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A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic
evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been
pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors
(transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation), which can deduce a standard parameter controlled
relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the
theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of
Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and
bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study
of the dynamic complexity of ecosystems.

1. Introduction

The dynamical behaviors between different populations and
their complex properties have been given close attention by
biologists and ecologists. Since the pioneering work of Lotka
and Volterra, the research interest in predator-prey dynamics
has achieved constant attention. It is well known that these
models can directly reflect changes in the size of populations.
Considerable improvements are that the relevant theories
become more and more complete in this category in recent
years [1–5].

The predator-prey models have extensive applicability in
the field of biological problems.The biologist can use them to
study the relationship between species in different domains
[6–10]. Yang and Zhao [11] have established a fish-algae
consumption model to explore how to apply the complex
dynamics between fish-algae populations to expound the
mechanism of algae blooms; these results will be helpful in
controlling algae bloom. González-Olivares and Rojas-Palma
[12] have established a Gause type predator-prey model

with Allee effects and considered three standard functional
responses, respectively. They found that different types of
functional responses will lead to a model’s dynamic behavior
change. Their results perfectly explore that the expression of
one interaction term has a significant effect on the stability
and persistence of the populationmodel, which ismeaningful
in establishing biologicalmathematicalmodel. Dhar et al. [13]
have proposed a mathematical model to study how instan-
taneous nutrient recycling affects the dynamic characteristic
of aquatic ecosystem. The nutrient supply rate was found
to affect the local stability of equilibrium; this work was
significant for models involving flowing waters. Luo [14] has
considered a mathematical model to study how the periodic
environment influences the internal operating characteristics
of the aquatic ecosystem.He pointed out that the temperature
has a certain time periodicity, the fluctuation of temperature
can lead to changes in intrinsic carrying capacity, and the
growth rate of prey populations can also be influenced by time
periodicity; these results in [14] are more accordant with the
actual situation.
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It is a common phenomenon in nature that one predator
lives on multiple prey species. To address this issue, some
researchers have begun to consider alternative prey to depict
the dynamic predator mechanism [15–18]. It is easy to find
out that alternative prey can variously affect the dynamic
capture feature. On one hand, alternative prey can increase
the predation quantity for the focal prey, because more prey
biomass may result in higher predation rates for both prey
items. On the other hand, the alternative prey population
can also lower predation on the focal prey because of
predator preference for the alternative prey resources [19].
At the same time, many studies show that the alternative
population can intensively influence the dynamic behavior
of the aquatic ecosystem [20, 21]. Based on this mechanism,
Kar and Chattopadhyay [22] have developed a two-species
predator-prey model which includes the effect of alternative
prey. The model can be depicted as

𝑑𝑁

𝑑𝑇
= 𝑟
1
𝑁(1 −

𝑁

𝑘
1

) −
𝑎
1
𝑁

𝑏
1
+ 𝑁
𝑃,

𝑑𝑃

𝑑𝑇
=
𝑎
1
𝑒
1
𝑁

𝑏
1
+ 𝑁
𝑃 + 𝑠
1
𝑃(1 −

𝑁

𝑘
1

) − 𝑑
1
𝑃,

(1)

where 𝑁 and 𝑃 represent prey and predator population
densities or biomass at time𝑇, respectively.Here, 𝑟

1
stands for

the intrinsic growth rate of the prey without any environment
limitations, 𝑘

1
is the environmental carrying capacity of the

prey in the absence of the predator, 𝑎
1
𝑁/(𝑏
1
+𝑁) is theHolling

type-II functional response [23], which is used to depict
the average feeding rate of the predator when the predator
spends time seeking prey, where 𝑏

1
is the half saturation

constant for the Holling type-II, 𝑎
1
is the grazing rate of the

predator population, 𝑒
1
and 𝑑

1
are the conversional rate and

mortality rate of predator, respectively, and 𝑠
1
𝑃(1 − 𝑁/𝑘

1
)

indicates the portion of biomass of predator increments from
the alternative prey, where 𝑠

1
represents the growth rate of

the predator on account of the alternative prey. From the
formula, we can see that when the quantity of focal prey
𝑁 approaches the environmental carrying capacity 𝑘

1
, the

amount of alternative prey consumed by the predator will
tend to be zero [24].

The concept of Allee effect was firstly derived from the
research of Allee and Bowen [25]. Since then, the Allee effect
received the attention of many researchers [26–29]. Allee
effects can be roughly classified into two types: strong and
weak [30]. For these two forms, there is a critical value that is
referred to as the Allee threshold, respectively. The fist form
means that if the population size is below the threshold, the
species will become extinct. When the growth rate gradually
decreases but remains positive with a low population size, the
Allee effect is described as weak. Aulisa and Jang [31] have
established a continuous-time predator-prey model to study
influences in dynamical behaviors when the prey population
possesses Allee effect. They pointed out that both species will
become extinct if the prey population size falls below a certain
threshold. Pan et al. [32] have considered a reaction-diffusion
phytoplankton-zooplankton model with double Allee effects
on prey population. They pointed out that the Allee effects

can make the dynamical behaviors of a system increasingly
complex.

The strong Allee effect can be depicted by the following
form:
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where 𝑚
1
is Allee effect threshold. If population density or

size is below the threshold, this population is doomed to
extinction. Here 0 < 𝑚

1
< 𝑘
1
, the other parameters’

significance is the same as model (1).
Now we will establish a predator-prey model with strong

Allee effects:
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The parameters are all greater than zero and have the
same significance as above. For simplicity, we write the above
model in dimensionless form as follows: we take the scaling
𝑁 = 𝑘

1
𝑛, 𝑃 = 𝑟

1
𝑝/𝑎
1
, and 𝑇 = 𝑡/𝑟

1
; then, model (3) can be

simplified as
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In the succedent subsections of this paper, we introduce
the problem of determining the number of equilibria. Sta-
bility analysis of equilibrium point is also presented. Then,
we provide a demonstration of several types of bifurcation
and give a set of parameter values to prove the existence of
Bogdanov-Takens (BT) bifurcation. In Section 3, numerical
simulations are given to illustrate the theoretical analysis
results, followed by conclusions in Section 4.

2. Qualitative Analysis

2.1. Equilibria. In this subsection, we mainly concentrate on
the existence of positive equilibrium of model (4a) and (4b).
Model (4a) and (4b) has three boundary equilibria: 𝐸

0
(0, 0),

𝐸
1
(1, 0), and 𝐸

2
(1/𝑚, 0) and they are always existent. The

interior equilibria are the intersection points of the vertical
isocline and horizontal isocline in the interior of the first
quadrant.The expressions of vertical and horizontal isoclines
are as follows:

(1 − 𝑛) (𝑚𝑛 − 1) −
𝑝

𝑏 + 𝑛
= 0, (5a)

𝑒𝑛

𝑏 + 𝑛
+ 𝑠 (1 − 𝑛) − 𝑑 = 0. (5b)

The horizontal isocline is vertical line and the number of
perpendiculars is decided by (5b). We denote (5b) by𝐻(𝑛) =
𝐺(𝑛)/(𝑏+𝑛) = 0, where𝐺(𝑛) = −𝑠𝑛2+(𝑒+𝑠−𝑠𝑏−𝑑)𝑛+𝑏(𝑠−𝑑).
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𝐺(𝑛) = 0 have the same solutions as (5b), and two solutions
exist in the equation at most. We denoted them by 𝑛

3
and 𝑛
4
,

where 𝑛
4
< 𝑛
3
. From the geometric properties of isoclines we

can know that model (4a) and (4b) has interior equilibrium
points if and only if 1/𝑚 < 𝑛

3
< 1 or 1/𝑚 < 𝑛

4
< 1. Then,

the maximum number of equilibria for model (4a) and (4b)
is five. We use 𝐸

3
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3
, 𝑝
3
) and 𝐸

4
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4
) to signify the interior

equilibria, the existence and stability of which are shown as
follows.
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Theorem 1. (1) 𝐸
0
(0, 0) is an asymptotically stable node point

if 𝑠 < 𝑑 and a saddle point for 𝑠 > 𝑑; if 𝑠 = 𝑑, it is a high order
singularity. The Jacobian matrix around 𝐸
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One of the eigenvalues is 1 − 1/𝑚 > 0, so 𝐸
2
is unstable.

Theorem 2. If 𝑒 − 𝑑 − 𝑏𝑑 > 0 and −𝑠/𝑚2 + (𝑒 + 𝑠 − 𝑠𝑏 −
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Imitating the proof of Theorem 2, we can know

𝑛
4
< √
𝑏𝑒

𝑠
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then, det (𝐽
(𝑛4 ,𝑝4)

) = −𝐵(𝑛
4
)𝐶(𝑛
4
) > 0, which means two

eigenvalues have the same sign.
Since

𝐴(
1

𝑚
) = 1 −

1

𝑚
> 0,

𝐴 (1) = 1 − 𝑚 < 0.

(17)

Solving 𝐴(𝑛) = 0, we can get that there exists a set 𝐿 ⊂
(1/𝑚, 1), such that 𝐴(𝑛) < 0 for all 𝑛 ∈ 𝐿, where 𝐿 =
((1 +𝑚−𝑚𝑏+√1 − 𝑚 + 𝑚𝑏 + 𝑚2(1 + 𝑏 + 𝑏2))/3𝑚, 1). Then,
we know that if 𝑛

4
∈ 𝐿, trace (𝐽

(𝑛4 ,𝑝4)
) = 𝐴(𝑛

4
) < 0 and both

eigenvalues of 𝐽
(𝑛4 ,𝑝4)

have negative real parts, and 𝐸
4
(𝑛
4
, 𝑝
4
)

is locally asymptotically stable.
From the above discussion, we find that model (4a)

and (4b) may possess two interior equilibria 𝐸
3
and 𝐸

4

simultaneously if 𝑒 − 𝑑 − 𝑏𝑑 < 0, −𝑠/𝑚2 + (𝑒 + 𝑠 − 𝑠𝑏 −
𝑠)/𝑚 + 𝑏(𝑠 − 𝑑) < 0, (𝑠𝑏 − 𝑠 + 𝑑 − 𝑒)2 + 4𝑏𝑠(𝑠 − 𝑑) > 0,
and 2𝑠/𝑚 < 𝑒 + 𝑠 − 𝑠𝑏 − 𝑑 < 2𝑠. The stability condition of 𝐸

4

is still 𝑛
4
∈ 𝐿.

Considering the existence and stability conditions inte-
grated, we know that there will appear three stable equilibria
synchronously if the scope of those parameters satisfies the
above conditions. Based on the above demonstration, some
cases where the stability of equilibria may occur are cited
in Table 1, where the existence of equilibria is classified
according to the magnitude of 𝑠 and 𝑑.

2.2. Local Bifurcation. From Table 1 we know that the vari-
ation of parameter value will lead to the number change of
interior equilibria. We take 𝑑 as variable parameter and find
that changing the value of 𝑑 will vary equilibrium’s number;
when the value of 𝑑 increases across the threshold 𝑑TC1 =
𝑒/(𝑏 + 1), the interior equilibrium 𝐸

4
bifurcates from 𝐸

1
, and

when the value of 𝑑 is across 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚),
another interior equilibrium 𝐸

3
can bifurcate from 𝐸

2
. Then,

there exist two transcritical bifurcations, which are denoted
by TC1 and TC2, respectively.

Theorem 4. (1) Model (4a) and (4b) undergoes transcritical
bifurcation at 𝐸

1
(1, 0) when the value of parameter 𝑑 equals

the transcritical bifurcation threshold 𝑑
𝑇𝐶1
= 𝑒/(𝑏 + 1).

(2) Model (4a) and (4b) undergoes another transcritical
bifurcation at𝐸

2
(1/𝑚, 0)when the value of parameter 𝑑 equals

the transcritical bifurcation threshold 𝑑
𝑇𝐶2
= 𝑒/(𝑏𝑚+1)+𝑠(1−

1/𝑚).

Proof. It can be easily seen that 𝐸
1
(1, 0) coincides with

𝐸
4
(𝑛
4
, 𝑝
4
) when 𝑑 = 𝑒/(𝑏 + 1). According to the theorems in

[33, 34], it can be found that one interior equilibrium point
branches off from 𝐸

1
when 𝑑 passes the threshold 𝑑TC1 =

𝑒/(𝑏 + 1) and also conforms with the transversality condition
for transcritical bifurcation. The same notation we followed
in this paper is mentioned in [33].

We can calculate the value of Jacobian matrix of model
(4a) and (4b) as Det (𝐽

(1,0)
)|
𝑑TC1

, and then (1, 0) is a nonhyper-
bolic equilibrium point when 𝑑 = 𝑑TC1. Let the eigenvectors
V = [1, (𝑏 + 1)(1 − 𝑚)]𝑇 and 𝑤 = [0, 1]𝑇 indicate the eigen-
vectors corresponding to zero eigenvalues of 𝐽

((1,0),𝑑TC1)
and

[𝐽
((1,0),𝑑TC1)

]
𝑇, respectively. Next the transversality conditions

for the transcritical bifurcation are satisfied be verified, where
𝐹 = (𝐹

1
, 𝐹
2
)
𝑇:

𝑤
𝑇
𝐹
𝑑
((1, 0) ; 𝑑TC1) = (0, 1) (0, 0)

𝑇
= 0,

𝑤
𝑇
𝐷𝐹
𝑑
((1, 0) ; 𝑑TC1) V = (𝑏 + 1) (𝑚 − 1) ̸= 0,

𝑤
𝑇
𝐷
2
𝐹 ((1, 0) ; 𝑑TC1) (V, V)

= (
𝑒𝑏

(1 + 𝑏)
2
− 𝑠) (𝑏 + 1) (1 − 𝑚) .

(18)

We notice that 𝑚 > 1 and 𝑤𝑇𝐷2𝐹((1, 0); 𝑑TC1)(V, V) <
0 if 𝑒 > 𝑠(𝑏 + 1)2/𝑏 and then the transcritical bifurcation is
supercritical, which means that an interior equilibrium point
arises through𝐸

1
under this condition. Another aspect is that

if 𝑒 < 𝑠(𝑏+1)2/𝑏, the transcritical bifurcation is subcritical and
an interior equilibrium vanishes across 𝐸

1
.

In the following, we demonstrate that another interior
equilibrium point bifurcates from 𝐸

2
(1/𝑚, 0) through tran-

scritical bifurcation at the threshold 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) +
𝑠(1 − 1/𝑚). Similarly, we can get Det (𝐽

(1/𝑚,0)
)|
𝑑TC2
= 0, V =

[1, (𝑏+1/𝑚)(𝑚−1)]
𝑇, and𝑤 = [0, 1]𝑇are the eigenvectors cor-

responding to 𝐽
((1/𝑚,0),𝑑TC2)

and [𝐽
((1/𝑚,0),𝑑TC2)

]
𝑇, respectively.

We have

𝑤
𝑇
𝐹
𝑑
((
1

𝑚
, 0) ; 𝑑TC2) = (0, 1) (0, 0)

𝑇
= 0,

𝑤
𝑇
𝐷𝐹
𝑑
((
1

𝑚
, 0) ; 𝑑TC2) V = (1 − 𝑚) (𝑏 +

1

𝑚
) ̸= 0,

𝑤
𝑇
𝐷
2
𝐹((

1

𝑚
, 0) ; 𝑑TC2) (V, V)

= (
𝑏𝑒

(𝑏 + 1/𝑚)
2
− 𝑠)(𝑏 +

1

𝑚
) (𝑚 − 1) .

(19)

If 𝑒 < 𝑠(𝑏+1/𝑚)2/𝑏 and𝑤𝑇𝐷2𝐹((1/𝑚, 0); 𝑑TC2)(V, V) < 0,
the transcritical bifurcation is supercritical and an interior
equilibrium point appears across 𝐸

2
under this condition.

Another aspect is that if 𝑒 > 𝑠(𝑏 + 1/𝑚)2/𝑏, the transcritical
bifurcation is subcritical and an interior equilibrium vanishes
across 𝐸

2
.

Theorem 5. Model (4a) and (4b) undergoes saddle-node
bifurcation when 𝑑 = 𝑑

𝑆𝑁
, where 𝑑

𝑆𝑁
= 𝑠 + 𝑒 + 𝑏𝑠 − 2√𝑏𝑠𝑒.

Proof. It is easy to calculate that the discriminant of 𝐺(𝑛) = 0
is equal to zero when 𝑑 = 𝑠 + 𝑒 + 𝑏𝑠 − 2√𝑏𝑠𝑒, which means
𝐺(𝑛) = 0 has a twofold root. We denote this root by 𝑛∗.
Model (4a) and (4b) has only one interior equilibrium point
𝐸
∗
(𝑛
∗
, 𝑝
∗
) correspondingly and the constituents are given by

𝑛
∗
= √
𝑒𝑏

𝑠
− 𝑏,

𝑝
∗
= (1 − 𝑛

∗
) (𝑚𝑛
∗
− 1) (𝑏 + 𝑛

∗
) .

(20)
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Table 1

𝐸
0
(0, 0) 𝐸

1
(1, 0) 𝐸

2
(1/𝑚, 0) 𝐸

3
(𝑛
3
, 𝑝
3
) 𝐸

4
(𝑛
4
, 𝑝
4
)

𝑠 > 𝑑 Saddle point Stable node point Unstable node point Saddle point Nonexistent

𝑠 = 𝑑

Unstable
(high-order
singularity)

Stable node point Unstable node point Saddle point Nonexistent

𝑠 < 𝑑

Δ = 0 Stable node point Stable node point Saddle point 𝐸
3
and 𝐸

4
coincide and are a saddle-node point

Δ > 0

Stable node point Stable node point Unstable node point Saddle point Nonexistent
Stable node point Saddle point Saddle point Nonexistent Stable node point
Stable node point Stable node point Saddle point Saddle point Stable node point

The Jacobian matrix evaluate at 𝐸∗ is given by

𝐽
((𝑛
∗
,𝑝
∗
),𝑑SN)

= (
𝐴 (𝑛
∗
, 𝑝
∗
, 𝑑SN) 𝐵 (𝑛

∗
, 𝑝
∗
, 𝑑SN)

𝐶 (𝑛
∗
, 𝑝
∗
, 𝑑SN) 𝐷 (𝑛

∗
, 𝑝
∗
, 𝑑SN)

)

= (
𝑀 √

𝑏𝑠

𝑒
− 1

0 0

) ,

(21)

where 𝑀 = 𝐴(𝑛
∗
, 𝑝
∗
, 𝑑SN). Obviously, matrix 𝐽

((𝑛
∗
,𝑝
∗
),𝑑SN)

has a double zero eigenvalues when Det (𝐽
((𝑛
∗
,𝑝
∗
),𝑑SN)
) = 0.

We can count out the eigenvectors corresponding to the zero
eigenvalue, which are V = [1,𝑀/(1 − √𝑏𝑠/𝑒)]𝑇 and 𝑤 =
[0, 1]
𝑇. Utilizing the expressions of vectors V and 𝑤, as well

as 𝑛∗ ∈ (1/𝑚, 1), we can get

𝑤
𝑇
𝐹
𝑑
((𝑛
∗
, 𝑝
∗
) ; 𝑑SN)

= − (1 − 𝑛
∗
) (𝑚𝑛
∗
− 1) (𝑏 + 𝑛

∗
) < 0,

𝑤
𝑇
[𝐷
2
𝐹 ((𝑛
∗
, 𝑝
∗
) ; 𝑑SN)] (V, V)

=
−𝑒𝑏 (1 − 𝑛

∗
) (𝑚𝑛
∗
− 1)

(𝑏 + 𝑛∗)
2

.

(22)

Given the value range of 𝑛∗, we know that
𝑤
𝑇
[𝐷
2
𝐹((𝑛
∗
, 𝑝
∗
); 𝑑SN)](V, V) cannot be equal to zero.

Then, by Sotomayor’s theorem we can prove that the model
undergoes a saddle-node bifurcation when the parameter 𝑑
goes via the critical threshold 𝑑 = 𝑑SN.

Theorem 6. In the case of 𝑠 < 𝑑, the interior equilibrium
point 𝐸

4
changes its stability through the Hopf-bifurcation at

the threshold 𝑏 = 𝑏
𝐻
, where 𝑏

𝐻
= −(3𝑚𝑛

4

2
− 2(𝑚 + 1)𝑛

4
+

1)/(2𝑚𝑛
4
− 𝑚 − 1).

Proof. Because the interior equilibrium point 𝐸
3
is always

a saddle, then Hopf bifurcation can only take place at 𝐸
4
.

Parameter 𝑏 can drive equilibrium 𝐸
4
into an unstable state

when 𝑏 > 𝑏
𝐻
, so 𝑏 = 𝑏

𝐻
is the critical value where the stability

of 𝐸
4
changes. Next we will prove the necessary condition

for Hopf bifurcation to occur. To testify the transversality
condition of the Hopf bifurcation of the model’s solution, we
take 𝜆 = 𝛼(𝑏)+𝛽(𝑏)𝑖, where 𝜆 is an eigenvalue of the Jacobian
matrix 𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
. If the Hopf bifurcation occurs at 𝑏 = 𝑏

𝐻
, 𝜆

is a purely imaginary number, such that Tr (𝐽
((𝑛4 ,𝑝4),𝑏𝐻)

) = 0,
Det (𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
) ̸= 0, and 𝑑Tr (𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
)/𝑑𝑏 ̸= 0. Substitut-

ing 𝑏 by 𝑏
𝐻
= −(3𝑚𝑛

4

2
− 2(𝑚 + 1)𝑛

4
+ 1)/(2𝑚𝑛

4
−𝑚 − 1), we

can get

Tr (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) = 0,

Det (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

)

= 𝑛
4
(1 − 𝑛

4
) (𝑚𝑛
4
− 1)(

𝑏
𝐻
𝑒

(𝑏
𝐻
+ 𝑛
4
)
2
− 𝑠) ,

𝑑

𝑑𝑏
Tr (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) = −
𝑛
4
(1 − 𝑛

4
) (𝑚𝑛
4
− 1)

(𝑏 + 𝑛
4
)
2

.

(23)

Using (16), we know Det (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) > 0 and
𝑑Tr (𝐽

(𝑛4 ,𝑝4,𝑏𝐻)
)/𝑑𝑏 ̸= 0. Then, the transversality condition of

a Hopf bifurcation is satisfied [35].

Theorem 7. Model (4a) and (4b) undergoes a Bogdanov-
Takens (BT) bifurcation of codimension two.

As we know, Tr (𝐽) = 0 and Det (𝐽) = 0 are the necessary
conditions of the occurrence of Hopf and saddle-node,
respectively. If both Hopf and saddle-node conditions hold,
there will be a new bifurcation called Bogdanov-Takens
bifurcation. In this situation, the Jacobian matrix has a double
zero eigenvalue [36]. Since the explicitly analytical expressions
for thresholds of BT bifurcation are quite difficult to determine,
we give a numerical example to confirm the system exhibit
BTs bifurcation. We fix 𝑚 = 1.5, 𝑠 = 0.1, and 𝑑 = 0.4. We
find that, at (𝑒

𝐵𝑇
, 𝑏
𝐵𝑇
) = (0.4930734388, 0.2386077213),

Tr (𝐽
𝐸
∗)|
(𝑒𝐵𝑇,𝑏𝐵𝑇)

= 0 and Det (𝐽
𝐸
∗)|
(𝑒𝐵𝑇,𝑏𝐵𝑇)

= 0.
Moreover, (𝜕2𝐹/𝜕𝑛2 − (𝜕𝐹/𝜕𝑛)(𝜕2𝐹/𝜕𝑛𝜕𝑝))/(𝜕2𝐹/𝜕𝑛𝜕𝑝 +
𝜕
2
𝐹/𝜕𝑛𝜕𝑝) = −2.800482957 and ((1/2)(𝜕𝐹/𝜕𝑛)(𝜕2𝐹/𝜕𝑛2) −
(𝜕𝐹/𝜕𝑛)

2
(𝜕
2
𝐹/𝜕𝑛𝜕𝑝))/(𝜕𝐹/𝜕𝑝 + (1/2)(𝜕𝐹/𝜕𝑝)(𝜕

2
𝐹/𝜕𝑛
2
) −

(𝜕𝐹/𝜕𝑛)(𝜕
2
𝐹/𝜕𝑛𝜕𝑝)) = −0.0000734288 78; these expressions

prove the transversality conditions for a BT bifurcation [37].

3. Numerical Results

In order to verify the correctness and feasibility of the
theoretical results, a series of numerical simulations will
be depicted in detail. Many phase diagrams are given to
display the dynamics properties of model (4a) and (4b),
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Figure 1: Bifurcation diagram of model (4a) and (4b) in 𝑛 − 𝑑 plane constructed for 𝑚 = 1.5, 𝑏 = 2.0, 𝑠 = 0.1, 𝑒 = 0.395 (a), and 𝑒 =
0.405 (b, c). Red perpendicular dashed lines represent the critical value for different bifurcation occurrence. Three horizontal lines stand for
three boundary equilibria: 𝐸

0
(golden), 𝐸

1
(gray), and 𝐸

2
(black). Two interior equilibria 𝐸

3
and 𝐸

4
are presented by blue and green curves,

respectively. The solid lines indicate equilibrium in stable state and dotted line indicates unstable state, where, according to the stability
theorem, these results are calculated and drawn based on Maple 14 platform.

which are based on pplane8 routines [38] in Matlab 7.1. In
fact, according to [39], we can know pplane8 is a powerful
tool for studying planar autonomous systems of differential
equations, which can rapidly and accurately draw trajectories
of each phase plane, count each critical point, and correctly
characterize each equilibrium point of the studied systems. It
is easy to find from Table 1 that model (4a) and (4b) only has
an interior equilibrium point 𝐸

3
if 𝑠 ≥ 𝑑; then, the premise

of parametric ranges in Figure 1 is 𝑠 > 𝑑. It should be pointed
out from Figure 1(a) that two vertical lines passing through
points (𝑒/(𝑏 + 1), 0) and (𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 𝑠/𝑚), 0) are the
transcritical bifurcation curves, which have been named TC1
andTC2, respectively. Furthermore, if 𝑑 < 𝑒/(𝑏+1) is feasible,
that is to say, model (4a) and (4b) does not have any interior
equilibrium point when the value of 𝑑 is positioned within
region I of Figure 1(a), three boundary equilibria 𝐸

0
(0, 0),
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𝐸
1
(1, 0), and𝐸

2
(2/3, 0) exist. 𝐸

0
(0, 0) is asymptotically stable,

while 𝐸
1
(1, 0) and 𝐸

2
(2/3, 0) are unstable, the results of

which have been shown in Figure 2(a) (𝑑 = 0.131). We
know those three boundary equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and

𝐸
2
(2/3, 0) always exist no matter what the value of 𝑑 is. Thus,

in the following cases we do not introduce the existence of
boundary equilibria separately. However, if the value of 𝑑 is
gradually increasing across the transcritical bifurcation TC1
and finally enters into region II, model (4a) and (4b) has
an interior equilibrium point 𝐸

3
. It is worth emphasizing

that the critical value of transcritical bifurcation is 𝑑TC1 =
𝑒/(𝑏 + 1) = 0.13167 and the interior equilibrium point
𝐸
3
(0.97064, 0.039763) is a saddle point, boundary equilibria

𝐸
0
and 𝐸

1
are stable, and 𝐸

2
is an unstable node point, which

has been shown in Figure 2(b) (𝑑 = 0.132). As the value of
𝑑 gradually increases to 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚) =
0.132083, which is a critical value of another transcritical
bifurcation and finally enters into region III, model (4a) and
(4b) has two interior equilibria 𝐸

3
(0.91328, 0.093458) and

𝐸
4
(0.71172, 0.052831), which are unstable; 𝐸

0
and 𝐸

1
are

stable, and 𝐸
2
is a saddle point (see Figure 2(c), 𝑑 = 0.1325).

To further fully explore the existence of the equilibria and
the occurrence of the bifurcation behavior in model (4a) and
(4b), we take another set of parameter values in Figure 1(b)
and repeat the steps in Figure 1(a).The bifurcation diagram in
Figure 1(b) has been depicted in detail as follows. It is obvious
to find that model (4a) and (4b) has an interior equilibrium
point 𝐸

4
if the value of 𝑑 exceeds the threshold value 𝑑TC3 =

𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚) = 0.134583, which is transcritical
bifurcation threshold TC3. It is worthwhile to point out
that the interior equilibrium point 𝐸

4
(0.69128, 0.030678) is

unstable on the account of 𝑛
4
= 0.69128 ∉ 𝐿(0.83822, 1).

The boundary equilibrium 𝐸
0
(0, 0) is stable, and 𝐸

1
(1, 0) and

𝐸
2
(2/3, 0) are saddle points (see Figure 2(d), 𝑑 = 0.1349). We

take another set of parameters values as the supplement to
display the case that there exists only one interior equilibrium
point and it is locally asymptotically stable (see Figure 3(a)),
where 𝐸

1
(1, 0) and 𝐸

2
(2/3, 0) are saddle points, 𝐸

0
(0, 0) and

𝐸
4
(0.886762, 0.040628) are stable, and 𝐿 = (0.84652, 1).

Furthermore, if the value of 𝑑 increases beyond the threshold
value of transcritical bifurcation threshold 𝑑TC4 = 𝑒/(𝑏 +
1) = 0.135 and finally enters into region V, te model (4a)
and (4b) has three boundary equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and

𝐸
2
(2/3, 0) and two interior equilibria 𝐸

3
(0.97862, 0.029801)

and 𝐸
4
(0.71938, 0.060341) (see Figure 2(e), 𝑑 = 0.1352). It

is necessary to underline that 𝐸
0
(0, 0) and 𝐸

1
(1, 0) are stable

and 𝑛
4
= 0.71938 ∉ 𝐿(0.83822, 1), so the interior equilibria

𝐸
4
and 𝐸

3
are all unstable.

In order to clearly explore the steady characteristic of
the interior equilibrium point 𝐸

4
, Figure 1(c) will be given,

which is the partially enlarged view of Figure 1(b). It should
be stressed that the interior equilibrium 𝐸

4
will change the

stable state if the value of 𝑑 increased beyond the line L1
and finally enters into region VI, which suggests that a Hopf
bifurcation can lead to the appearance of a limit cycle in
the vicinity of the interior equilibrium 𝐸

4
(0.83816, 0.11816)

if 𝑑 = 0.1357878256 59 (see Figure 2(f)). From Figure 2(f),
we can observe that this limit cycle around 𝐸

4
is stable as

it attracts two neighboring trajectories: the trajectory (bottle

green curve) lying inside the limit cycle and the trajectory
(blue curve) lying outside; these two trajectories move ectad
and entad, respectively, and converge on the limit cycle. But at
this time the interior equilibrium point 𝐸

3
(0.85397, 0.11709)

and boundary equilibrium point 𝐸
2
(2/3, 0) are unstable,

and 𝐸
0
(0, 0) and 𝐸

1
(1, 0) are stable. When the value of 𝑑

enters into domainVI,𝐸
4
(0.86298, 0.042889) becomes stable,

𝐸
3
(0.92702, 0.032122) remains unstable, and 𝐸

0
and 𝐸

1
are

all stable in this domain. Thus, it is interesting to know that
model (4a) and (4b) will show three stationary phenomenon
(see Figure 2(g), 𝑑 = 0.13579). Due to the parameter values,
the nature of 𝐸

3
and 𝐸

4
only can be seen clearly on the

enlarged view (see Figure 2(g)). Therefore, we take another
group of values to exhibit the three stable states in overall
view in Figure 3(b). If the value of 𝑑 gradually increases and
reaches 𝑑SN = 𝑏𝑠 + 𝑒 + 2√𝑏𝑠𝑒 + 𝑠 = 0.1357900212, it is easy
to find that 𝐸

3
(0.84605, 0.11789) and 𝐸

4
(0.84605, 0.11789)

coincide at line L2 and the coincident point is called saddle-
node point, which has features of both saddle and node points
(see Figure 2(h)). However, it will disappear if the value of 𝑑
is increased higher than 𝑑SN, which signifies that model (4a)
and (4b)will undergo a saddle-node bifurcation if the value of
𝑑 increases across the threshold value 𝑑SN = 𝑏𝑠+𝑒+2√𝑏𝑠𝑒+𝑠.
In a word, it is worthy of our summary that model (4a) and
(4b) can show a complex dynamic evolutionary process of
steady conversion and bifurcation behavior with increase of
key parameter 𝑑.

In addition, model (4a) and (4b) has three boundary
equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and 𝐸

2
(2/3, 0) and an interior

equilibrium point 𝐸
3
, which is unstable if 𝑠 > 𝑑 or 𝑠 = 𝑑.

However, it is worth stressing that the boundary equilibrium
point 𝐸

0
(0, 0) is a saddle point if 𝑠 > 𝑑 and is an unstable

high-order singularity if 𝑠 = 𝑑 (see Figures 4(a) and 4(b)). At
the same time, it can be known from Theorem 7 that model
(4a) and (4b) can undergo a Bogdanov-Takens bifurcation if
Tr (𝐽
𝐸
∗)|
(𝑒BT ,𝑏BT)

= 0 and Det (𝐽
𝐸
∗)|
(𝑒BT ,𝑏BT)

= 0, which is shown
in Figure 4(c).

Based on the above analysis, the key parameter 𝑑 can
impose influence on dynamic evolutionary mechanism of
steady conversion and bifurcation behavior and lead to
model (4a) and (4b) having three stationary phenomena
and multiple bifurcation behaviors, which can in turn prove
that the theoretical results are correct and the complex
dynamics of model (4a) and (4b)mainly depend on some key
parameters. Moreover, these results show that the method of
using mathematical model to study the ecological problems
is feasible.

4. Conclusions

On the basis of the theories and methods of ecology, a
predator-prey model is studied numerically and analytically
in this paper. The aim is to probe how some key factors
influence dynamic evolutionary mechanism of steady con-
version and bifurcation behavior in predator-prey model.
The theoretical works have been promoting the investigation
of the existence and stability of the equilibria, as well as
some conditions of some bifurcations behaviors, such as
transcritical bifurcation, saddle-node bifurcation, and Hopf
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Figure 2: Phase portraits for different concomitant case of the model’s equilibria. The horizontal axis is prey population 𝑛 and the vertical
axis is predator population 𝑝. The green curves are stable or unstable orbits; the red point is the equilibrium point. We take𝑚 = 1.5, 𝑏 = 2.0,
𝑠 = 0.1, 𝑒 = 0.395 in (a–c), and 𝑒 = 0.405 in (d–h).
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Figure 3: Phase portraits for𝑚 = 1.5, 𝑠 = 0.1, and 𝑏 = 0.2; (a) 𝑒 = 0.844, 𝑑 = 0.7; (b) 𝑒 = 0.599, 𝑑 = 0.5.
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Figure 4: Phase portraits for 𝑚 = 1.5, 𝑠 = 0.1, 𝑒 = 0.28, 𝑏 = 2.0, (a) 𝑑 = 0.1, and (b) 𝑑 = 0.095. The parameter values in image (c) are
introduced inTheorem 7.

bifurcation, which can deduce a standard parameter con-
trolled relationship and in turn provide a theoretical basis for
the numerical simulation.

Numerical analysis indicates that the dynamic evolu-
tionary mechanism of steady conversion and bifurcation
behavior mainly depend on a specific key parameter 𝑑.
Within this framework, the direct and indirect effects caused
by the specific key parameter 𝑑 are investigated by means

of bifurcation analysis and phase diagram. It is obvious to
find that the existence and stability of interior equilibria 𝐸

3

and 𝐸
4
mainly depend on a key parameter 𝑑. These results

suggest that the key parameter 𝑑 plays an important role
in the prey-predator model. In addition, when the value of
the key parameter 𝑑 is larger than some critical value, the
model can possess multiple bifurcation behaviors, such as
transcritical bifurcation, saddle-node bifurcation, and Hopf
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bifurcation. Thus, it is worthwhile to remark that the key
parameter 𝑑 has a profound effect on the population bifur-
cation dynamical behaviors. In a word, some key parameters
can alter population dynamics and features in prey-predator
model. In addition, it is our hope that all these results can be
applied in the study of the dynamic complexity of ecosystems.
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en Ciencias e Ingenieŕıa, pp. 117–132, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


