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This paper analyzes the problem of meaningless outliers in traffic detective data sets and researches characteristics about the data
of monophyletic detector and multisensor detector based on real-time data on highway. Based on analysis of the current random
forests algorithm, which is a learning algorithm of high accuracy and fast speed, new optimum random forests about filtrating
outlier in the sample are proposed, which employ bagging strategy combined with boosting strategy. Random forests of different
number of trees are applied to analyze status classification ofmeaningless outliers in traffic detective data sets, respectively, based on
traffic flow, spot mean speed, and roadway occupancy rate of traffic parameters. The results show that optimum model of random
forest is more accurate to filtrate meaningless outliers in traffic detective data collected from road intersections. With filtrated data
for processing, transportation information system can decrease the influence of error data to improve highway traffic information
services.

1. Introduction

With the constant development in digital image technology
and detection technology, traffic state information can be
collected by technology of magnetic frequency, wave fre-
quency, video, and GPS which has been installed in most of
the vehicles [1]. In addition, RFID technology and mobile
signaling technology can also provide such information as
a supplementary role. A lot of spatiotemporal data sets are
obtained by above technology. For the purpose of efficient
traffic state identification and prediction [2–4], the premise
is to grasp accurate real-time traffic data. Outliers problem
[5] occurs in progress of traffic awareness data sets obtaining
traffic information; namely, the traffic information contains
some data which are obviously inconsistent data with other
data. There are many causes of outliers as follows: (1) short
period of collection; (2) imperfect detective devices; (3)
loss of data; (4) errors in detective data being transferred;
(5) environmental factors. If discriminating process of the
traffic state ignores the existence of outlier data, a mixture

of meaningless outlier data and traffic events data will be
stored. It is a basic question in transportation information:
how to effectively distinguish outlier data using the multidi-
mensional characteristics to effectively improve accuracy of
the traffic prediction.

In recent years, increasing attention has been given to
outlier research in dynamic traffic data. Nam and Drew
[6] pointed out that conservation laws for the traffic flow
could recognize and process erroneous data. Vanajakshi and
Rilett [7] used loop detector data to analyze cumulative
flow with adjacent section data. The law of conservation
of flow optimization model was established with target of
minimizing the sum of the squares of adjacent detection
section cumulative flow in order to eliminate the error
when several continuous detection sections showed counting
errors. Smith et al. [8] proposed a calibrated idea to fix
outlier data using exponential smoothing method. Methods
of optimum data based on clustering [9–11] and genetic
algorithm [12] were presented in view of outlier in the
multidimensional characteristic data in recent years.
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This paper analyzes the problem of meaningless outliers
in traffic detective data sets and researches characteristics
about the data of monophyletic detector and multisensor
detector based on real-time data on highway. Based on
analysis of the current random forests algorithm, which is
a learning algorithm of high accuracy and fast speed, new
optimum random forests about filtrating outlier in the sample
are proposed, which employ bagging strategy combined with
boosting strategy. Random forests of different numbers of
trees are applied to analyze status classification of meaning-
less outliers in traffic detective data sets, respectively, based
on traffic flow, spot mean speed, and roadway occupancy rate
of traffic parameters.The results show that optimummodel of
random forest ismore accurate to filtratemeaningless outliers
in traffic detective data collected from road intersections.
With filtrated data for processing, transportation information
system can decrease the influence of error data to improve
highway traffic information services.

2. Random Forest Optimization Model
Based on Traffic Data

2.1. Problem Description. The data derived from road traffic
detectors contains detecting time, detector type, flow, spot
mean speed, occupancy rate, and so on. The following
three conditions show the real-time road data from group
representation:

(1) Road traffic state detection data is out of line largely
with the actual road traffic status value.

(2) Obtained states of road traffic data are error data,
because the values from them are beyond the reason-
able scope or have violated the relevant law of road
traffic.

(3) The data of road traffic state data are missing.

First of all, road detection data of single parameter are
compared in Figure 1. Figure 1 represents the scatterplot of
spot mean velocity extracted from geomagnetic detection
data of freeways in November 2014. There are 1320 groups
of discrete detection data collected forming the same section
of 165 time points in it. In addition, Figure 2 lays out
the difference of sensor data from the same cross section.
Figure 2 represents integrated scatterplot of the same section
of multisensor data, which contains three parameters of flow,
spot mean speed, and occupancy rate, determining location
of data point. Two figures of data samples show that outlier
data is present in the data, but the proportion of outlier data
in the samples is small. In the above, statistics cases which
accounted for the largest number of samples are called the
most classes, and accounts for the fewest category are called
the minority class (nonequilibrium data) [13].

2.2. Model Based on Traffic Data

2.2.1. Random Forest. RF is an ensemble classifier that con-
sists of many decision trees and outputs the class that is the
mode of the class’s output by individual tree [14]. RF using
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Figure 1: Road detection data scatterplot of single parameter.
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Figure 2: Scatterplot of multisensor parameters data in the same
section.

bagging resampling strategy form sample sets combines the
tree predictors by majority voting. Each tree grows using a
new bagging training set.

RF is one of the most accurate leaning algorithms
available. For many data sets, it produces a highly accurate
classifier and runs efficiently on large databases. A significant
advantage of RF is that it can generate an internal unbiased
estimate of the generalization errorswithin the forest building
progress. Furthermore, RF is less prone to overfit. It is
widely applied to many domains, such as computer vision,
information retrieval, data mining, and pattern recognition.
Mathematical description of random tree classificationmodel
is as follows.

Definition 1. A random forest is a classifier consisting of
a collection of tree structured classifiers {ℎ(𝑥, Θ𝑘), 𝑘 =

1, 2, . . . , 𝑚}, where {Θ𝑘} are independent identically dis-
tributed random vectors and each tree casts a unit vote for the
most popular class at input 𝑥. Voting model equally weighted
is presented as in the following formula:

𝐻(𝑥) = arg{max 1

𝑚

𝑚

∑

𝑖=1

𝐼 (ℎ (𝑋;Θ𝑖) = 𝑦𝑗)} . (1)
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Given an ensemble of classifiers {ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑚(𝑥)},
each of these can get a classification. A classifier ℎ𝑘(𝑥) is
a common way of ℎ(𝑥, Θ𝑘). With the training set drawn at
random from the distribution of the random vector 𝑌, 𝑋,
define the margin function as

mg (𝑋, 𝑌) = 𝑎V𝑛𝐼 (ℎ𝑘 (𝑋) = 𝑌)

−max
𝑗 ̸=𝑌

𝑎V𝑘𝐼 (ℎ𝑘 (𝑋) = 𝑗) ,
(2)

where 𝐼(⋅) is the indicator function. The margin measures
the extent to which the average number of votes at 𝑋, 𝑌 for
the right class exceeds the average vote for any other class.
The larger the margin is, the more the confidence is in the
classification. The generalization error is given by

𝑃𝐸
∗
= 𝑃𝑋,𝑌 (mg (𝑋, 𝑌) < 0) . (3)

The strength of the set of classifiers {ℎ(𝑥, Θ)} is

𝑠 = 𝐸𝑋,𝑌 (𝑃Θ (ℎ (𝑋,Θ) = 𝑌)

−max
𝑗 ̸=𝑌

𝑃Θ (ℎ (𝑋,Θ) = 𝑗)) .

(4)

An upper bound for the generalization error is given by

𝑃𝐸
∗
≤

𝜌 (1 − 𝑠
2
)

𝑠
2

, (5)

where 𝜌 is the correlation between two members of the forest
averaged over different distribution.

The property of a decision tree in random forests is
bagging random sampling. Input data for random forest is
a process of resample from training set, and the sampling
of sample collection may be duplicate samples. Compared
to another common boosting method, in terms of sampling,
bagging is uniform sampling. Boosting is sampling according
to the error rate; thus the classification accuracy of boosting is
better than bagging; the choice of the training set of bagging
is random, and it is independent of the training set. The
choice of boosting is related to each previous sampling, and
it gets learning results. The prediction function of bagging
cannot be weighted and can be generated in parallel. The
prediction function of boosting can be weighted and can
only be generated sequence. Both methods can effectively
improve the accuracy of classification, and thus the paper
using advantages of the two methods proposes an integrated
method to optimize traffic field data classification.

2.2.2. Training Set and Testing Set. When data sets are
generated in random forestmodel, the initial training of some
samples could not be extracted from all collected data. The
data which could not be sampled are called OOB (out of the
bag). The whole data set is divided into two parts: a set of
training and a set of testing. The former one is used to build
themodel; the latter one is used to test capability of themodel.

In traffic detection data set, each testing point can get a
lot of sensory data composed of a variety of detection sources.
Suppose there are 𝑛 sources; each data source can getmultiple
traffic parameters of detected section, and then each time all
can get a set of multisensor data. Define a perception data
set consisting of time 𝑡, 𝑛 different types of data sources to
the monitoring object, and attributes of 𝑚, represented by
{𝑑, 𝑡𝑖,DN𝑖, 𝑝1,1, 𝑝1,2, 𝑝1,3, . . . , 𝑝𝑘,1, 𝑝𝑘,2, 𝑝𝑘,3, 𝐿 𝑖}, in which DN
indicates detector number, 𝑑 indicates the day, 𝑡𝑖 indicates the
data acquisition time, 𝑝𝑗,𝑚 indicates the𝑚th parameter of the
jth traffic detector, and L is quality mark.

For the convenience of analyzing detector data collected
in cross section of road, three fundamental traffic parameters,
namely, flow, spot speed, and occupancy rate, which are
extracted from data sets commonly, using three kinds of
detection equipment of data (induction loop data, magnetic
data, and monitoring data). Data calibration about traffic
parameters for some detector of a certain acquisition time
needs to extract the spatial correlation data from other
detectors. For instance, a detection equipment at acquisition
time, 𝑡𝑖, gets the flow 𝑞𝐶𝑖, spotmean speed V𝐶𝑖, and occupancy
𝑜𝐶𝑖 from traffic induction loop. If the data need be calibrated,
properties should be selected, such as traffic data collection
time 𝑡𝑖, flow 𝑞𝐶𝑖, spot mean speed V𝐶𝑖, and occupancy 𝑜𝐶𝑖
from induction loop data, volume 𝑞𝑈𝑖, spot mean speed V𝑈𝑖,
and occupancy 𝑜𝑈𝑖 frommagnetic data, and volume 𝑞𝑇𝑖, spot
mean speed V𝑇𝑖, and occupancy 𝑜𝑇𝑖 from monitoring data.
And traffic data quality mark 𝐿 𝑖, 𝑖 = 1, 2, . . . , 𝑛, in which 𝐿 𝑖
value belongs to {1, 1}, indicates that testing calibration set
evaluation data information is normal data or outlier.

The number of 𝑋-variables is 10. This means that the
matrix 𝑋 used in training the model has the size of 22093 ×
10. The test data 𝑋 forms a matrix with a size of 22093 × 10.
The formal description of matrices𝑋 and 𝑌 can be written as
follows:

𝑋 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥10]

=

[
[
[
[
[
[
[
[

[

𝑡1 𝑞𝐶1 V𝐶1 𝑜𝐶1 𝑞𝑈1 V𝑈1 𝑜𝑈1 𝑞𝑇1 V𝑇1 𝑜𝑇1

𝑡2 𝑞𝐶2 V𝐶2 𝑜𝐶2 𝑞𝑈2 V𝑈2 𝑜𝑈2 𝑞𝑇2 V𝑇2 𝑜𝑇2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

𝑡𝑛 𝑞𝐶𝑛 V𝐶𝑛 𝑜𝐶𝑛 𝑞𝑈𝑛 V𝑈𝑛 𝑜𝑈𝑛 𝑞𝑇𝑛 V𝑇𝑛 𝑜𝑇𝑛

]
]
]
]
]
]
]
]

]

,

(6)

where𝑋𝑖 is a set of data elements and n is the number of input
samples; consider

𝑌 =

[
[
[
[
[
[

[

𝑦1

𝑦2

.

.

.

𝑦𝑛

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝐿1

𝐿2

.

.

.

𝐿𝑛

]
]
]
]
]
]

]

, (7)

where 𝑦𝑖 ∈ {−1, 1} and 𝑦𝑖 represent the results of data quality
assessment.
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In the training of random tree building, not every sample
is selected in input sample of the decision tree. The number
of choices is 𝑚 from 𝑀 features. A decision tree builds by
completely split process, such as from𝑥𝑖 to𝑦𝑖. Processes of the
decision tree terminate, when each leaf node cannot continue
to split or all samples are pointing to the same classification.

2.2.3. Random Forest Optimization Model. Based on realistic
significance of identifying the nonequilibrium data in traffic
information, and the decline performance of random forest
classification method for scarce and extreme value [15], this
paper focuses on a few samples which are given greater
weight in each independent decision tree of random forests to
avoid unrepresentative training of the decision tree rules by
the amount of data being trained. The character of training
forces the classifier to pay more attention to the minority
class samples and improve the accuracy of the class with
less training data. Proposed model can solve the problem of
nonequilibrium data sets classification. Eventually research
gets the vote result on nonequilibrium samples with higher
accuracy.

When using bagging in a method of randomly selecting
sampling, the original training set of the minority class
is less and probability of selected nonequilibrium samples
is very low. This section proposes a method to optimize
random forest to put particular emphasis on nonequilibrium
samples. The basic idea of optimization algorithm is loading
some established characteristics of the tree in the process
of building a new tree. The core of the optimization algo-
rithm steps combines formal bagging strategy with boosting
strategy. First of all, according to the original algorithm for
random sampling, the resampling 𝑛 numbers of instances
(when the initial set is training, this algorithm keeps the
original bagging method), then, adjust the data according to
the principle of boosting. An algorithmic principle maintains
original effective randomization process and selection of the
random properties and improves the random forest adaptive
accuracy. Therefore, except for using the bagging to build
the first tree, an evaluation of the current forest added to
data induction; that is, it estimates the prediction error of
data to weight random selection of training examples. It is
necessary to improve the classification ability of the sample
and contribute to the subsequent decision tree. The bag
outside data are independent of generating sampled data.
With continuation of the underlying principle of random
forest (using OOB to estimate the error), an estimation
function only about the bag outside data is given in the
following definition, as the following formula:

𝜀 (𝑋, 𝑌) =

∑
ℎ𝑖∈ℎoob

𝐼 (ℎ (𝑋;Θ𝑖) = 𝑦1)

∑
ℎ𝑖∈ℎoob

𝐼 (ℎ (𝑋;Θ𝑖) = 𝑦𝑗)

, (8)

where 𝐼(⋅) is the indicator function. 𝑋 is given by the
independent variable; 𝑦 is an actual classification. ℎ(𝑋,Θ𝑖)
represents output of 𝑖th decision tree; ℎoob represents outside
the bag set of𝑋. Less the value of 𝜀(𝑋, 𝑌)means that themore
the current forest error classification tree exists, the more the
attention should be paid to the subsequent instance𝑋.There-
fore, the design of the weighting function should increase

with decrease of the corresponding 𝜀(𝑋, 𝑌). By analyzing a
typical example, this section gives a corresponding weight
distribution formula, as shown in the following formula:

𝑊(𝜀 (𝑋, 𝑌)) = 1 − 𝜀 (𝑋, 𝑌) . (9)

In order to clearly describe the random forest optimiza-
tion model (RFOM), the required explanation is as follows:
a given 𝑁 represents the individual number of training sets
(𝑋, 𝑌) in the individual number. 𝑀 is the category of the
classification characteristics. And 𝐾 represents the number
of decision trees in the “forest.”The optimization method for
traffic outlier data is as follows:

(1) The original samples are on the training set, given the
initial distribution𝐷1(𝑥𝑖, 𝑦𝑖) = 1/𝑁.

(2) Train the decision tree. Randomly sample with
replacement for the first random sample set 𝑇1,
and then train the decision tree based on sampling.
Unsampled samples form the first bag outside data.

(3) Add a weight value of 𝐷𝑘 to each instance of set
𝑇𝑘 (𝑘 = 2, 3, . . . , 𝑛).

(4) For every tree, randomly sample 𝑚 characteristics
(𝑚 < 𝑀). Calculate Gini coefficient of each sample
and the Gini coefficient of each division, such as
formula (10) and formula (11):

Gini (𝑇𝑘) = 1 −
𝑛

∑

𝑖=1

𝑃
2

𝑖
, (10)

where 𝑃𝑖 represents probability of class 𝐶𝑗 and 𝑛 the
sample set in 𝑇𝑘, and

Gini𝑠 (𝑇𝑘) =
󵄨󵄨󵄨󵄨𝑇𝑘1

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑇𝑘2

󵄨󵄨󵄨󵄨

Gini (𝑇𝑘1) +
󵄨󵄨󵄨󵄨𝑇𝑘2

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑇𝑘1

󵄨󵄨󵄨󵄨

Gini (𝑇𝑘2) . (11)

Then based on the principle of minimum Gini index,
select a variable to split. Finally through a recursive
form, train classification rules of a decision tree.
Maximize each tree without clipping.

(5) Merge decision trees into a forest.
(6) The normalized variable is 𝑍 = 0.
(7) For each training set 𝑥𝑖, if the number of the

bag outside the tree is not empty, 𝐷𝑘+1(𝑥𝑖, 𝑦𝑖) =

𝑊(𝜀(𝑥𝑖, 𝑦𝑖)), where 𝑊(𝜀(𝑥𝑖, 𝑦𝑖)) calculate as formula
(9); else the original weight remains the same, and
sum𝐷𝑘+1(𝑥𝑖, 𝑦𝑖) with normalized variable 𝑍.

(8) Consider𝐷𝑘+1(𝑥𝑖, 𝑦𝑖) = 𝐷𝑘+1(𝑥𝑖, 𝑦𝑖)/𝑍.
(9) If the current 𝑘 of a decision tree is less thanK, accord-

ing to the boosting, weight the new distribution of
random sampling 𝑇𝑘 with replacement. Unsampled
samples form the bag outside data and return to (3).

(10) After merging decision trees into forests, classify new
data with random forests. The vote of tree classifier
depends on classification results.
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Table 1: Properties Description of the Non-equilibrium Datasets.

Data Set Data Sample size Outlier size Normal sample Non-equilibrium rate

Jibei Station
Data Set

Induction loop data 1 4824 182 4642 3.921%
Magnetic data 1 6399 443 5956 7.452%
Monitoring data 1 10870 659 9619 6.851%

Jiaozhou Station
Data Set

Induction loop data 2 5475 201 5217 3.671%
Magnetic data 2 6001 342 5633 5.699%
Monitoring data 2 12801 779 11939 6.085%

Gaotang Station
Data Set

Induction loop data 3 5013 198 4762 3.949%
Magnetic data 3 6512 531 5972 8.154%
Monitoring data 3 11194 625 10478 5.583%

DT
Result n 

Testing set

Vote

Optimum results

DT
Result 1

DT
Result 2

Decision-making

Sampling 1

Randomization

Training set

Sampling 2

Sampling n

Forest

Sampling 3

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3: Schematic of random forest optimization model.

The optimization model for induced random trees shows
a schematic of the algorithm in Figure 3. The first tree
is trained in the traditional way, namely, in the process
of training decision tree with equal consideration to each
sample; then algorithmmodifies the weight of some samples,
namely, adding corresponding sample weight of correct clas-
sification. New training set is sampled under the condition
of second tree weighted; “forecast” of the first and second
tree is calculation to get the updated weights in the third
iteration. By analogy, the new weighted data set is trained.
The optimization process based on the efficiency of random
feature selection approach [16, 17] could retain characteristics
of the random forest algorithm and constant prior prob-
ability. According to the actual data need, induction from
samples of the minority class is improved to train a random
forest.

3. Experimental Validations

3.1. Data Collection. The data was collected by Shandong Hi-
Speed Group Co., Ltd., at the freeways in Shandong province,
China. The comparison result is obtained by using data sets
in monitoring stations data selected on November 13, 2014.

Data contains traffic parameters, such as flow, spot speed, and
occupancy rate from induction loops, magnetoresistive sen-
sors, and monitoring devices at Jibei, Jiaozhou, and Gaotang
monitoring stations. The properties of the nonequilibrium
datasets are described in Table 1.

3.2. Performance Indicator. The performance indexes of clas-
sification accuracy, detection rate, false positive rate, and
precision rate are used to evaluate performance of algorithm
classification. Classification accuracy, detection rate, false
positive rate, and precision rate are defined as follows:

Acc = CN + CG
CN + CG + EN + EG

,

DR =
CN

EG + CN
,

FPR =
EN

EN + CG
,

PR =
CN

EN + CN
,

(12)
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Figure 4: Diagram of OOB estimate with number of trees in forests.

where CN represents the number of detected outliers; EG
represents the number of undetected outliers; CG represents
the number of detected normal data; EN represents the
number of undetected normal data.

As described in previous section, nonequilibrium fea-
ture of traffic instance data is a significant problem to be
solved. Because it would increase, risk of classification error
increases. So 𝐹𝑚 and 𝐺𝑚 are often used to measure the
classification of this situation. 𝐹𝑚 index is defined, such as
formula (13). Parameter𝐺𝑚 is geometric average of two kinds
of classifying accuracy, such as formula (14):

𝐹𝑚 = (1 + 𝛽
2
) × DR × PR × (𝛽2 × DR + PR) , (13)

where 𝛽 represents proportionality coefficient of precision
rate and detection rate,

𝐺𝑚 =
√[

CN
(CN + EG)

] × [
CG

(EN + CG)
]. (14)

3.3. Comparison. In this section, we perform experiments
for comparison: the first comparison is used to choose the
optimal number of trees for random forest optimum model
performance; the second comparison compares performance
of decision tree, random forest, and random forest optimum
model; the last comparison compares ROC curve of random
forest and random forest optimum model. The experiments
are performed on Shandong freeways real data to investigate
the performance of random forest optimum model. Evalua-
tion indicators include classification accuracy, detection rate,
false positive rate, precision rate, and ROC.

Random forest optimum model (RFOM) uses OOB
error estimation as indexes to select appropriate number of
decision trees.Through repeated experiments about different
forests, we take average standard deviation of each tree in a
forest as OOB estimate of the forest.The experimental results
are shown in Figure 4. OOB estimated gradually reduce
with the increase of the trees. The classification accuracy of
algorithm increases with the increasing number of trees in
the forest and then keeps stabilization. When the number of
trees increases to over a certain degree, a limiting value of
OOB error appears; namely, classification accuracy of RFOM
algorithm tends to being stable.

Table 2: Comparison of Algorithm Performance.

Acc (%) DR (%) FPR (%) PR (%) 𝐹𝑚 𝐺𝑚

CART 83.37 76.26 0.90 86.13 0.9411 0.7687

RF 100 84.23 72.73 0.92 91.46 0.9105 0.7343

RFOM 60 90.89 89.76 0.89 92.55 0.9449 0.8227

RFOM 80 91.93 90.01 0.86 92.78 0.9528 0.8489

RFOM 100 91.81 90.17 0.90 93.90 0.9635 0.8333

In addition, the number of decision trees is related to
accuracy, detection rate, false positive rate, and precision
rate of RFOM algorithm. Figures 5(a)–5(d) show boxplots
of error rates. Horizontal lines inside the boxes are median
error rates. Figures 5(a)–5(d) are detection indexes, which are
different degrees of growth except for FPR.When the number
of trees is fewer than 60, Acc, DR, and PR grow relatively fast.
Through repeated experiments about forests of different trees,
we take average standard deviation of each tree in a forest
as OOB estimate of the forest. The experimental results are
shown in Figure 5. According to the two aspects, parameter
num is selected in [60, 100].

This experiment using different size of training set builds
RFOM, respectively. Algorithm performance of classifica-
tions is compared. The number of trees is from 60 to 100,
adding 20 every time. We increase the number of trees in
order to obtain a greater difference.The optimization random
forests with 60 trees, 80 trees, and 100 trees and tree opti-
mization random forest are named RFOM 60, RFOM 80,
and RFOM 100. In order to compare algorithm performance,
CART, RF, and RFOM are used to classify outlier for Jibei
Station Data Set, respectively. Six performance measures,
such as Acc, DR, FPR, PR, 𝐹𝑚, and 𝐺𝑚, are computed for
different situations, which are shown in Table 2.

It is observed that different numbers of trees yield
similar classification accuracy, and RFOM obtains a better
performance than CART or RF. The ACC of RFOM 80 is
91.93%, which is the best. The false positive rate of RFOM 80
is 0.86%, which is the best. As 𝐹𝑚 for RFOM is concerned
0.9635 of detection rate yield by RFOM 100 is the best one.
𝐺𝑚 of RFOM 80 is 0.8489, which is the best. RFOM 60
obtains performance lowest in RFOM algorithms. Among
five comparisons, RFOM 100 and RFOM 60 outperform the
other methods. In the Shandong freeways real data, when the
tree number is 80, it can obtain some improvement and save
time of calculation.

In addition, RFOM is superior to other algorithms,
as shown in Figure 6. It uses ROC curve to evaluate the
detection method. Comparison of the ROC curve is more
intuitive, which is as false positive rate for the horizontal axis,
with detection rate for the vertical axis.

Three data sets, including Jibei Station Data Set, Jiaozhou
StationData Set, andGaotang StationData Set, are computed
for performance measures, which are shown in Table 3. The
number of trees is 80 in the comparison with different
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Figure 5: Boxplots of testing of Jibei Station Data Set: (a) Acc; (b) DR; (c) FPR; (d) PR.

Table 3: Comparison of Algorithm Performance with Different
Data Set.

Data Set Acc
(%)

DR
(%)

FPR
(%)

PR
(%) Fm Gm

Jibei Station
Data Set 91.93 90.01 0.86 92.78 0.9528 0.8489

Jiaozhou Station
Data Set 89.86 87.25 0.82 93.27 0.9142 0.8417

Gaotang Station
Data Set 90.26 89.36 0.89 91.54 0.9394 0.8623

datasets. It is indicated that the algorithm performance is
similar in data sets based on different detection regions.

4. Conclusions

This paper proposes a random forest optimummodel of traf-
fic samples calibration using multisource features to separate
outliers from real-time data. The model optimizes the train-
ing of random forests and decision-making process using
bagging and boosting simultaneously based on nonequilib-
rium feature of outliers in the traffic data. According to the

actual data need, induction from samples of theminority class
is improved to train a random forest.

TheoptimizedRFmodel has the following characteristics:
(1) the advantage of the randomization process in the
original RF algorithm remained; (2) the boosting method
is introduced to strengthen the “induction” of the decision
trees. The experimental results show that the optimized
RF effectively separates outliers from traffic data by test of
Shandong freeways samples. By the algorithmic verification,
it compares index of classification accuracy, detection rate,
false positive rate, precision rate, and ROC, which evaluates
the detection method. Compared with the previous method
2, RFOM has advantageous properties such as high general-
ization performance and high accuracy. However, it can only
measure nonequilibrium sample set of traffic data. So there
are several restrictions concerning nonequilibrium feature
of detection data sets. Further research will focus on the
improvement of limitations.
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