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This papermainly discusses the robust quadratic stability and stabilization of linear discrete-time stochastic systemswith state delay
and uncertain parameters. By means of the linear matrix inequality (LMI) method, a sufficient condition is, respectively, obtained
for the stability and stabilizability of the considered system. Moreover, we design the robust 𝐻∞ state feedback controllers such
that the systemwith admissible uncertainties is not only quadratically internally stable but also robust𝐻∞ controllable. A sufficient
condition for the existence of the desired robust𝐻∞ controller is obtained. Finally, an example with simulations is given to verify
the effectiveness of our theoretical results.

1. Introduction

It is well known that stability and stabilization are very
important concepts in linear system theory. Due to a great
number of applications of stochastic systems in the realistic
world, the studies of stability and stabilization for stochastic
systems attract lots of researchers’ attention in recent years;
we refer the reader to the classic book [1] and the follow-
up books [2, 3], together with references [4–11] and the
references therein, which include robust stochastic stability
[4], exponential stabilization [6], mean-square stability, and
D-stability and D𝑅-stability [8]. The stabilization of various
systems, including impulsive Markovian jump delay systems
[4], stochastic singular systems [10, 12, 13], uncertain stochas-
tic T-S fuzzy systems [14], and time-delay systems [6, 11, 15–
17], has been studied extensively. 𝐻∞ control is one of the
most important robust control approaches when the system
is subject to the influence of external disturbance, which has
been shown to be effective in attenuating the disturbance.
The objective of standard 𝐻∞ control requires designing a
controller to attenuate 𝑙2-gain from the external disturbance
to controlled output below a given level 𝛾 > 0; see [18]. The
study of𝐻∞ control of general linear discrete-time stochastic

systems with multiplicative noise seems to be first initiated
by [19].Then, stochastic𝐻∞ control and its applications have
been investigated extensively; see [14, 16, 20–24].

Because time-delay exists widely in practice and affects
the system stability, there have been many works concerning
the study in stability or 𝐻∞ control of stochastic systems
[4, 6, 9, 11, 14–16, 22, 25]. Due to limitations of measure-
ment technique and tools, it is not easy to construct exact
mathematicalmodels. Comparedwith the nominal stochastic
systemswithout uncertain terms investigated in [2, 5, 24], our
considered system allows the coefficient matrix to vary in a
certain range.

Discrete-time stochastic difference systems have attracted
a great deal of attention with the development of computer
technology in recent years. In our viewpoint, there are
at least two motivations to study discrete-time stochastic
systems, Firstly, discrete-time stochastic systems are ideal
mathematical models in practical modeling such as genetic
regulatory networks [23]. Secondly, discrete-time stochastic
systems provide a better approach to understand extensively
continuous-time stochastic Itô systems [2, 3, 26]. Therefore,
it is of significance to study the stabilization and𝐻∞ control
of discrete-time stochastic time-delay uncertain systems.
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This paper will study quadratic stability, stabilization,
and robust state feedback𝐻∞ control for uncertain discrete-
time stochastic systems with state delay. The parameter
uncertainties are time varying and norm bounded. It can be
found that, up to now, many criteria for testing quadratic
stabilization and 𝐻∞ control have been given in terms of
LMIs and algebraic Riccati equations by applying Lyapunov
function approach. One of our main contributions is to
study quadratic stability and stabilization via LMIs instead of
algebraic Riccati equations which is hardly solved. What we
have obtained extended the work of [15] about the quadratic
stability and stabilization of deterministic uncertain sys-
tems. Another contribution is to solve the state feedback𝐻∞ control and present a state feedback 𝐻∞ controller
design.

The paper is organized as follows. In Section 2 we
give some adequate preliminaries and useful definitions. In
Section 3, sufficient conditions for quadratic stability and
stabilization are given in terms of LMIs which is convenient
to compute by theMATLABLMI toolbox. Section 4 designs a
state feedback 𝐻∞ controller. Two numerical examples with
simulations are given in Section 5 to verify the efficiency of
the proposed results. Finally, we end this paper in Section 6
with a brief conclusion.

For convenience, the notations in this paper are quite
standard such as the following: we letR𝑛 andR𝑚×𝑛 represent
the set of all real 𝑛-dimensional vectors and 𝑚 × 𝑛 real
matrices. For symmetric matrices 𝑋 and 𝑌, 𝑋 ≥ 𝑌 (resp.,𝑋 > 𝑌) stands for the idea that the matrix 𝑋 − 𝑌 is positive
semidefinite (resp., positive definite). 𝐼 denotes the identity
matrix of appropriate dimensions and𝑋𝑇 denotes the matrix
transpose of 𝑋. ‖𝑥‖ = √∑∞𝑘=0 |𝑥𝑘|2 represents the Euclidean
norm or spectral norm of the vector 𝑥. N𝑘0 fl {𝑘0, 𝑘0 +1, 𝑘0 + 2, . . .}, especially, N1 fl {1, 2, . . .}, N0 fl {0, 1, 2, . . .},
and [𝜏1, 𝜏2], represents the set of integers between 𝜏1 and 𝜏2
(inclusive). In symmetric block matrices, the symbol “∗” is
used as an ellipsis for terms induced by symmetry.E(⋅) is the
expectation operator.

2. Preliminaries

Consider a class of uncertain linear discrete-time stochastic
systems with state delay described by

𝑥 (𝑘 + 1) = (𝐴0 + Δ𝐴0 (𝑘)) 𝑥 (𝑘) + (𝐴0𝑑 + Δ𝐴0𝑑 (𝑘))
⋅ 𝑥 (𝑘 − 𝑑) + (𝐵0 + Δ𝐵0 (𝑘)) 𝑢 (𝑘)
+ 𝑠∑
𝑖=1

{[𝐶0 + Δ𝐶0 (𝑘)] 𝑥 (𝑘)
+ [𝐶0𝑑 + Δ𝐶0𝑑 (𝑘)] 𝑥 (𝑘 − 𝑑)
+ [𝐷0 + Δ𝐷0 (𝑘)] 𝑢 (𝑘)} 𝑤𝑖 (𝑘) ,

𝑥 (𝑗) = 𝜙 (𝑗) ∈R𝑛,
𝑗 ∈ {−𝑑, −𝑑 + 1, . . . , 0} , 𝑘 ∈N0,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state and 𝑢(𝑘) ∈ R𝑚 is
the control input, and {𝑤(𝑘)}𝑘≥0 are independent white noise
process satisfying the following assumptions:

(H1) E[𝑤𝑘] = 0, E[𝑤𝑘𝑤𝑗] = 𝛿𝑘𝑗, where 𝛿𝑘𝑗 is a Kronecker
function defined by 𝛿𝑘𝑗 = 0 for 𝑘 ̸= 𝑗while 𝛿𝑘𝑗 = 1 for𝑘 = 𝑗.

(H2) {𝑤(𝑘)}𝑘≥0 are defined on the filtered probability space(Ω,F,F𝑘,P) with F𝑘 = 𝜎{𝑤(0), . . . , 𝑤(𝑘)}. In
addition, {F𝑘}𝑘∈N0 is an increasing sequence of 𝜎-
algebras withF𝑡 ⊂ F.

𝐴0, 𝐴0𝑑, 𝐵0, 𝐶0, 𝐶0𝑑, 𝐷0 are known real constant matri-
ces with compatible dimensions. Δ𝐴0(𝑘), Δ𝐴0𝑑(𝑘), Δ𝐵0(𝑘),Δ𝐶0(𝑘), Δ𝐷0(𝑘), Δ𝐶0𝑑(𝑘) are norm bounded and time-
varying uncertain parameter which are assumed to have the
following form:

[Δ𝐴0 (𝑘) Δ𝐴0𝑑 (𝑘) Δ𝐵0 (𝑘) Δ𝐶0 (𝑘) Δ𝐶0𝑑 (𝑘) Δ𝐷0 (𝑘)]
= 𝐸𝐹 (𝑘) [𝐺𝐴0 𝐺𝐴0𝑑 𝐺𝐵0 𝐺𝐶0 𝐺𝐶0𝑑 𝐺𝐷0] , (2)

where 𝐸,𝐺𝐴0 ,𝐺𝐴0𝑑 ,𝐺𝐵0 ,𝐺𝐶0 ,𝐺𝐶0𝑑 ,𝐺𝐷0 are constant matrices
and 𝐹(𝑘) ∈R𝑚×𝑛 is the uncertain matrix satisfying

𝐹 (𝑘)𝑇 𝐹 (𝑘) ≤ 𝐼, 𝑘 ∈N0. (3)

For the purpose of simplicity, throughout this paper, we write
system (1) in the following form:

𝑥 (𝑘 + 1)
= 𝐴0Δ𝑥 (𝑘) + 𝐴0𝑑Δ𝑥 (𝑘 − 𝑑) + 𝐵0Δ𝑢 (𝑘)
+ 𝑠∑
𝑖=1

[𝐶0Δ𝑥 (𝑘) + 𝐶0𝑑Δ𝑥 (𝑘 − 𝑑) + 𝐷0Δ𝑢 (𝑘)] 𝑤𝑖 (𝑘) ,
𝑥 (𝑗) = 𝜙 (𝑗) ∈R𝑛, 𝑗 ∈ [−𝑑, 0] , 𝑘 ∈N0,

(4)

where 𝐴0Δ, 𝐴0𝑑Δ, 𝐵0Δ, 𝐶0Δ, 𝐶0𝑑Δ are bounded uncertain
system matrices with

𝐴0Δ = 𝐴0 + Δ𝐴0 (𝑘) = 𝐴0 + 𝐸𝐹 (𝑘) 𝐺𝐴0 ,
𝐴0𝑑Δ = 𝐴0𝑑 + Δ𝐴0𝑑 (𝑘) = 𝐴0𝑑 + 𝐸𝐹 (𝑘) 𝐺𝐴0𝑑 ,
𝐵0Δ = 𝐵0 + Δ𝐵0 (𝑘) = 𝐵0 + 𝐸𝐹 (𝑘) 𝐺𝐵0 ,
𝐶0Δ = 𝐶0 + Δ𝐶0 (𝑘) = 𝐶0 + 𝐸𝐹 (𝑘) 𝐺𝐶0 ,
𝐶0𝑑Δ = 𝐶0𝑑 + Δ𝐶0𝑑 (𝑘) = 𝐶0𝑑 + 𝐸𝐹 (𝑘) 𝐺𝐶0𝑑 ,
𝐷0Δ = 𝐷0 + Δ𝐷0 (𝑘) = 𝐷0 + 𝐸𝐹 (𝑘) 𝐺𝐷0 .

(5)

Below, we define robust quadratic stability and robust
quadratic stabilizability for the uncertain time-delay discrete-
time system (1), which generalize Definition 1 of [15] to
stochastic systems.

Definition 1. Uncertain discrete time-delay system (1) is said
to be robustly quadratically stable, if there exist matrices 𝑃 >0, 𝑄 > 0 and a scalar 𝜔 > 0 such that, for all admissible



Mathematical Problems in Engineering 3

uncertain terms and given initial condition 𝑥(𝑗) = 𝜙(𝑗) ∈R𝑛
for 𝑗 = 0, −1, . . . , −𝑑, the unforced system of (1) (with 𝑢(𝑘) ≡0) satisfies

E (Δ𝑉𝑘) = E𝑉𝑘+1 −E𝑉𝑘 ≤ −𝜔E ‖󵱰𝑥 (𝑘)‖2 (6)

for 󵱰𝑥(𝑘) ∈R2𝑛 with 󵱰𝑥(𝑘) = (𝑥(𝑘)𝑇, 𝑥(𝑘 − 𝑑)𝑇)𝑇 and
𝑉𝑘 = 𝑥 (𝑘)𝑇 𝑃𝑥 (𝑘) + 𝑑∑

𝑗=1

𝑥 (𝑘 − 𝑗)𝑇𝑄𝑥 (𝑘 − 𝑗) . (7)

Definition 2. Uncertain discrete time-delay system (1) is said
to be robustly quadratically stabilizable if there exists amatrix𝐾 ∈ R𝑚×𝑛 such that closed-loop system (1) with 𝑢(𝑘) =𝐾𝑥(𝑘), that is,
𝑥 (𝑘 + 1)
= (𝐴0Δ + 𝐵0Δ𝐾)𝑥 (𝑘) + 𝐴0𝑑Δ (𝑘) 𝑥 (𝑘 − 𝑑)
+ 𝑠∑
𝑖=1

[(𝐶0Δ + 𝐷0Δ𝐾)𝑥 (𝑘) + 𝐶0𝑑Δ𝑥 (𝑘 − 𝑑)]𝑤𝑖 (𝑘) ,
(8)

is robustly quadratically stable for given 𝑥(𝑗) = 𝜙(𝑗) ∈R𝑛 for𝑗 = 0, −1, . . . , −𝑑.
3. Robust Quadratic Stabilization

In this section, a sufficient condition about robust quadratic
stability and robust quadratic stabilization will be presented
via LMIs, respectively. First, we cite the following lemma
which is essential in proving our main results.

Lemma 3 (see [27]). Suppose that 𝑊 = 𝑊𝑇, 𝐹(𝑘) satisfies
(2), and then for any real matrices 𝑊, 𝑀, and 𝑁 of suitable
dimensions we have

𝑊+𝑀𝐹 (𝑘)𝑁 + 𝑁𝑇𝐹 (𝑘)𝑇𝑀𝑇 < 0 (9)

if and only if (iff), for some 𝛼 > 0,
𝑊+ 𝛼𝑀𝑀𝑇 + 𝛼−1𝑁𝑇𝑁 < 0. (10)

Theorem 4. Consider uncertain discrete-time stochastic delay
system (1) with 𝑢(𝑘) = 0. This system is robustly quadratically

stable if there exist positive definite matrices𝑋 > 0, 𝑌 > 0 such
that the following LMI holds.

[[[[[[[[[[[
[

Δ 11 Δ 12 𝐴𝑇0𝑋 𝑠1/2𝐶𝑇0𝑋 0 0
∗ Δ 22 𝐴𝑇0𝑑𝑋 𝑠1/2𝐶𝑇0𝑑𝑋 0 0
∗ ∗ −𝑋 0 𝑋𝐸 0
∗ ∗ ∗ −𝑋 0 𝑋𝐸
∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]
]

< 0, (11)

where

Δ 11 = 𝑌 − 𝑋 + 𝐺𝑇𝐴0𝐺𝐴0 + 𝑠𝐺𝑇𝐶0𝐺𝐶0 ,
Δ 12 = 𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑 + 𝑠𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑 ,
Δ 22 = −𝑌 + 𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑 + 𝑠𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑 .

(12)

Proof. From Definition 1, taking a Lyapunov function 𝑉𝑘 as
in the form of (7), if uncertain discrete time-delay stochastic
system (1) is quadratically stable, then, for all admissible
uncertainties of (1), there exist matrices 𝑃 > 0, 𝑄 > 0 and
a scalar 𝛼 > 0 such that E(Δ𝑉𝑘) associated with unforced
system (8) satisfies (6). In view of the assumption (H1), it is
easy to compute

E𝑉𝑘+1 −E𝑉𝑘 = E {𝑥 (𝑘)𝑇 [𝐴0Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘)
+ 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) + 𝑄 − 𝑃] 𝑥 (𝑘) + 𝑥 (𝑘)𝑇
⋅ [𝐴0Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘) + 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘)] 𝑥 (𝑘
− 𝑑) + 𝑥 (𝑘 − 𝑑)𝑇 [𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘)
+ 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘)] 𝑥 (𝑘) + 𝑥 (𝑘 − 𝑑)𝑇
⋅ [𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘) + 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘)
− 𝑄] 𝑥 (𝑘 − 𝑑)} = [ 𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)]
𝑇Π[ 𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)] ,

(13)

where 𝐴0Δ, 𝐴0𝑑Δ, 𝐶0Δ, and 𝐶0𝑑Δ are given in (5) and Π is
shown as

Π = [𝐴0Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘) + 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) + 𝑄 − 𝑃 𝐴0Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘) + 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘)
𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘) + 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) 𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘) + 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘) − 𝑄] . (14)

By Definition 1, system (1) with 𝑢(𝑘) = 0 is robustly
quadratically stable, only if

Π < 0 (15)

which is equivalent to

Π = Π1 + Π2

= [
[
𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) + 𝑄 − 𝑃 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘)
𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘) − 𝑄

]
]

+ [𝐴0Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘) 𝐴0Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘)
𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0Δ (𝑘) 𝐴0𝑑Δ (𝑘)𝑇 𝑃𝐴0𝑑Δ (𝑘)] < 0.

(16)
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Note that Π2 can be rewritten as

Π2 = [ 𝐴0Δ (𝑘)
𝑇 𝑃

𝐴0𝑑Δ (𝑘)𝑇 𝑃]𝑃
−1 [𝑃𝐴0Δ (𝑘) 𝑃𝐴0𝑑Δ (𝑘)] . (17)

By Schur’s complement, it is easy to derive that Π < 0 is
equivalent to

Π̂ = [[[
[

𝜋11 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘) 𝐴0Δ (𝑘)𝑇 𝑃
∗ 𝜋22 𝐴0𝑑Δ (𝑘)𝑇 𝑃∗ ∗ −𝑃

]]]
]
, (18)

where

𝜋11 = 𝑠𝐶0Δ (𝑘)𝑇 𝑃𝐶0Δ (𝑘) + 𝑄 − 𝑃,
𝜋22 = 𝑠𝐶0𝑑Δ (𝑘)𝑇 𝑃𝐶0𝑑Δ (𝑘) − 𝑄. (19)

Then, using the same way as in (16)–(19) yields

Π̂ =
[[[[[[
[

𝑄 − 𝑃 0 𝐴0Δ (𝑘)𝑇 𝑃 𝑠1/2𝐶0Δ (𝑘)𝑇 𝑃
∗ −𝑄 𝐴0𝑑Δ (𝑘)𝑇 𝑃 𝑠1/2𝐶0𝑑Δ (𝑘)𝑇 𝑃∗ ∗ −𝑃 0
∗ ∗ ∗ −𝑃

]]]]]]
]

< 0.

(20)

The above inequality can be rewritten as

Π̂ = Π3 +
[[[[[
[

0 0
0 0
𝑃𝐸 0
0 𝑃𝐸

]]]]]
]
diag (𝐹 (𝑘) , 𝐹 (𝑘))

⋅ [ 𝐺𝐴0 𝐺𝐴0𝑑 0 0
𝑠1/2𝐺𝐶0 𝑠1/2𝐺𝐶0𝑑 0 0] +

[[[[[[
[

𝐺𝑇𝐴0 𝑠1/2𝐺𝑇𝐶0
𝐺𝑇𝐴0𝑑 𝑠1/2𝐺𝑇𝐶0𝑑0 0
0 0

]]]]]]
]

⋅ diag (𝐹 (𝑘)𝑇 , 𝐹 (𝑘)𝑇) [0 0 𝐸𝑇𝑃 0
0 0 0 𝐸𝑇𝑃] < 0,

(21)

where

Π3 =
[[[[[[
[

𝑄 − 𝑃 0 𝐴𝑇0𝑃 𝑠1/2𝐶𝑇0𝑃
∗ −𝑄 𝐴𝑇0𝑑𝑃 𝑠1/2𝐶𝑇0𝑑𝑃∗ ∗ −𝑃 0
∗ ∗ ∗ −𝑃

]]]]]]
]
. (22)

Because Π3 is a symmetric matrix, applying Lemma 3, (21)
holds iff the following inequality holds:

Π3 + 𝛼
[[[[[
[

0 0
0 0
𝑃𝐸 0
0 𝑃𝐸

]]]]]
]
[0 0 𝐸𝑇𝑃 0
0 0 0 𝐸𝑇𝑃]

+ 𝛼−1
[[[[[[
[

𝐺𝑇𝐴0 𝑠1/2𝐺𝑇𝐶0
𝐺𝑇𝐴0𝑑 𝑠1/2𝐺𝑇𝐶0𝑑0 0
0 0

]]]]]]
]
[ 𝐺𝐴0 𝐺𝐴0𝑑 0 0
𝑠1/2𝐺𝐶0 𝑠1/2𝐺𝐶0𝑑 0 0]

=
[[[[[[
[

Λ 11 Λ 12 𝐴𝑇0𝑃 𝑠1/2𝐶𝑇0𝑃
∗ Λ 22 𝐴𝑇0𝑑𝑃 𝑠1/2𝐶𝑇0𝑑𝑃∗ ∗ Λ 33 0
∗ ∗ ∗ Λ 44

]]]]]]
]
< 0,

(23)

where

Λ 11 = 𝑄 − 𝑃 + 𝛼−1𝐺𝑇𝐴0𝐺𝐴0 + 𝑠𝛼−1𝐺𝑇𝐶0𝐺𝐶0,
Λ 12 = 𝛼−1𝐺𝑇𝐴0𝐺𝐴0𝑑 + 𝑠𝛼−1𝐺𝑇𝐶0𝐺𝐶0𝑑,
Λ 22 = −𝑄 + 𝛼−1𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑 + 𝑠𝛼−1𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑,
Λ 33 = Λ 44 = −𝑃 + 𝛼𝑃𝐸𝐸𝑇𝑃.

(24)

Take

𝑃 = 𝛼−1𝑋,
𝑄 = 𝛼−1𝑌 (25)

and then by substituting (25) into (23), for 𝛼 > 0, we get
[[[[[[
[

Δ 11 Δ 12 𝐴𝑇0𝑋 𝑠1/2𝐶𝑇0𝑋
∗ Δ 22 𝐴𝑇0𝑑𝑋 𝑠1/2𝐶𝑇0𝑑𝑋
∗ ∗ −𝑋 + 𝑋𝐸𝐸𝑇𝑋 0
∗ ∗ ∗ −𝑋 + 𝑋𝐸𝐸𝑇𝑋

]]]]]]
]
< 0, (26)

where Δ 11, Δ 12, Δ 22 are shown in (12).
Using the same method as in (16)–(20), (11)-(12) follow

immediately from the above inequality.

Theorem 5. System (1) is robustly quadratically stabilizable if
there exist positive matrices 𝑋 > 0, 𝑌 > 0, 𝐾 ∈ R𝑚×𝑛 and a
scalar 𝜀 > 0 with 𝜀𝐼 − 𝑋−1 < 0 such that the following LMI
holds.
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[[[[[[[[[[[[[[[[[
[

Θ11 Θ12 (𝐴0 + 𝐵0𝐾)𝑇 𝑠1/2 (𝐶0 + 𝐷0𝐾)𝑇 0 0 (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇 𝑠1/2 (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇
∗ Θ22 𝐴𝑇0𝑑 𝑠1/2𝐶𝑇0𝑑 0 0 0 0
∗ ∗ −𝜀𝐼 0 𝐸 0 0 0
∗ ∗ ∗ −𝜀𝐼 0 𝐸 0 0
∗ ∗ ∗ ∗ −𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ −𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]]]]]]]
]

< 0, (27)

where

Θ11 = 𝑌 − 𝑋,
Θ12 = (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇𝐺𝐴0𝑑 + (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇𝐺𝐶0𝑑,
Θ22 = −𝑌 + 𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑 + 𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑.

(28)

Moreover, a quadratically stabilizing state feedback controller
is given by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) . (29)

Proof. By Definition 2, using the same way as in the proof of
Theorem 4, the following inequality which has a similar form
to (11)-(12) can be obtained by taking 𝑢(𝑘) = 𝐾𝑥(𝑘)
[[[[[[[[[[[
[

Θ̂11 Θ12 (𝐴0 + 𝐵0𝐾)𝑇𝑋 𝑠1/2 (𝐶0 + 𝐷0𝐾)𝑇𝑋 0 0
∗ Θ22 𝐴𝑇0𝑑𝑋 𝑠1/2𝐶𝑇0𝑑𝑋 0 0
∗ ∗ −𝑋 0 𝑋𝐸 0
∗ ∗ ∗ −𝑋 0 𝑋𝐸
∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]
]

< 0,

(30)

where

Θ̂11 = 𝑌 − 𝑋 + (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇 (𝐺𝐴0 + 𝐺𝐵0𝐾)
+ (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇 (𝐺𝐶0 + 𝐺𝐷0𝐾) .

(31)

In order to eliminate the nonlinear quadratic terms

(𝐴0 + 𝐵0𝐾)𝑇𝑋,
(𝐶0 + 𝐷0𝐾)𝑇𝑋,

(32)

pre- and postmultiplying

diag (𝐼, 𝐼, 𝑋−1, 𝐼, 𝐼, 𝐼) (33)

on both sides of (30) and considering𝑋−1 > 𝜀𝐼, (27)-(28) can
be obtained easily. This theorem is proved.

Remark 6. Compared with the results about quadratic stabil-
ity and quadratic stabilizability of deterministic systems given
in [14], our two theorems not only extend the results of [14]
to stochastic systems, but also provide the corresponding LMI
criteria which can be easily tested by MATLAB LMI toolbox.

Remark 7. From these two theorems, we also can get the
result about quadratic stability with the given decay rate. Take
the function

𝑥𝜆 (𝑘) = 𝑥 (𝑘) 𝑒𝑘𝜆, (34)

and then, substituting (34) into (8), we obtain the following
new system:

𝑥𝜆 (𝑘 + 1) = (𝐴̃0Δ + 𝐵̃0Δ𝐾)𝑥𝜆 (𝑘) + 𝐴̃0𝑑Δ𝑥𝜆 (𝑘 − 𝑑)
+ 𝑠∑
𝑖=1

[(𝐶̃0Δ + 𝐷̃0Δ𝐾)𝑥𝜆 (𝑘) + 𝐶̃0𝑑Δ𝑥𝜆 (𝑘 − 𝑑)]
⋅ 𝑤𝑖 (𝑘) ,

(35)

where

𝐴̃0Δ = 𝑒𝜆𝐴0Δ,
𝐵̃0Δ = 𝑒𝜆𝐵0Δ,
𝐶̃0Δ = 𝑒𝜆𝐶0Δ,
𝐷̃0Δ = 𝑒𝜆𝐷0Δ,
𝐴̃0𝑑Δ = 𝑒(𝑑+1)𝜆𝐴0𝑑Δ,
𝐶̃0𝑑Δ = 𝑒(𝑑+1)𝜆𝐶0𝑑Δ.

(36)

So system (1) is quadratically stabilizable with decay rate 𝜆 if
system (35) is quadratically stabilizable.
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4. State Feedback 𝐻∞ Control

In this section we consider the state feedback discrete-
time 𝐻∞ control problem for the following uncertain linear
stochastic system with state delay:

𝑥 (𝑘 + 1) = [𝐴0 + Δ𝐴0 (𝑘)] 𝑥 (𝑘) + [𝐴0𝑑 + Δ𝐴0𝑑 (𝑘)]
⋅ 𝑥 (𝑘 − 𝑑) + 𝐵𝜉 (𝑘) + [𝐵0 + Δ𝐵0 (𝑘)] 𝑢 (𝑘)
+ 𝑠∑
𝑖=1

{[𝐶0 + Δ𝐶0 (𝑘)] 𝑥 (𝑘)
+ [𝐶0𝑑 + Δ𝐶0𝑑 (𝑘)] 𝑥 (𝑘 − 𝑑)
+ [𝐷0 + Δ𝐷0 (𝑘)] 𝑢 (𝑘)} 𝑤𝑖 (𝑘) ,

𝑥 (𝑗) = 𝜙 (𝑗) ∈R𝑛,
𝑗 ∈ {−𝑑, −𝑑 + 1, . . . , 0} , 𝑘 ∈N0

𝑧 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) ,

(37)

where 𝑧(𝑘) ∈ R𝑛𝑧 and 𝜉(𝑘) ∈ R𝑞 are called the controlled
output and external disturbance, respectively. In addition,
the effect of the disturbance 𝜉(𝑘) on the controlled output𝑧(𝑘) is described by a perturbation operator G𝑧𝜉 : 𝜉 󳨃→ 𝑧,
which maps any finite energy disturbance signal 𝜉 into the
corresponding finite energy output signal 𝑧 of the closed-
loop system. The size of this linear operator, that is, ‖G𝑧𝜉‖,
measures the influence of the disturbances in the worst case.
We denote by 𝑙2𝑤(N0,R𝑙) the set of all nonanticipative square
summableR𝑙-valued stochastic processes

𝑦 = {𝑦𝑘 : 𝑦𝑘
∈ 𝐿2 (Ω,R𝑙) , 𝑦𝑘 is F𝑘−1 measurable}

𝑘∈N0
. (38)

𝑙2-norm of 𝑦 ∈ 𝑙2𝑤(N0,R𝑙) is defined by

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑙2𝑤(N0 ,R𝑙) = (
∞∑
𝑘=0

E
󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩2)

1/2 . (39)

Firstly, for system (37), we define the perturbed operator
G𝑧𝜉 and its norm as follows.

Definition 8. The perturbed operator of system (37), G𝑧𝜉 :𝑙2𝑤(N0,R𝑞) 󳨃→ 𝑙2𝑤(N0,R𝑛𝑧), is defined as

G𝑧𝜉 : 𝜉 (𝑘) ∈ 𝑙2𝑤 (N0,R𝑞) 󳨃󳨀→
𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) ,

𝑥 (𝑗) = 0, 𝑗 = 0, −1, −2, . . . , −𝑑
(40)

with its norm

󵄩󵄩󵄩󵄩󵄩G𝑧𝜉󵄩󵄩󵄩󵄩󵄩 = sup
𝜉(𝑘)∈𝑙2𝑤(N0 ,R

𝑞),𝜉(𝑘) ̸=0,𝑥(𝑗)=0,𝑗∈[−𝑑,0]

‖𝑧 (𝑘)‖𝑙2𝑤(N0 ,R𝑛𝑧 )󵄩󵄩󵄩󵄩𝜉 (𝑘)󵄩󵄩󵄩󵄩𝑙2𝑤(N0 ,R𝑞)

= sup
𝜉(𝑘)∈𝑙2𝑤(N0 ,R

𝑞),𝜉(𝑘) ̸=0,𝑥(𝑗)=0,𝑗∈[−𝑑,0]

(∑∞𝑘=0 𝐸 ‖𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘)‖2)1/2
(∑∞𝑘=0 𝐸 󵄩󵄩󵄩󵄩𝜉 (𝑘)󵄩󵄩󵄩󵄩2)1/2

.
(41)

Next, we present the definition about stochastic robust 𝐻∞
control.

Definition 9. For a certain level 𝛾 > 0, 𝑢∗(𝑘) = 𝐾𝑥(𝑘) is the𝐻∞ control of the system (37), if

(i) system (37) is internally stabilizable when 𝜉(𝑘) ≡ 0;
(ii) the norm of the perturbed operator of system (37)

satisfies ‖G𝑧𝜉‖ < 𝛾 for all external disturbance 𝜉(𝑘) ∈𝑙2𝑤(N0,R𝑞).
Besides, if 𝑢∗(𝑘) exists, then system (37) is called 𝐻∞

controllable in the disturbance attenuation. Furthermore, it
is called strongly robust𝐻∞ controllable if 𝛾 = 1.
Theorem 10. Consider system (37). For the given 𝛾 > 0 and
some 𝛽 > 0 with 𝑃 < 𝛽−1𝐼 and 𝛼 > 0 if there exist 𝑃 > 0,𝑄 > 0, and 𝐾 ∈R𝑚×𝑛 satisfying the following LMI

[[[[[[[[[[[[[[[[[[[[
[

−2𝑃 + 𝑄 + 𝐶𝑇𝐶 ℏ12 0 𝑠1/2 (𝐶0 + 𝐷0𝐾)𝑇 (𝐴0 + 𝐵0𝐾) 𝐾𝑇𝐷𝑇 ℏ17 ℏ18
∗ ℏ22 0 𝑠1/2𝐶𝑇0𝑑 𝐴𝑇0𝑑 0 0 0
∗ ∗ −𝛾2𝐼 0 𝐵𝑇 0 0 0
∗ ∗ ∗ −𝛽𝐼 + 𝛼𝐸𝐸𝑇 0 0 0 0
∗ ∗ ∗ ∗ −𝛽𝐼 + 𝛼𝐸𝐸𝑇 0 0 0
∗ ∗ ∗ ∗ ∗ −𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]]]]]]]]]]]]]]]]]]]]
]

< 0, (42)
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where

ℏ12 = 𝛼−1 [𝑠1/4 (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇𝐺𝐶0𝑑
+ (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇𝐺𝐴0𝑑] ,

ℏ22 = −𝑄 + 𝛼−1 (𝑠1/4𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑 + 𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑) ,
ℏ17 = 𝛼−1𝑠1/2 (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇 ,
ℏ18 = 𝛼−1 (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇 ,

(43)

then system (37) is robustly𝐻∞ controllable with a control law𝑢(𝑘) = 𝐾𝑥(𝑘).
Proof. By Theorem 5, when disturbance 𝜉(𝑘) = 0, it is easy
to test that system (37) is internally stabilizable with 𝑢∗(𝑘) =𝐾𝑥(𝑘). Nowwe only need to show ‖G𝑧𝜉‖ < 𝛾. By Definition 1,
choose the Lyapunov function 𝑉𝑘 = 𝑥(𝑘)T𝑃𝑥(𝑘) +∑𝑑𝑗=1 𝑥(𝑘 −𝑗)𝑇𝑄𝑥(𝑘 − 𝑗) with 𝑃 > 0 and 𝑄 > 0 to be determined, and
then

EΔ𝑉𝑘 = E𝑉𝑘+1 −E𝑉𝑘 = E[
[
𝑥𝑇 (𝑘 + 1) 𝑃𝑥 (𝑘 + 1)

+ 𝑑∑
𝑗=1

𝑥 (𝑘 + 1 − 𝑗)𝑇𝑄𝑥 (𝑘 + 1 − 𝑗) − 𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)

− 𝑑∑
𝑗=1

𝑥𝑇 (𝑘 − 𝑗)𝑄𝑥 (𝑘 − 𝑗)]
]

= E [𝑥𝑇 (𝑘 + 1) 𝑃𝑥 (𝑘 + 1) + 𝑥𝑇 (𝑘) (𝑄 − 𝑃) 𝑥 (𝑘)
− 𝑥𝑇 (𝑘 − 𝑑)𝑄𝑥 (𝑘 − 𝑑)] .

(44)

So in the case of 𝑥(𝑗) = 0, 𝑗 = 0, −1, . . . , −𝑑, we have
‖𝑧 (𝑘)‖𝑙2𝑤(N0 ,R𝑛𝑧 ) − 𝛾2 󵄩󵄩󵄩󵄩𝜉 (𝑘)󵄩󵄩󵄩󵄩𝑙2𝑤(N0 ,R𝑞) = E

∞∑
𝑘=0

{𝑥𝑇 (𝑘)
⋅ (𝐶𝑇𝐶 + 𝐾𝑇𝐷𝑇𝐷𝐾)𝑥 (𝑘) + Δ𝑉 − 𝛾2𝜉𝑇 (𝑘) 𝜉 (𝑘)}
+ 𝑉 (𝑥 (0)) − lim inf

𝑡→∞
E𝑉 (𝑥 (𝑘)) ≤ E

∞∑
𝑘=0

{𝑥 (𝑘)𝑇

⋅ (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃 (𝐴0Δ + 𝐵0Δ𝐾)𝑥 (𝑘) + 𝑥𝑇 (𝑘)
⋅ (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃𝐴0𝑑Δ𝑥 (𝑘 − 𝑑) + 𝑥𝑇 (𝑘)
⋅ (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃𝐵𝜉 (𝑘) + 𝑥𝑇 (𝑘 − 𝑑)
⋅ 𝐴𝑇0𝑑Δ𝑃 (𝐴0Δ + 𝐵0Δ𝐾)𝑥 (𝑘) + 𝑥𝑇 (𝑘 − 𝑑)
⋅ 𝐴𝑇0𝑑Δ𝑃𝐴0𝑑Δ𝑥 (𝑘 − 𝑑) + 𝑥𝑇 (𝑘 − 𝑑)𝐴𝑇0𝑑Δ𝑃𝐵𝜉 (𝑘)
+ 𝜉𝑇 (𝑘) 𝐵𝑇𝑃 (𝐴0Δ + 𝐵0Δ𝐾)𝑥 (𝑘) + 𝜉𝑇 (𝑘)
⋅ 𝐵𝑇𝑃𝐴0𝑑Δ𝑥 (𝑘 − 𝑑) + 𝜉𝑇 (𝑘) 𝐵𝑇𝑃𝐵𝜉 (𝑘) + 𝑠𝑥𝑇 (𝑘)
⋅ (𝐶0Δ𝐾)𝑇 𝑃 (𝐶0Δ + 𝐷0Δ𝐾)𝑥 (𝑘)
+ 𝑠𝑥𝑇 (𝑘) (𝐶0Δ + 𝐷0Δ𝐾)𝑇 𝑃𝐶0𝑑Δ𝑥 (𝑘 − 𝑑)
+ 𝑠𝑥𝑇 (𝑘 − 𝑑) 𝐶𝑇0𝑑Δ𝑃 (𝐶0Δ + 𝐷0Δ𝐾)𝑥 (𝑘)
+ 𝑠𝑥𝑇 (𝑘 − 𝑑) 𝐶0𝑑Δ𝑃𝐶0𝑑Δ𝑥 (𝑘 − 𝑑) − 𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)
+ 𝑥𝑇 (𝑘) (𝑄 − 𝑃) 𝑥 (𝑘) − 𝑥𝑇 (𝑘 − 𝑑)𝑄𝑥 (𝑘 − 𝑑)
+ 𝑥𝑇 (𝑘) (𝐶𝑇𝐶 + 𝐾𝑇𝐷𝑇𝐷𝐾)𝑥 (𝑘) − 𝛾2𝜉𝑇 (𝑘)

⋅ 𝜉 (𝑘)} = E
∞∑
𝑘=0

[[
[
𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)
𝜉 (𝑘)

]]
]

𝑇

Ξ[[
[
𝑥 (𝑘)

𝑥 (𝑘 − 𝑑)
𝜉 (𝑘)

]]
]
,

(45)

where

Ξ =
[[[[[[[[[[
[

Ξ11 (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃𝐴0𝑑Δ (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃𝐵 𝑠1/2 (𝐶0Δ + 𝐷0Δ𝐾)𝑇 𝑃
∗ 𝐴𝑇0𝑑Δ𝑃𝐴0𝑑Δ − 𝑄 𝐴𝑇0𝑑Δ𝑃𝐵 𝑠1/2𝐶𝑇0𝑑Δ𝑃
∗ ∗ 𝐵𝑇𝑃𝐵 − 𝛾2𝐼 0
∗ ∗ ∗ −𝑃

]]]]]]]]]]
]

,

Ξ11 = (𝐴0Δ + 𝐵0Δ𝐾)𝑇 𝑃 (𝐴0Δ + 𝐵0Δ𝐾) − 2𝑃 + 𝑄 + 𝐶𝑇𝐶 + 𝐾𝑇𝐷𝑇𝐷𝐾.

(46)
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Obviously, it is easy to get that ‖G𝑧𝜉‖ < 𝛾 if Ξ < 0. Then, we
need to eliminate the uncertainties. Using the same method
as in the proof of Theorem 4, we know that, for some 𝛼 > 0,
a sufficient condition for Ξ < 0 can be got from the following
matrix inequality.

[[[[[[[[[
[

Γ11 Γ12 0 𝑠1/2 (𝐶0 + 𝐷0𝐾)𝑇 𝑃 (𝐴0 + 𝐵0𝐾)𝑇 𝑃
∗ Γ22 0 𝑠1/2𝐶𝑇0𝑑𝑃 𝐴𝑇0𝑑𝑃
∗ ∗ −𝛾2𝐼 0 𝐵𝑇𝑃
∗ ∗ ∗ −𝑃 + 𝛼𝑃𝐸𝐸𝑇𝑃 0
∗ ∗ ∗ ∗ −𝑃 + 𝛼𝑃𝐸𝐸𝑇𝑃

]]]]]]]]]
]

< 0,

(47)

where

Γ11 = −2𝑃 + 𝑄 + 𝐶𝑇𝐶 + 𝐾𝑇𝐷𝑇𝐷𝐾 + 𝛼−1𝑠1/4 (𝐺𝐶0
+ 𝐺𝐷0𝐾)𝑇 (𝐺𝐶0 + 𝐺𝐷0𝐾) + 𝛼−1 (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇
⋅ (𝐺𝐴0 + 𝐺𝐵0𝐾) ,

Γ12 = 𝛼−1 [𝑠1/4 (𝐺𝐶0 + 𝐺𝐷0𝐾)𝑇𝐺𝐶0𝑑
+ (𝐺𝐴0 + 𝐺𝐵0𝐾)𝑇𝐺𝐴0𝑑] ,

Γ22 = −𝑄 + 𝛼−1 (𝑠1/4𝐺𝑇𝐶0𝑑𝐺𝐶0𝑑 + 𝐺𝑇𝐴0𝑑𝐺𝐴0𝑑) .

(48)

Then, by pre- and postmultiplying

diag [𝐼 𝐼 𝐼 𝑃−1 𝑃−1] (49)

on both sides of (47), we have

[[[[[[[[[
[

Γ11 Γ12 0 𝑠1/2 (𝐶0 + 𝐷0𝐾)𝑇 (𝐴0 + 𝐵0𝐾)𝑇
∗ Γ22 0 𝑠1/2𝐶𝑇0𝑑 𝐴𝑇0𝑑
∗ ∗ −𝛾2𝐼 0 𝐵𝑇
∗ ∗ ∗ −𝑃−1 + 𝛼𝐸𝐸𝑇 0
∗ ∗ ∗ ∗ −𝑃−1 + 𝛼𝐸𝐸𝑇

]]]]]]]]]
]

< 0.

(50)

For some constant 𝛽 > 0 with 𝑃−1 > 𝛽𝐼, Theorem 10 is
concluded; that is, an 𝐻∞ control of system (37) is obtained
by solving LMIs (42)-(43). This completes the proof.

5. Simulation Example

In this section, we consider two simple examples with simula-
tions to illustrate the effectiveness of the proposed approach.

Example 11. Consider discrete-time stochastic system (1)
with the following parameters:

𝐴0 = [1 0
0 0.8] ,

𝐴0𝑑 = [0.02 0
0 0.1] ,

𝐵0 = [31] ,

𝐶0 = [0.2 0
0 0.4] ,

𝐶0𝑑 = [0.1 0
0 0.2] ,

𝐷0 = [0.20.7] ,

𝐸 = [0.2 0
0 0.4] ,

𝐺𝐴0 = [0.01 0
0 0.03] ,

𝐺𝐴0𝑑 = [0.04 0
0 0.05] ,

𝐺𝐵0 = [0.20.1] ,

𝐺𝐶0 = [0.3 0
0 0.1] ,

𝐺𝐷0 = [0.10.7] ,

𝐺𝐶0𝑑 = [0.1 0
0 0.01] ,

𝐹 (𝑘) = [cos (𝑤 (𝑘)) 0
0 sin (𝑤 (𝑘))] ,

𝑠 = 1.

(51)

Using LMI toolbox to solve (11)-(12) inTheorem4,we find out
that 𝑡min = 0.0086 > 0 which means that there is no feasible
solution and indicates that system (1) with 𝑢 ≡ 0 is unstable.
Figure 1 verifies the result. By solving LMI (27), a group of
feasible solutions with 𝑡min = −0.9649 < 0 are shown as 𝜀 =16.7436 and

𝑋 = [22.1026 0.6519
0.6519 20.0007] ,

𝑌 = [11.3608 −0.6710−0.6710 13.2231] .
(52)
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Figure 1: State trajectories of the autonomous system.
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Figure 2: State trajectories of the closed-loop system.

By Theorem 5, the system is mean-square stabilizable
which is verified by Figure 2. A robust stabilizing controller
is given by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) = [−0.092 −0.1344] 𝑥 (𝑘) . (53)

Example 12. Consider system (42) with the following param-
eters:

𝐴0 = [1.2 0
0 1.1] ,

𝐴0𝑑 = [0.2 0
0 0.1] ,

𝐵0 = [1.31 ] ,

𝐶0 = [0.2 0
0 0.4] ,

𝐵 = [ 1
0.65] ,

𝐶 = [0.4 0.20.1 0.8] ,

𝐷 = [0.81 ] ,

𝐶0𝑑 = [0.1 0
0 0.2] ,

𝐷0 = [0.20.7] ,

𝐸 = [0.2 0
0 0.4] ,

𝐺𝐴0 = [0.1 0
0 0.3] ,

𝐺𝐴0𝑑 = [0.4 0
0 0.5] ,

𝐺𝐵0 = [0.20.1] ,
𝐺𝐶0 = [0.3 0

0 0.1] ,
𝐺𝐷0 = [0.10.7] ,

𝐺𝐶0𝑑 = [0.1 0
0 0.1] ,

𝐹 (𝑘) = [cos (𝑤 (𝑘)) 0
0 sin (𝑤 (𝑘))] ,

𝑠 = 1.
(54)

For perturbed system (42), we take the external distur-
bance as 𝜉(𝑘) = 𝑒−𝑘 and the certain level as 𝛾 = 0.8. In
addition, according to Lemma 3, an appropriate 𝛼 is given as𝛼 = 4.9.Then, by the result ofTheorem 10, using LMI toolbox
to solve (43) and (47), we find that 𝑡min = −0.1046, which
means we have got a group of feasible solutions with

𝑃 = [1.7258 0.03200.0320 1.8314] ,
𝑄 = [ 1.6581 −0.0480

−0.0480 1.5180 ] ,
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Figure 3: State trajectories of the closed-loop system.
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Figure 4: Controlled output trajectories of the closed-loop system.

𝐾 = [−0.3281 −0.2836] ,
𝛽 = 3.0531.

(55)

The simulation results of state trajectories and controlled
output trajectories of system (42) are given in Figures 3 and 4
with the𝐻∞ controller

𝑢 (𝑘) = 𝐾𝑥 (𝑘) = [−0.3281 −0.2836] 𝑥 (𝑘) . (56)

This further verifies the effectiveness of Theorem 10.

6. Conclusion

In this paper, we have studied the robust quadratic sta-
bility, quadratic stabilization, and robust 𝐻∞ state feed-
back control of discrete-time stochastic systems with state
delay and uncertain parameters. Based on LMI technique, a
sufficient condition about quadratic stability and quadratic

stabilization of our considered system is, respectively, given.
Moreover, an 𝐻∞ state feedback controller is obtained by
solving two LMIs. Finally, we supply two simulation examples
to show the validity of the proposed results. It is expected to
solve the𝐻∞ output feedback control and𝐻∞ filtering in our
forthcoming work.
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