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Because memory buffers become larger and cheaper, they have been put into network devices to reduce the number of loss
packets and improve network performance. However, the consequences of large buffers are long queues at network bottlenecks
and throughput saturation, which has been recently noticed in research community as bufferbloat phenomenon. To address such
issues, in this article, we design a forward-backward optimal control queue algorithmbased on an indirect approachwith parametric
optimization. The cost function which we want to minimize represents a trade-off between queue length and packet loss rate
performance. Through the integration of an indirect approach with parametric optimization, our proposal has advantages of
scalability and accuracy compared to direct approaches, while still maintaining good throughput and shorter queue length than
several existing queue management algorithms. All numerical analysis, simulation in ns-2, and experiment results are provided to
solidify the efficiency of our proposal. In detailed comparisons to other conventional algorithms, the proposed procedure can run
much faster than direct collocation methods while maintaining a desired short queue (≈40 packets in simulation and 80 (ms) in
experiment test).

1. Introduction

Nowadays, modern computer networks are incredibly com-
plex and we rely on them to transport huge quantities of
data across the globe in seconds. Although this works well,
there are some foreseen issues that need to be tackled. As
bandwidth-heavy applications such as peer-to-peer networks
and websites relying on user-generated content have become
more prevalent, especially the relatively slow residential
broadband links have been used at full capacity, and interrup-
tions in connectivity have become more common [1]. Recent
research has shown that the culprit is the buffers built into
network equipment [2]. Accordingly, bufferbloat term has
been used to describe related issues whenever these buffers
misbehave to produce unnecessary latency [3].

In order to efficiently manage queues which are gen-
erated due to the bufferbloat phenomenon, active queue
management (AQM) algorithms have been recommended
to use in network equipment [4]. Most of the existing

approaches to AQM design exploit feedback control theory
with the linearized TCP core model that was proposed by
Hollot et al. [5]. The well-known AQMs that monitor the
average queue size and drops (or marks) packets based on
statistical probabilities are Random Early Detection (RED)
[6] or Random Early Marking (REM) [7]. If the buffer is
empty, all incoming packets are accepted. When the buffer
is full, the probability has reached 1 and all incoming packets
are dropped. When queue is growing, the probability grows
according to a piecewise linear function and RED (or REM)
drops (or marks) packets using the updated probability.
The main drawback of RED or REM is that it is sensitive
to network parameter changes and requires careful tuning
of its parameters in order to provide optimal performance
in any scenarios. Recently, in [8], a Proportional Integral
Enhanced (PIE) controller as a lightweight AQM is proposed,
without the need of per-packet extra processing. Such PI-
type controllers are known to provide queue control with zero
offset (the mean queue length converges to the target value)
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but are consequently less stable and slower reacting. There
have been several other control-theoretic solutions based on
feedback fluid-flow model proposed in [9–12] to improve
stable and robust control mechanisms, but none of them
tackle the issue of system optimality in terms of minimizing
both queue length and packet dropping rate performance and
searching for an optimal control trajectory.

To address such issues, a promising design direction is to
reformulate the network queuing problem as an optimal con-
trol queue (OCQ) problem [13], where themain state variable
is queue length and the control variable is the actual input rate
to form the queue [14] or packet dropping rate. Then one of
the approaches to solve OCQ is that we can priorly discretize
the governing ordinary differential equations (ODEs) and the
integral terms in the cost function or constraint functions
and thereby replace the infinite dimensional optimal control
problemwith a large nonlinear optimization problem (NOP).
This is known as the direct method in the literature for solving
OCQ. This approach is typically easier to use, especially for
OCQ with a state equality or inequality constraints. The
main difference among direct approaches is how to handle
the constraints corresponding to the system dynamics. The
three most common direct approaches are direct single
shooting, direct multiple shooting, and direct collocation.
Direct methods have been used with references in [15–18].

Alternatively, one can first form the optimality condi-
tions, using the calculus of variations and Pontryagin mini-
mum principle, and then solve the resulting boundary value
problem. This is known as the indirect method for solving
OCQ. The references present just a small sample of the work
that discusses or applies indirect methods for the solution of
optimal control problems [15, 16, 18, 19]. In rare cases, the
solution can be obtained in closed form from the optimality
conditions, but, in general, approximation methods are used
to solve the problem numerically. The optimality conditions
of these problems generally take the form of differential
algebraic equations (DAEs) with boundary conditions (BCs).
The approximate solution to the OCQ can be obtained by
using a boundary value problem (BVP) solver. Perhaps the
most popular methods aremultiple shooting and collocation.
More recently, a combination of direct and indirect methods
was proposed leading to hybrid methods [16].

In this paper, we firstly derive methods to solve OCQ
using both direct and indirect approaches. We show how to
apply the direct collocation approach to solve OCQ problem
which can be solved in popular optimization solvers such
as JModelica [20] and GAlib [21]. Indirect method with
forward-backward for optimal control queue algorithm (FB-
OCQ) is designed as an alternative to tackle it as well. Our
key difference from existing works is that we provide a novel
method to update the control step 𝛿𝑢 by solving a parametric
optimization subproblem. This method is scalable which
means that we can expand for larger problems with more
variables as well. The numerical results for both direct and
indirect approaches are discussed in Section 5.1 to emphasize
our choice of integrating an indirect method with parametric
optimization for active queue management design, which is
demonstrated more efficiently (i.e., faster reaction and more
stable) than directmethods. Finally, we evaluate the proposed
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Figure 1: OCQ model.

algorithm using network simulator ns-2 and compare it to
other AQMs including RED, REM, and PI. The dropping
feature of the proposed algorithm makes the average queue
length shortened and stabilized compared with others, while
throughput is not reduced so much.

Our Contributions
(i) We present both indirect and direct methods for an

optimal control problem which is applied in queue
management field (Section 3). The step update 𝛿𝑢 of
control variable is calculated by solving a subproblem
of parametric optimization with the advantage of
scalability. Numerical results show that all of them
bring nearly similar results, but indirect method (FB-
OCQ) is much faster than other solvers and gives the
best cost function value (Section 5.1).

(ii) We evaluate FB-OCQ in simulation and show that a
desired small queue length value at 40 packets can
be obtained. Nevertheless, we cannot avoid the trade-
off between queue length and throughput. FB-OCQ’s
throughput is slightly smaller than RED’s one (0.075
versus 0.082Mbps); however, it can be an acceptable
value when compared to REM’s and PI’s (Section 5.2).

(iii) We implement FB-OCQ in Linux kernel (Ubuntu
16.04) and test it in the worst case using Realtime
Response Under Load (RRUL) test suite. The exper-
iment result shows that our algorithm brings low
latency ping value compared with the other existing
algorithms in Linux kernel (DropTail and RED).

2. Problem Formulation

We consider an optimal control model of queuemanagement
problem, named (OCQ), in [14] (Figure 1). The main idea
is to minimize the cost function which implies a trade-off
between queue length anddropping rate, subject to a dynamic
constraint of queue length along time 𝑡

0
to 𝑡
𝑓
as follows:

minimize
𝑥

𝐽 = ∫

𝑡𝑓

𝑡=0

𝐿 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡)

subject to 𝑥̇ = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) ,

0 ≤ 𝑢 (𝑡) ≤ 𝑤 (𝑡) ,

(OCQ)

where 𝐿(𝑥, 𝑢, 𝑡) = 𝑥(𝑡) + 𝑅(𝑤 − 𝑢(𝑡)) is cost function;
𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 𝑢(𝑡) − 𝜇𝑥/(𝑎 + 𝑥); 𝑅 is weight on dropping
rate; 𝑡

𝑓
is final time; 𝜇 is service rate (bandwidth capacity);

and 𝑎 is parameter for different types of queuing model; for
example, when 𝑎 = 1, we obtain an M/M/1 queue.
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3. Numerical Methods for OCQ

3.1. Direct Method: Collocation Method. In this section, we
present how to apply the direct collocation [18] for OCQ. In
this method, we discretize the time interval 𝑡

0
= 𝑡
1

< 𝑡
2

<

𝑡
3

< ⋅ ⋅ ⋅ < 𝑡
𝑘

= 𝑡
𝑓
into 𝑁 elements. The state and the

total number of packets and control variables at each node
are 𝑥
𝑗
= 𝑥(𝑡
𝑗
) and 𝑤

𝑗
= 𝑤(𝑡

𝑗
) and 𝑢

𝑗
= 𝑢(𝑡
𝑗
), such that the

state, control, and packets variables at the nodes are defined
as nonlinear programming (NLP) variables:

𝑌 = [𝑥 (𝑡
1
) , . . . , 𝑥 (𝑡

𝑘
) , 𝑢 (𝑡

1
) , . . . , 𝑢 (𝑡

𝑘
) , 𝑤 (𝑡

1
) , . . . , 𝑤 (𝑡

𝑘
)] . (1)

The controls are chosen as piecewise linear interpolating
functions between 𝑢(𝑡

𝑗
) and 𝑢(𝑡

𝑗+1
) for 𝑡

𝑗
≤ 𝑡 ≤ 𝑡

𝑗+1
as

follows:

𝑢app (𝑡) = 𝑢 (𝑡
𝑗
) +

𝑡 − 𝑡
𝑗

ℎ
𝑗

[𝑢 (𝑡
𝑗+1

) − 𝑢 (𝑡
𝑗
)] ,

ℎ
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
.

(2)

The value of the control variables at the center 𝑡
𝑗+1/2

is given
by

𝑢 (𝑡
𝑗+1/2

) =

𝑢 (𝑡
𝑗
) + 𝑢 (𝑡

𝑗+1
)

2

, 𝑗 = 1, . . . , 𝑘 − 1.
(3)

The piecewise linear interpolation is used to prepare
for the possibility of discontinuous solutions in control.
Similarly, we can derive the approximate of the total number
of the packets 𝑤app(𝑡) and 𝑤(𝑡

𝑗+1/2
) as above. The state

variable 𝑥(𝑡) is approximated by a continuously differentiable
and piecewise Hermite-Simpson cubic polynomial between
𝑥(𝑡
𝑗
) and 𝑥(𝑡

𝑗+1
) on the interval 𝑡

𝑗
≤ 𝑡 ≤ 𝑡

𝑗+1
of length ℎ

𝑗
:

𝑥app (𝑡) =

3

∑

𝑟=0

𝑐

𝑗

𝑟

𝑡 − 𝑡
𝑗

ℎ
𝑗

,

𝑐

𝑗

0
= 𝑥 (𝑡

𝑗
) ,

𝑐

𝑗

1
= ℎ
𝑗
𝑓
𝑗
,

𝑐

𝑗

2
= −3𝑥 (𝑡

𝑗
) − 2ℎ

𝑗
𝑓
𝑗
+ 3𝑥 (𝑡

𝑗+1
) − (ℎ

𝑗
) 𝑓
𝑗+1

,

𝑐

𝑗

3
= 2𝑥 (𝑡

𝑗
) + ℎ
𝑗
𝑓
𝑗
− 2𝑥 (𝑡

𝑗+1
) + (ℎ

𝑗
) 𝑓
𝑗+1

,

(4)

where

𝑓
𝑗
= 𝑓 (𝑥 (𝑡

𝑗
) , 𝑢 (𝑡

𝑗
) , 𝑤 (𝑡

𝑗
) , 𝑡
𝑗
)

𝑡
𝑗
≤ 𝑡 ≤ 𝑡

𝑗+1
, 𝑗 = 1, . . . , 𝑘 − 1.

(5)

The value of the state variables at the center point 𝑡
𝑗+1/2

of the
cubic approximation is

𝑥 (𝑡
𝑗+1/2

) =

𝑥 (𝑡
𝑗
) + 𝑥 (𝑡

𝑗+1
)

2

+

𝑡
𝑗+1

+ 𝑡
𝑗

8

(𝑓
𝑗
+ 𝑓
𝑗+1

) ,

𝑗 = 1, . . . , 𝑘 − 1,

(6)

and the derivative is

𝑥̇ (𝑡
𝑗+1/2

) =

3 (𝑥
𝑗
+ 𝑥
𝑗+1

)

2 (𝑡
𝑗+1

+ 𝑡
𝑗
)

−

1

4

(𝑓
𝑗
+ 𝑓
𝑗+1

) ,

𝑗 = 1, . . . , 𝑘 − 1.

(7)

In addition, the chosen interpolating polynomial for the state
and control variablesmust satisfy themidpoint conditions for
the differential equations as follows:

𝑓 (𝑥app (𝑡𝑗+1/2) , 𝑢app (𝑡𝑗+1/2) , 𝑤app (𝑡𝑗+1/2) , 𝑡
𝑗+1/2

)

− 𝑥̇app (𝑡𝑗+1/2) = 0.

(8)

Equations (OCQ) can now be defined as a discretized
problem as follows:

min 𝑓 (𝑌) (9)

subject to 𝑓 (𝑥app (𝑡) , 𝑢app (𝑡) , 𝑤app (𝑡) , 𝑡) − 𝑥̇app

= 0,

𝑥app (𝑡1) − 𝑥
1
= 0,

0 ≤ 𝑢app (𝑡) ≤ 𝑤app (𝑡) ,

(10)

where 𝑥app, 𝑢app, and𝑤app are the approximations of the state,
the control, and the total number of packets, constituting𝑌 in
(9). This above discretization problem (9)-(10) can be solved
using the following:

(i) JModelica, which is a package for simulation and
optimization ofModelicamodels (formore details see
[20]);

(ii) GAlib, which is C++ library of genetic algorithm (for
more details see [21]).

3.2. Indirect Method: Forward-Backward Sweeping. We solve
OCQ by using indirect method approach:

(i) forming optimality conditions;
(ii) solving BVP by First-Order Sweeping algorithm.

Let 𝑥(𝑡) be the adjoint variable. At time 𝑡, let 𝑢∗(𝑡) denote
the optimum controls and let 𝑥

∗
(𝑡) and 𝑥

∗
(𝑡) denote the

state and adjoint evaluated at the optimum.Using Pontryagin
minimum principle we get the following equations.

Hamiltonian Function

𝐻(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡)) = 𝑥 (𝑡) + 𝑅 (𝑤 (𝑡) − 𝑢 (𝑡))

+ 𝑥 (𝑡) (𝑢 (𝑡) −

𝜇𝑥 (𝑡)

𝑎 + 𝑥 (𝑡)

) .

(11)

Adjoint Equations

̇
𝑥 (𝑡) = −1 + 𝑢 (𝑡)

𝑎𝜇

(𝑎 + 𝑥 (𝑡))

2
. (12)
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Transversality Condition

𝑥 (𝑡
𝑓
) = 0. (13)

Hamiltonian Minimization Condition. Derivative of the
Hamiltonian is evaluated to zero at interior points; hence

𝐻
𝑢 (

𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡) , 𝜆 (𝑡) , 𝑡)

= −𝑅 + 𝑥 (𝑡) − 𝜆
1
(𝑡) + 𝜆

2
(𝑡) = 0.

(14)

If 𝑢

∗
(𝑡) is optimal in (OCQ), then it must satisfy the

minimum condition:
𝐻(𝑥

∗
, 𝑢

∗
, 𝑥

∗
, 𝑡) = min

V∈𝑈
𝐻(𝑥, V, 𝑥, 𝑡) ∀𝑡 ∈ 𝑁. (15)

Furthermore, we assume the following:

(H1) the Hamiltonian is strictly convex with respect to
control variable 𝑢;

(H2) 𝑢̃(𝑡) = argmin
𝑢∈𝑈

𝐻(𝑥, 𝑢, 𝑥), 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] is continu-

ous on [𝑡
0
, 𝑡
𝑓
];

(H3) 𝑢 ∈ 𝐶

𝑟
[𝑡
0
, 𝑡
𝑓
].

Note that 𝑢(𝑡) is determined in a unique way for each
𝑡 since 𝑈 is convex and 𝐻 is convex. Now we consider the
problem of minimizing the Hamiltonian with respect to 𝑝:

min
𝑢∈𝑈

𝐻(𝑥, 𝑢, 𝑥) for each 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] . (16)

Usually in the literature, 𝑢 is found explicitly as a function
𝑢 = 𝑢(𝑥, 𝑥, 𝑡) and, after substituting it into the system, the
problem reduces to the boundary value problem.

Theorem 1. Assume that conditions (H1)–(H3) hold and
problem has an optimal solution (𝑢

∗
, 𝑥

∗
). Then for a given 𝜖

there exists a finite discretization

𝑡
0
= 𝜏
0
< 𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝑖
< ⋅ ⋅ ⋅ < 𝜏

𝑁
= 𝑡
𝑓 (17)

and an approximate solution 𝑢̃(𝑡), 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
], such that

󵄩
󵄩
󵄩
󵄩
𝑢

∗
(𝑡
𝑖
) − 𝑢̃ (𝑡

𝑖
)

󵄩
󵄩
󵄩
󵄩
< 𝜖, 𝑖 = 1, 2, . . . , 𝑁. (18)

Proof. Let 𝑢

∗ be an optimal solution of problem. Then
(𝑝

∗
, 𝑥

∗
) satisfies the conditions:

𝑥̇

∗

𝑖
=

𝜕𝐻 (𝑥

∗
, 𝑢

∗
, 𝑥

∗
)

𝜕𝑢
𝑖

,

̇
𝑥

∗

𝑖
= −

𝜕𝐻 ((𝑥

∗
, 𝑢

∗
, 𝑥

∗
))

𝜕𝑥
𝑖

,

𝑖 = 1, 2, . . . , 𝑁,

(19)

where

𝐻(𝑥, 𝑢, 𝑥) =

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥, 𝑢) − 𝑓

0
(𝑥, 𝑢) ,

𝑡 ∈ [𝑡
0
, 𝑡
𝑓
]

(20)

and (𝑢

∗
, 𝑥

∗
) satisfies the minimum principle:

𝐻(𝑥

∗
, 𝑢

∗
, 𝑥

∗
) = min
𝑢∈𝑈

𝐻(𝑥

∗
, 𝑢, 𝑥

∗
) , 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] . (21)

(a) First-Order Sweeping Method. We linearize the Hamilto-
nian around a reference solution𝑢(𝑡) and obtain the following
equation for variation 𝛿𝑢(𝑡):

0 = 𝐻
𝑢

⊤
+ 𝐻
𝑢𝑢

𝛿𝑢 (𝑡) . (22)

With the strong Legendre-Clebsch condition, one can
approximate the above equation as

𝛿𝑢 (𝑡) = arg min
𝛿𝑢∈{𝑈−𝑢}

𝐻aug (𝑥, 𝑢 + 𝛿𝑢, 𝑥, 𝑡) , (23)

where

𝐻aug (𝑥, 𝑢 + 𝛿𝑢, 𝑥, 𝑡) = 𝐻 (𝑥, 𝑢 + 𝛿𝑢, 𝑥, 𝑡) + 𝛽 ‖𝛿𝑢‖

2 (24)

is the augmented Hamiltonian function and 𝛽‖𝛿𝑢‖

2 is a
penalty term. This is really parametric optimization, with
𝛽 = 0 initially; if𝑈 is a convex set and𝐻 is a convex function
with respect to 𝑢, then 𝛿𝑢 is a descent direction. If 𝑢(𝑡)+𝛿𝑢(𝑡)

does not yield a reduction, then we set 𝛽 = 1 and then double
it repeatedly until the objective is really reduced.

Remark 2. An alternative way to ensure descent is to apply
Backtracking Line-Search Procedure.

(b) Parametric Optimization to OCQ. Now we consider
problem (23) as one parametric minimization problem.
Since 𝐻aug(𝑥

∗
, 𝑥

∗
, 𝑢

∗
, 𝛿𝑢, 𝑡) is twice differentiable in 𝛿𝑢 and

assumptions (H1)–(H3) hold, we can apply Theorem 1 to the
problem. Then as a result, it generates a discretization, 𝑡

0
=

𝜏
0
< 𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝑖
< ⋅ ⋅ ⋅ < 𝜏

𝑁
= 𝑡
𝑓
, and corresponding points

𝑢̃
𝑖
= 𝑢̃(𝑡
𝑖
) such that
󵄩
󵄩
󵄩
󵄩
𝛿𝑢

∗
(𝑡
𝑖
) − 𝛿𝑢̃ (𝑡

𝑖
)

󵄩
󵄩
󵄩
󵄩
< 𝜖, 𝑖 = 1, 2, . . . , 𝑁, (25)

which proves the assertion.

Remark 3. Parametric optimization also can be applied in
finding nominal optimal control given in [22]. It is easy to see
that, at each iteration 𝑘, the Hamiltonian function is a scalar
function of 𝑢 ∈ 𝑈 ⊂ 𝑅

𝑟 and 𝑡 ∈ 𝑇 = [𝑡
0
, 𝑡
𝑓
]; that is,

𝐺
𝑘
(𝛿𝑢, 𝑡) = 𝐻aug (𝑥

𝑘
(𝑡) , 𝑥

𝑘
(𝑡) , 𝛿𝑢, 𝑡) . (26)

The latter states that 𝛿𝑢̂

𝑘
(𝑡) must be a minimizer of the

following problem:

min
𝛿𝑢∈𝑈

𝐺
𝑘
(𝛿𝑢, 𝑡) , 𝑡 ∈ 𝑇 (27)

which is a problem of parametric optimization as formulated
in various papers from [23], where the independent variable 𝑡
is now considered as unknown parameter 𝑡 ∈ 𝑇 = [𝑡

0
, 𝑡
𝑓
].We

can also consider a case when the set of admissible controls is
time-varying; that is, 𝑈 = 𝑈(𝑡), 𝑡 ∈ 𝑇 = [𝑡

0
, 𝑡
𝑓
]. In this case,

a general theory of parametric optimization is also applicable
for finding the nominal optimal controls.
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Let (𝑥∗, 𝛿𝑢∗) be an optimal process in problem. Introduce
the function 𝑓 : 𝑈 × 𝑅 → 𝑅:

𝑓 (𝛿𝑢, 𝑡) = −𝐻 (𝑥

∗
, 𝛿𝑢, 𝑥

∗
, 𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] , (28)

where a parametric optimization problem is defined as

min
𝛿𝑢∈𝑈

𝑓 (𝛿𝑢, 𝑡) , 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] ,

𝑈 = {𝛿𝑢 ∈ 𝑅

𝑟
: 𝑔
𝑖
(𝛿𝑢) ≤ 0, 𝑖 ∈ 𝐽} ,

𝐽 = {1, 2, . . . , 𝑠} .

(29)

The KKT conditions for the problem state that

𝐷
𝛿𝑢
𝑓 (𝛿𝑢, 𝑡) + ∑

𝑗∈𝐽

𝜇
𝑖
𝐷
𝛿
𝑢𝑔
𝑖
(𝛿𝑢, 𝑡) = 0,

𝑔
𝑖
(𝛿𝑢, 𝑡) 𝜇

𝑖
≤ 0, 𝜇

𝑖
≥ 0, 𝑖 ∈ 𝐽,

𝜇
𝑖
𝑔
𝑖
(𝛿𝑢, 𝑡) = 0,

𝑖 ∈ 𝐽, 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] ,

(30)

where

𝐷
𝛿𝑢
𝑓 (𝛿𝑢, 𝑡) = (

𝜕𝑓 (𝛿𝑢, 𝑡)

𝜕𝛿𝑢
1

, . . . ,

𝜕𝑓 (𝛿𝑢, 𝑡)

𝜕𝛿𝑢
𝑟

) . (31)

Consider the auxiliary parametric optimization problem:

min 𝑓 (𝛿𝑢, 𝑡) , 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
]

subject to 𝑔
𝑖
(𝛿𝑢) = 0, 𝑖 ∈

̃
𝐽 ⊂ 𝐽.

(32)

Let V0 = (𝛿𝑢

0
(𝑡), 𝜇

0
(𝑡)) satisfy the KKT conditions for

problem with ̃
𝐽 = 𝐽

0
. This system can be written in the

following compact notation:

𝐹 (𝛿𝑢, 𝑡) = 0, 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] , (33)

where V = (𝛿𝑢

0
(𝑡), 𝜇

0
(𝑡)). In order to apply Newton’s method

to system, we have to solve a linear system with𝐷
𝛿𝑢
𝐹(V(𝑡), 𝑡)

as matrix. The same matrix is used to compute V̇(𝑡):

𝐷
𝛿𝑢
𝐹 (𝛿𝑢 (𝑡) , 𝑡) V̇ (𝑡) = 𝐷

𝛿𝑢
𝑓 (𝛿𝑢 (𝑡) , 𝑡) . (34)

Therefore, using the Newton method as corrector, we
have

𝐷
𝛿𝑢
𝐹 (𝛿𝑢

𝑘𝑖−1

𝑖
, 𝑡
𝑖
) (𝛿𝑢

𝑘𝑖

𝑖
− 𝛿𝑢

𝑘𝑖−1

𝑖
) = −𝐹 (𝛿𝑢

𝑘𝑖−1

𝑖
, 𝑡
𝑖
) ,

𝐷
𝛿𝑢
𝐹 (𝛿𝑢

𝑘𝑖−1

𝑖
, 𝑡
𝑖
) (

̇
𝛿𝑢

𝑘𝑖−1

𝑖
) = −Δ

𝑡
𝐹 (𝛿𝑢

𝑘𝑖−1

𝑖
, 𝑡
𝑖
) .

(35)

4. Proposed Algorithm: FB-OCQ

The first-order indirect approach motivates us to design FB-
OCQ algorithm. Shortly, this algorithm uses gradient and

(1) Initialization:
𝑢(𝑡), 𝛿𝑢(𝑡) = 0, 𝑢

+
(𝑡) = 𝑢(𝑡), ∀𝑡 ∈ [𝑡

0
, 𝑡
𝑓
];

J
−
= ∞, 𝛾 = 0, 𝛽, 𝜌 ∈ (0, 1);

Iter = 1, MaxIter, TOL.
(2) while Iter ≤MaxIter do
(3) procedure Forward Sweep
(4) 𝑥

+
(𝑡
0
) = 𝑥
0
,J
+
(𝑡
0
) = 0.

(5) Integrate Forward 𝑡 : 𝑡
0
→ 𝑡
𝑓

(6) if Iter > 1 then
(7) 𝛿𝑢(𝑡) = argmin

𝛿𝑢
𝐻aug(𝑥(𝑡), 𝑢(𝑡) + 𝛿𝑢, 𝑥(𝑡), 𝑡);

(8) 𝑢
+
(𝑡) = 𝑢(𝑡) + 𝛿𝑢(𝑡).

(9) end if
(10) 𝑥̇

+
(𝑡) = 𝑓(𝑥

+
(𝑡), 𝑢
+
(𝑡), 𝑡).

(11) ̇J
+
(𝑡) = 𝑙(𝑥

+
(𝑡), 𝑢
+
(𝑡), 𝑡).

(12) end procedure
(13) J

+
= J
+
(𝑡
𝑓
).

(14) if J
+
< J
−
then

(15) J
−
= J
+
, 𝛽 = 𝛽𝜌.

(16) else
(17) 𝛽 = 𝛽/𝜌; go to Forward Sweep
(18) end if
(19) procedure Adjoint Sweep
(20) 𝑥(𝑡

𝑓
) = 𝜙

⊤

𝑥
(𝑥
+
(𝑡
𝑓
)), 𝛾(𝑡

0
) = 0.

(21) Integrate Backward 𝑡 : 𝑡
𝑓
→ 𝑡
0
.

(22) 𝑥(𝑡) = 𝑥
+
(𝑡), 𝑢(𝑡) = 𝑢

+
(𝑡).

(23) ̇
𝑥(𝑡)

⊤
= −(𝜕𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡), 𝑡)/𝜕𝑥)

(24) 𝑢(𝑡) = 𝜕𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡), 𝑡)/𝜕𝑢.
(25) 𝛾̇(𝑡) = ‖𝑢(𝑡)‖

2.
(26) 𝛾 = 𝛾(𝑡

𝑓
).

(27) end procedure
(28) if ‖𝛾‖ < TOL then
(29) stop;
(30) end if
(31) Iter ← Iter + 1.
(32) end while

Algorithm 1: FB-OCQ.

does forward-backward searching for the optimal control
solution. Let us choose an initial control trajectory:

(𝑢
0
, . . . , 𝑢

𝑁
), (𝛿𝑢
0
, . . . , 𝛿𝑢

𝑁
);

(𝑢
+0

= 𝑢
0
, . . . , 𝑢

+𝑁
= 𝑈
𝑁
);

𝐽
−
= ∞, 𝛾, Iter = 1, Δ

0
, TOL, MaxIter, 𝜌 ∈ [0, 1].

FromAlgorithm 1 (FB-OCQ), it is obvious that the algorithm
terminates if the norm of the gradient of the Hamiltonian
with respect to 𝑢, 𝛾 = ‖𝐻

𝑢
‖
2
, during the run time of the

program, is smaller than the tolerance and the parameter 𝛽

must change at the inner iterations if we do not have a descent
direction, so we must divide 𝛽 by parameter 𝜌 ∈ (0, 1) until
we get a reduction in the cost function. Figure 2 explains
our algorithm steps: forward sweep (control variable and cost
function value) and backward sweep (adjoint variable) in
detail.
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t0 t1 tf

Forward Backward
sweepsweep u = u + 𝛿u

J+ = 1 < J− = ∞
→ J− = J+ = 1

→ J− = J+ = 0.5

Decrease 𝛽

Increase 𝛽
J+ = 2 > J− = 1

J+ = 0.5 < J− = 1

x(t), u(t)

Figure 2: FB-OCQ algorithm explanation.
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Figure 3: Indirect method: FB-OCQ.

5. Performance Evaluation

5.1. Numerical Results. In this section, we provide some
iteration results for both direct and indirect approaches as
follows.

Indirect Method: FB-OCQ. The ODE was solved on equidis-
tant discretization with 1000 discretization points. The opti-
mal control and optimal state are depicted in Figure 3. We
realize, by looking at the final control, that there exist some
points where the set of active constraints changed due to the
singularity; that is, the optimal control is of the bang-bang
type with the possibility of a singular arc. To the meaning
of such singular arc for queue management, it presents the
sudden changes of input rate from 60 (packets/sec) to 35

(packets/sec) which accordingly result in the changes of
buffer load (or queue length). In the 𝛽 history, in Figure 3,
the parameter𝛽 changed at the inner iterations becausewe do
not have a descent direction, so wemust divide 𝛽 by 𝜌 ∈ (0, 1)

until we get a reduction in the cost functionJ = 6.81280316.
The processing time of central processing unit (CPU) for
this algorithm is 0.04 s and the norm of the gradient of
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0
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Figure 4: Direct method: nonlinear optimization with JModelica
solver.

the Hamiltonian function ‖𝐻
𝑢
‖
2
with respect to the control

𝑢 goes to approximately 10𝑒 − 7.

Direct CollocationMethod: JModelica and GAlib Solvers. With
𝑁 = 1000 and the number of interpolation points being 3,
we tested the discretized problem (9)-(10) by JModelica and
GAlib solvers (see [20, 21]) as follows.

(i) JModelica Solver. The cost function is reduced to J =

6.8678362 and the CPU processing time is 0.52 s.The optimal
control and optimal state trajectories are obtained during
JModelica running and illustrated in Figure 4. An advantage
of this approach is that we do not need to derive the adjoint
equations.

(ii) GAlib Solver. For this problem, we use the number of
generations 𝑛gen = 2500, and the population size is 200. The
optimal control and optimal state are depicted in Figure 5
obtained during the run of the GAlib. The cost function is
reduced toJ = 7.06744 during the run time of the program.
The CPU processing time is 1.290 s. Although the genetic
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Figure 5: Direct method: genetic algorithm with GAlib solver.

Table 1: Numerical result summary.

Criteria/methods Direct
GAlib

Direct
JModelica

Indirect
FB-OCQ

Cost function value J = 7.067 J = 6.867 J = 6.812

CPU process time 1.29 (sec) 0.52 (sec) 0.04 (sec)

algorithm has an advantage that it needs no derivatives or
Hessian’s information, the control functions produced by it
are useless and the convergence is very slow in comparison to
Algorithm 1 (FB-OCQ) and the one using JModelica solver.

Table 1 summarizes and compares the three methods that
we develop numerically. We conclude that Algorithm 1 is
much faster than the other solvers and gives the best cost
function. By using genetic library GAlib, the cost function
does not reach the local solution as it claims in finding the
global solution. The limitation of the indirect methods (FB-
OCQ) is that one should derive the adjoint equations which
are not easy to derive in some applications.

5.2. Simulation Results. In this section, the performance of
the obtained algorithm (FB-OCQ) is evaluated by comparing
it with some popular AQMs including RED, REM, and PI.
The credibility of results is confirmed using ns-2 simulator
[24]. We investigate a network topology with 40 sources,
an intermediate router, and one destination (Figure 6).
All sources simultaneously send packets to the destination
through the router. Hence, a large queue is built up at the
router or bottleneck point.Maximum buffer size of the router
is 100 packets. All of the compared RED, REM, and PI
algorithms are configured to obtain the desired queue length
at 40 packets. Simulation lasts for 60 seconds and is repeated
using a built-in random generator in ns-2 to obtain more
credible results.

DestinationRouter

Source 1

Source 2

Source 40

...

...

Figure 6: Simulation topology.
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Figure 7: Dropping probability.

Figure 7 shows dropping probability of FB-OCQ and
RED algorithms. With the proposed square-root drop func-
tion, FB-OCQ drops queuing packets more aggressively
than RED although dropping frequency is nearly the same.
Maximum dropping ratio is 0.045 for FB-OCQ and 0.039 for
RED. In fact, when the algorithm drops more packets, the
queue stability will be increased but we will have to sacrifice
the system throughput performance.We can see this trade-off
in next results.

Figure 8 presents average queue length values measured
at the bottleneck link from router to destination for different
algorithms. Due to aggressive dropping, FB-OCQ maintains
the shortest queue at 40 packets which is also the desired
value. Only REM can obtain the same value but in a
longer time, ≈50 seconds. PI, in fact, can achieve the same
performance only if its parameters are well configured and
be dynamically changed to different network scenarios. In
Figure 8, we can see that PI performs not so well, even we
set the desired queue length variable at 40 packets and exploit
default parameters in ns-2 for PI controller.

Finally, we investigate throughput performance of pro-
posed FB-OCQ algorithm. It is confirmed from Figure 9
that there exists a trade-off in the relationship between
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Figure 8: Average queue length versus time.
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Figure 9: Throughput comparison.

throughput and queue length/dropping probability. PI and
REM achieve nearly the same throughput at 0.06 (Mbps)
while FB-OCQandREDobtain the better throughput perfor-
mance at 0.08 (Mbps) value. In Figure 8, although REM can
achieve the desired queue length 40 packets in this scenario,
REM still maintains a large queue during simulation time
from 0 (sec) up to 25 (sec). That reason leads to throughput
performance of REM being lower than RED and FB-OCQ.
Our proposed FB-OCQ drops aggressively the packets so
that its throughput value (0.075904Mbps) is slightly less than
RED (0.082146Mbps).

5.3. Experiment Results. We examine the effectiveness of
our state-of-the-art optimal control queue method in the
Linux kernel (e.g., Ubuntu 16.04). We conduct experiment
from a desktop computer through the Internet gateway to
an outside server (Figure 10). To manage working queuing
disciplines (qdiscs), we use the scheduler qdisc in the Linux
kernel. The chosen server is a dedicated bufferbloat server,

Bufferbloat server

DropTail

RED
FB-OCQ

Experiment:

Figure 10: Experiment test setup, from the test client to the test
server.

which is able to stand very high congestion due to many
data flows at the same time. We exploit the Flent: FLExible
Network Tester [25] and Realtime Response Under Load
(RRUL) test [26] to evaluate our proposal. RRUL test puts a
network under worst case conditions, reliably saturates the
network link, and thus recreates bufferbloat phenomenon
for queue algorithm testing. Simulation time duration is 60

seconds.
We compare latency under load test with queue being

handled by different AQM schemes (DropTail, RED, and FB-
OCQ) in turn.DropTail queuingmethod is by far the simplest
approach to network router queue management. The router
accepts and forwards all the packets that arrive as long as its
buffer space is available for the next incoming packets. If a
packet arrives and the queue is currently full, the incoming
packet will be dropped. The sender then detects the packet
lost event and shrinks its sendingwindow.While it is themost
widely used due to simplicity and relatively high efficiency,
DropTail has some weakness such as the bad fairness sharing
amongTCP connections, and throughput and bottleneck link
efficiency suffer severe degradation if congestion is getting
worse.

RED [5, 6] was presented with the objective of min-
imizing packet loss and queuing delay. Moreover, it can
compensate the weakness of DropTail by avoiding global
synchronization of TCP sources so that it improves fair-
ness. To achieve these goals, RED utilizes two thresholds,
minth and maxth, and an exponentially weighted moving
average (EWMA) formula to estimate average queue length
[27]. When the average queue length exceeds a predefined
threshold, the link is implied to be in congested state and
drop action is taken. A temporary increase in the queue
length notifies the transient congestion, while an increase
in the average queue length reflects long-lived congestion.
Based on such information, RED router sends randomized
feedback signals to the senders tomake decision of decreasing
their congestion windows. RED has good fairness among
connections because of the feedback randomizedmechanism
[28].

Figure 11 presents latency ping results under RRUL test
suite. Ping is a networking utility and operates by sending
Internet Control Message Protocol (ICMP) echo request
packets to the target server and waits for an ICMP echo
reply. The program measures the round-trip time from
transmission to reception, reporting errors and packet loss.
Our proposed algorithm FB-OCQ achieves the lowest packet
latency compared with the other two algorithms inside Linux
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Figure 11: ICMP ping result using Realtime Response Under Load
test.

kernel. Specifically, the packet latency when using FB-OCQ
is about 80 (ms), while about 120 (ms) if using DropTail
(pfifo fast in Ubuntu) and 100ms if using RED algorithm.

6. Conclusions

We proposed a queue management algorithm named
forward-backward optimal control queue (FB-OCQ) to
solve the OCQ problem. Derived from indirect approaches
in dynamic optimization, this algorithm demonstrates faster
reaction while still achieving the same performance in
numerical analysis compared to direct methods. Employing
under network simulation ns-2, we see that the proposed
algorithm drops packets more aggressively than the
traditional RED algorithm, in a higher frequency and
magnitude. As a result, average queue length can be reduced
much more, while an acceptable value of throughput still
can be maintained. In future works, we try to investigate
the memory efficiency of FB-OCQ under wireless sensor
networks.
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