝑏))𝛼 .

(14)
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Note that 𝑑𝑇(𝐺)(𝑎) = 2𝑑𝐺(𝑎) for 𝑎 ∈ 𝑉(𝐺) and 𝑑𝑇(𝐺)(𝑎) =𝑑𝐺(𝑤𝑖) + 𝑑𝐺(𝑤𝑗) for 𝑎 ∈ 𝐸(𝐺). So
𝜒𝛼 (𝑇 (𝐺)) = 2𝛼 ∑

𝑎𝑏∈𝐸(𝐺),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑏))𝛼

+ ∑
𝑎=𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑏=𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[(𝑑𝐺 (𝑤𝑖) + 𝑑𝐺 (𝑤𝑗))

+ (𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘))]𝛼 + ∑
𝑏=𝑎𝑥∈𝐸(𝐺),
𝑎∈𝑉(𝐺),𝑥∈𝑉(𝐺)

[2𝑑𝐺 (𝑎)

+ (𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑥))]𝛼 = 2𝛼 ⋅ 𝜒𝛼 (𝐺)
+ ∑
𝑎=𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑏=𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[𝑑𝐺 (𝑤𝑖) + 2𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘)]𝛼

+ ∑
𝑏=𝑎𝑥∈𝐸(𝐺),
𝑎∈𝑉(𝐺),𝑥∈𝑉(𝐺)

[2𝑑𝐺 (𝑎) + (𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑥))]𝛼 .

(15)

Note that 𝑑𝐺(𝑎) ≤ Δ(𝐺) and 𝑑𝐺(𝑎) ≥ 𝛿(𝐺). The equalities
hold if and only if 𝐺 is a regular graph.

After simplification, we get

𝜒𝛼 (𝑇 (𝐺)) ≥ 2𝛼𝜒𝛼 (𝐺) + [4Δ (𝐺)]𝛼 [12𝑀1 (𝐺) − 𝑒]
+ [4Δ (𝐺)]𝛼 [2𝑒]

= 2𝛼𝜒𝛼 (𝐺) + 22𝛼−1Δ𝛼 (𝐺)𝑀1 (𝐺)
+ 22𝛼𝑒Δ𝛼 (𝐺) .

(16)

Similarly, we can compute

𝜒𝛼 (𝑇 (𝐺)) ≤ 2𝛼𝜒𝛼 (𝐺) + 22𝛼−1𝛿𝛼 (𝐺)𝑀1 (𝐺)
+ 22𝛼𝑒𝛿𝛼 (𝐺) . (17)

Since 𝜒𝛼(𝐺) ≥ 2𝛼𝑒Δ𝛼(𝐺), we can also write the results
above as

4𝛼𝛿𝛼 (𝐺) [12𝑀1 (𝐺) + 2𝑒] ≤ 𝜒𝛼 (𝑇 (𝐺))
≤ 4𝛼Δ𝛼 (𝐺) [12𝑀1 (𝐺) + 2𝑒] .

(18)

Thus, if 𝐺 is a regular graph, then we obtain the equality
in (16), (17), and (18).

Example 6. By Theorem 5, the general sum-connectivity
indices of some total graphs are given below:

(1) 23𝛼+2𝑛 + 2 × 6𝛼 − 7 × 8𝛼 ≤ 𝜒𝛼(𝑇(𝑃𝑛)) ≤ 4𝛼𝑛(2𝛼 + 1) +2𝛼(2 × 3𝛼 − 3 × 4𝛼 + −2𝛼+2).

(2) 𝜒𝛼(𝑇(𝐶𝑛)) = 4 × 8𝛼𝑛.
(3) 𝜒𝛼(𝑇(𝐾𝑛)) = 22𝛼−1𝑛(𝑛 − 1)𝛼+1(𝑛 + 1).

Theorem 7. Let 𝛼 < 0. Then 𝛾1 ≤ 𝜒𝛼(𝐺−−−) ≤ 𝛾2, where

𝛾1 = 2𝛼 [12𝑀1 (𝐺) + 2𝑒] (𝑒 + 𝑛 − 1 − 2Δ𝛼 (𝐺))𝛼 ,
𝛾2 = 2𝛼 [12𝑀1 (𝐺) + 2𝑒] (𝑒 + 𝑛 − 1 − 2𝛿𝛼 (𝐺))𝛼 ;

(19)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. For a given graph 𝐺, since 𝐺−−− ≅ 𝐺+++ and 𝐺+++ =𝑇(𝐺), then |𝑉(𝐺−−−)| = 𝑛 + 𝑒, |𝐸(𝐺−−−)| = ( 𝑒+𝑛2 ) −
(1/2)𝑀1(𝐺) − 2𝑒, and 2Δ(𝐺) = 𝑒 + 𝑛 − 1 − 2Δ(𝐺). Using these
values, we can compute the required results.

Theorem 8. Let 𝛼 < 0. Then 𝛾1 ≤ 𝜒𝛼(𝐺++−) ≤ 𝛾2, where

𝛾1 = 2𝛼𝑒𝛼+1 + 2𝛼 [12𝑀1 (𝐺) − 𝑒] [𝑛 − 4 + 2Δ (𝐺)]𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ [𝑒 + 𝑛 − 4 + 2Δ (𝐺)]𝛼 ,
𝛾2 = 2𝛼𝑒𝛼+1 + 2𝛼 [12𝑀1 (𝐺) − 𝑒] [𝑛 − 4 + 2𝛿 (𝐺)]𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ [𝑒 + 𝑛 − 4 + 2𝛿 (𝐺)]𝛼 ;

(20)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. Since |𝑉(𝐺++−)| = 𝑛 + 𝑒 and |𝐸(𝐺++−)| = ( 𝑒+𝑛2 ) − ( 𝑛2 ) −( 𝑒2 ) + (1/2)𝑀1(𝐺) − 2𝑚,

𝜒𝛼 (𝐺++−) = ∑
𝑎𝑏∈𝐸(𝐺++−)

(𝑑𝐺++− (𝑎) + 𝑑𝐺++− (𝑏))𝛼

= ∑
𝑎𝑏∈𝐸(𝐺++−),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝐺++− (𝑎) + 𝑑𝐺++− (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝐺++−),
𝑎,𝑏∈𝐸(𝐺)

(𝑑𝐺++− (𝑎) + 𝑑𝐺++− (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝐺++−),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝐺++− (𝑎) + 𝑑𝐺++− (𝑏))𝛼 .

(21)
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Note that if 𝑎 ∈ 𝑉(𝐺) then 𝑑𝐺++−(𝑎) = 𝑒 and if 𝑎 ∈ 𝐸(𝐺) then𝑑𝐺++−(𝑎) = 𝑑𝐺(𝑤𝑖) + 𝑑𝐺(𝑤𝑗) + 𝑛 − 4
𝜒𝛼 (𝐺++−) = ∑

𝑎𝑏∈𝐸(𝐺),
𝑎,𝑏∈𝑉(𝐺)

[2𝑒]𝛼

+ ∑
𝑎=𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑏=𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[(𝑑𝐺 (𝑤𝑖) + 𝑑𝐺 (𝑤𝑗) + 𝑛 − 4)

+ (𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘) + 𝑛 − 4)]𝛼 + ∑
𝑏=𝑥𝑦∈𝐸(𝐺),
𝑎∈𝑉(G),
𝑎∉{𝑥,𝑦}

[𝑒

+ (𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦) + 𝑛 − 4)]𝛼 = 2𝛼𝑒𝛼+1

+ ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺)

[2𝑛 − 8 + 𝑑𝐺 (𝑤𝑖) + 2𝑑𝐺 (𝑤𝑗)

+ 𝑑𝐺 (𝑤𝑘)]𝛼 + ∑
𝑏=𝑥𝑦∈𝐸(𝐺),
𝑎∈𝑉(𝐺),
𝑎∉{𝑥,𝑦}

[𝑒 + 𝑛 − 4 + 𝑑𝐺 (𝑥)

+ 𝑑𝐺 (𝑦)]𝛼 .

(22)

Note that 𝑑𝐺(𝑎) ≤ Δ(𝐺) and 𝑑𝐺(𝑎) ≥ 𝛿(𝐺). The equalities
hold if and only if 𝐺 is a regular graph. After simplification,
we get

𝜒𝛼 (𝐺++−) ≥ 2𝛼𝑒𝛼+1 + 2𝛼 [12𝑀1 (𝐺) − 𝑒]
⋅ [𝑛 − 4 + 2Δ (𝐺)]𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ (𝑒 + 𝑛 − 4 + 2Δ (𝐺))𝛼 .

(23)

Similarly, we can compute

𝜒𝛼 (𝐺++−) ≤ 2𝛼𝑒𝛼+1 + 2𝛼 [12𝑀1 (𝐺) − 𝑒]
⋅ (𝑛 − 4 + 2𝛿 (𝐺))𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ (𝑒 + 𝑛 − 4 + 2𝛿 (𝐺))𝛼 .

(24)

The equalities in (23) and (24) obviously hold if and only
if 𝐺 is a regular graphs.

Theorem 9. Let 𝛼 < 0. Then 𝛾1 ≤ 𝜒𝛼(𝐺−+−) ≤ 𝛾2, where

𝛾1 = 2𝛼 [𝑒 + 𝑛 − 1 − 2Δ (𝐺)]𝛼 [(𝑛
2) − 𝑒]

+ 2𝛼 [𝑛 − 4 + 2Δ (𝐺)]𝛼 [12𝑀1 (𝐺) − 𝑒]

+ (𝑒 + 2𝑛 − 5)𝛼 [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒] ,

𝛾2 = 2𝛼 [𝑒 + 𝑛 − 1 − 2𝛿 (𝐺)]𝛼 [(𝑛
2) − 𝑒]

+ 2𝛼 [𝑛 − 4 + 2𝛿 (𝐺)]𝛼 [12𝑀1 (𝐺) − 𝑒]

+ (𝑒 + 2𝑛 − 5)𝛼 [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒] ;

(25)

the equalities hold if and only if 𝐺 is a regular graph.

Proof. Since |𝑉(𝐺−+−)| = 𝑛 + 𝑒 and |𝐸(𝐺−+−)| = ( 𝑒+𝑛2 ) − ( 𝑒2 ) +(1/2)𝑀1(𝐺) − 4𝑒,
𝜒𝛼 (𝐺−+−) = ∑

𝑎𝑏∈𝐸(𝐺−+−)

(𝑑𝐺−+− (𝑎) + 𝑑𝐺−+− (𝑏))𝛼

= ∑
𝑎𝑏∈𝐸(𝐺−+−),
𝑎,𝑏∈𝑉(𝐺)

(𝑑𝐺−+− (𝑎) + 𝑑𝐺−+− (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝐺−+−),
𝑎,𝑏∈𝐸(𝐺)

(𝑑𝐺−+− (𝑎) + 𝑑𝐺−+− (𝑏))𝛼

+ ∑
𝑎𝑏∈𝐸(𝐺−+−),
𝑎∈𝑉(𝐺),𝑏∈𝐸(𝐺)

(𝑑𝐺−+− (𝑎) + 𝑑𝐺−+− (𝑏))𝛼 .

(26)

Note that 𝑑𝐺−+−(𝑎) = 𝑒 + 𝑛 − 1 − 2𝑑𝐺(𝑎) for 𝑎 ∈ 𝑉(𝐺) and𝑑𝐺−+−(𝑎) = 𝑑𝐺(𝑤𝑖) + 𝑑𝐺(𝑤𝑗) + 𝑛 − 4 for 𝑎 ∈ 𝐸(𝐺). Then

𝜒𝛼 (𝐺−+−) = ∑
𝑎𝑏∈𝐸(𝐺−+−),
𝑎,𝑏∈𝑉(𝐺)

[(𝑒 + 𝑛 − 1 − 2𝑑𝐺 (𝑎))

+ (𝑒 + 𝑛 − 1 − 2𝑑𝐺 (𝑏))]𝛼

+ ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[(𝑑𝐺 (𝑤𝑖) + 𝑑𝐺 (𝑤𝑗) + 𝑛 − 4)

+ (𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘) + 𝑛 − 4)]𝛼
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+ ∑
𝑎𝑏∈𝐸(𝐺−+−),
𝑎∈𝑉(𝐺),𝑏=𝑥𝑦∈𝐸(𝐺)

[(𝑒 + 𝑛 − 1 − 2𝑑𝐺 (𝑎))

+ (𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦) + 𝑛 − 4)]𝛼 = 2𝛼 ∑
𝑎𝑏∉𝐸(𝐺),
𝑎,𝑏∈𝑉(𝐺)

[𝑒 + 𝑛

− 1 − 𝑑𝐺 (𝑎) − 𝑑𝐺 (𝑏)]𝛼 + ∑
𝑤𝑖𝑤𝑗∈𝐸(𝐺),

𝑤𝑗𝑤𝑘∈𝐸(𝐺),

𝑤𝑖 ̸=𝑤𝑘

[2𝑛 − 8

+ 𝑑𝐺 (𝑤𝑖) + 2𝑑𝐺 (𝑤𝑗) + 𝑑𝐺 (𝑤𝑘)]𝛼 + ∑
𝑏=𝑥𝑦∈𝐸(𝐺),
𝑎∉{𝑥,𝑦},
𝑎∈𝑉(𝐺)

[𝑒

+ 2𝑛 − 5 − 2𝑑𝐺 (𝑎) + 𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]𝛼 .
(27)

Note that 𝑑𝐺(𝑎) ≤ Δ(𝐺) and 𝑑𝐺(𝑎) ≥ 𝛿(𝐺). The equalities
hold if and only if 𝐺 is a regular graph.

After simplification, we get

𝜒𝛼 (𝐺−+−)
≥ 2𝛼 [𝑒 + 𝑛 − 1 − 2Δ (𝐺)]𝛼 [(𝑛

2) − 𝑒]

+ 2𝛼 [𝑛 − 4 + 2Δ (𝐺)]𝛼 [12𝑀1 (𝐺) − 𝑒]

+ (𝑒 + 2𝑛 − 5)𝛼 [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒] .

(28)

Similarly, we calculate

𝜒𝛼 (𝐺−+−) ≤ 2𝛼 [𝑒 + 𝑛 − 1 − 2𝛿 (𝐺)]𝛼

⋅ [𝑛 − 4 + 2𝛿 (𝐺)]𝛼 [(𝑛
2) − 𝑒]

+ 2𝛼 [12𝑀1 (𝐺) − 𝑒]

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒 + 2𝑛 − 5)𝛼 (𝑒
2) − 2𝑒] .

(29)

If 𝐺 is a regular graph then we obtain the equalities in (28)
and (29).

In fully analogousmanner, we also arrive at the following.

Theorem 10. If 𝛼 < 0 then
(1) 𝛾1 ≤ 𝜒𝛼(𝐺+−−) ≤ 𝛾2, where

𝛾1 = 2𝛼𝑒𝛼+1 + 2𝛼 [(𝑒
2) − 1

2𝑀1 (𝐺) + 𝑒]
⋅ [𝑛 + 𝑒 − 1 − 2Δ (𝐺)]𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ [2𝑒 + 𝑛 − 1 − 2Δ (𝐺)]𝛼 ,
𝛾2 = 2𝛼𝑒𝛼+1 + 2𝛼 [(𝑒

2) − 1
2𝑀1 (𝐺) + 𝑒]

⋅ [𝑛 + 𝑒 − 1 − 2𝛿 (𝐺)]𝛼

+ [(𝑒 + 𝑛
2 ) − (𝑛

2) − (𝑒
2) − 2𝑒]

⋅ [2𝑒 + 𝑛 − 1 − 2𝛿 (𝐺)]𝛼 ;
(30)

(2) 𝛾1 ≤ 𝜒𝛼(𝐺−−+) ≤ 𝛾2, where
𝛾1 = 2𝛼 [(𝑛

2) − 𝑒] (𝑛 − 1)𝛼

+ 2𝛼 [(𝑒
2) − 1

2𝑀1 (𝐺) + 𝑒] [𝑒 − 3 − 2Δ (𝐺)]𝛼

+ 2𝑒 [𝑒 + 𝑛 + 2 − 2Δ (𝐺)]𝛼 ,
𝛾2 = 2𝛼 [(𝑛

2) − 𝑒] (𝑛 − 1)𝛼

+ 2𝛼 [(𝑒
2) − 1

2𝑀1 (𝐺) + 𝑒] [𝑒 − 3 − 2𝛿 (𝐺)]𝛼

+ 2𝑒 [𝑒 + 𝑛 + 2 − 2𝛿 (𝐺)]𝛼 ;

(31)

(3) 𝛾1 ≤ 𝜒𝛼(𝐺−++) ≤ 𝛾2, where
𝛾1 = 2𝛼 [(𝑛

2) − 𝑒] (𝑛 − 1)𝛼

+ 4𝛼Δ𝛼 (𝐺) [12𝑀1 (𝐺) − 𝑒]
+ 2𝑒 [𝑛 − 1 + 2Δ (𝐺)]𝛼 ,

𝛾2 = 2𝛼 [(𝑛
2) − 𝑒] (𝑛 − 1)𝛼

+ 4𝛼𝛿𝛼 (𝐺) [12𝑀1 (𝐺) − 𝑒]
+ 2𝑒 [𝑛 − 1 + 2𝛿 (𝐺)]𝛼 ;

(32)

(4) 𝛾1 ≤ 𝜒𝛼(𝐺+−+) ≤ 𝛾2, where
𝛾1 = 22𝛼𝑒Δ𝛼 (𝐺)

+ [(𝑒
2) − 1

2𝑀1 (𝐺) + 𝑒] [3 − 2Δ (𝐺)]𝛼

+ 2𝑒 (𝑒 + 3)𝛼 ,
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𝛾2 = 22𝛼𝑒𝛿𝛼 (𝐺)
+ [(𝑒

2) − 1
2𝑀1 (𝐺) + 𝑒] [3 − 2𝛿 (𝐺)]𝛼

+ 2𝑒 (𝑒 + 3)𝛼 .
(33)

In all the above cases, the equalities hold if and only if 𝐺 is a
regular graph, respectively.

3. Conclusion

In this paper, we obtain the sharp lower and upper bounds
for general sum-connectivity indices of the semitotal-point
graph, the semitotal-line graph, the total graph, and the eight
distinct transformation graphs𝐺𝑢V𝑤, where 𝑢, V, 𝑤 ∈ {+, −} in
terms of the order, minimum degree, and maximum degree
of a graph. Moreover, the extremal graphs achieving these
bounds have been described.
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