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Spacecrafts with overactuated and redundant thrusters can work normally once some of them are out of work, which improves the
reliability of spacecraft in orbit. In this way, the desired command of controller needs to be dynamically allocated among thrusters.
Considering that uncertain factors may appear in forms of dynamics, installation errors, thrust deviations, or failures, this paper
proposes a robust control allocation under ellipsoidal uncertainty. This method uses the uncertainty ellipsoid set to describe the
uncertainty of the thrusters firstly and establish the thrust allocation robust reference model and then transforms it into a cone
optimization model which can be solved as an optimized problem. Finally, this paper adopts the interior-point method for solving
the optimization problem. In this way, difficulties of solving the problem caused by parameter uncertainties are avoided effectively.
Finally, we take satellite rendezvous and docking as simulation scenarios; it is verified that the cumulative distribution error and
maximum error can be reduced by more than 15% when the random error of control efficiency matrix is 5%–20%; also, precision
of thruster allocation is improved.

1. Introduction

Thrusters are used widely in spacecraft control. In order to
ensure the reliability of spacecraft orbiting, redundancy con-
figuration is often adopted in the existing design concept to
increase the redundancy of system, which can make its non-
uniqueness of the expected control command assigning
schemes given by control algorithm. Traditionally, the distri-
bution schedule is commonly formulated in advance accord-
ing to the layout of thrusters. In this way, problems can be
solved effectively and have advantages of distribution under
certain uncertainties. However, this method takes up a lot of
onboard storage space and is hard to allocate in real time
according to the satellite status. Therefore, it is necessary to
give a thrust allocation algorithm,which can not only save the
onboard resources but also improve the orbit precision of
spacecraft. Modern distribution schemes usually bring kinds
of optimization ideas, which make the thruster output in
conformity with the control instruction as far as possible [1].
For example, Bemporad et al. [2] and Tøndel et al. [3] put
forward multiple parametric quadratic programming prob-
lems, which describes the thruster allocation problem as

a piecewise linear function containing a target parameter;
Durhamgives a direct allocationmethod, solving the thruster
allocation problem in the form of a polyhedron [4, 5] and so
on.

In the process of practical work, the thruster installation
location, installation angle, and space environment distur-
bances all can lead to the changes of thruster distribution, and
thruster forces and torques acting on the satellite are deviated
from the expected value. If these uncertainties are ignored,
obvious force or torque distribution deviation will happen;
therefore, it is necessary to research robust thruster allocation
algorithm under thruster uncertainties.

When dealing with uncertainty problem, the existing
thruster allocation algorithm generally based on the premise
of actuators can accurately output hypothesis to improve the
robustness of the system through introducing adaptive con-
trol [6, 7].However, the installation error of the actuator is not
considered in this algorithm, and the error often has large
influence on control system. In anothermethod, the influence
of thruster error is considered, and errors are estimated
online by introducing the adaptive update when making the
thrust allocation [8]. Some works develop a robust control
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Figure 1: The principle diagram of thrust allocation.

allocation scheme for rigid spacecraft attitude stabilization in
the presence of actuator partial loss fault, actuator failure, and
actuator misalignment. These methods are observer-based
[9] or detection-based estimations [10]. Therefore, the force
or torque states in eachmoment need to bemeasured in these
methods, and the quantity of these states is not easy to get in
the practical application of satellite, which greatly limits the
application of this method. Some papers take parameter
uncertainty, output tracking, disturbance attenuation, and
fuel cost into consideration in the controller level. They
introduce a new Lyapunov approach, so the controller design
problem can be transferred into a convex optimization prob-
lem subject to linear matrix inequality (LMI) constraints [11].
Wan et al. proposes an observer-based robust guaranteed
cost control method for thrust-limited rendezvous in near-
circular orbits [12]. There are also some scholars proposing a
dynamic control allocation strategy based on the theory of
robust predictive control, in view of the actuator output
polyhedron uncertainty problems [13, 14].

However, these methods above do not model for uncer-
tainty, or the models need to be descripted more accurately
when dealing with the thruster uncertainty problem. A
method solving this problem from thruster allocation level is
lacking.

Uncertainty ellipsoid set method is a method of proba-
bility distribution, which describes the uncertainty set to a
determinate parameters model by restraining the uncertainty
boundary. When modeling the deviations such as thruster
installation deviation in this method, the boundary point
information is the only need. Even when the endpoint
information is unknown, it is can be designed according to
the experience. So this method is widely used in the uncer-
tainty description of the actuator of missile, aircraft, and
satellite. By introducing uncertainty sets in the thruster allo-
cation problem, the uncertainty distribution problems can be
equivalent to a determinacy distribution model, which can
be solved using a mathematical optimization algorithm. The
uncertainty ellipsoid set provides an effective way for thruster
allocation uncertainty problem, because it only needs the
uncertainty boundary information and is easy to build.

The method proposed in this paper is to solve the control
allocation problems under controlmatrix uncertainties in the
control allocation level, rather than control law level. In this
way, control law does not need to change or switch in order

to adjust for uncertainties and the entire control schedule can
be simplified.

In this paper, the thrust allocation problem with uncer-
tainty controls effectivenessmatrix is studied (Figure 1). First,
we analyze the controls effectiveness matrix deviation caused
by the factors such as thruster installation and take uncer-
tainty ellipsoid set to express this control efficiency matrix
uncertainty.Thenwe transform the thruster allocationmodel
into a model which can be solved in math based on the idea
of transforming the uncertain parameters optimization prob-
lem into certain parameters optimization problem and solve
it by the interior-point method. Finally, we validate the
feasibility of the algorithm.

2. Problem Description

Thrust allocation problem is a control technology of dynam-
ically allocating the expected control force among the redun-
dancy configuration thrusters to achieve the goal of optimal
allocation and improve the control performance of the sys-
tem.The core of this problem is a control allocation problem.
This paper first gives the mathematical model of the thrust
allocation and then preliminarily describes the uncertainty of
the controls effectivenessmatrix in thismodel. Finally, it gives
a preliminarymodel of thrust allocation problem considering
the uncertainty.

The characteristics of the thruster is that the thrust it
produced can only be in one direction, so the attitude control
torque can only be produced in one direction, too. If we need
the attitude control torque in all directions,multiple thrusters
should be combined. There are 𝑛 thrusters installed on the
spacecraft. In the body fixed coordinate system 𝑂𝑥𝑏𝑦𝑏𝑧𝑏,
assuming that the principal axes are coinciding with the three
inertial principal axes of satellite, the position vector of the 𝑖th
thruster relative to satellite centroid is d𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)e = d𝑇

𝑖
e,

where 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are the components of thrusters in three
axes, respectively, e = [e𝑥, e𝑦, e𝑧]

𝑇 express the three basis
vectors of body coordinate system, and the unit thrust vector
matrix produced by the 𝑖th thruster is e𝑖 = (cos𝛼𝑖 cos𝛽𝑖,
cos𝛼𝑖 sin𝛽𝑖, sin𝛼𝑖)e, see Figure 2.

Assuming a single thruster can provide continuous
thrust, for fixed thruster, it can be equivalent by means
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Figure 2: The layout diagram of the 𝑖th thruster.

of pulse width modulation. The thrust vector of the 𝑖th
thruster is

F𝑖 = 𝐹𝑖e𝑖, (1)

where

0 ≤ 𝐹𝑖 ≤ 𝐹𝑖max. (2)

𝐹𝑖max is the maximum thrust which can be produced if the
thruster is switched on during an on/off cycle.

The resultant force of all the thrusts produced by thrusters
acting on the satellite is

U =

𝑛

∑

𝑖=1

F𝑖 =
𝑛

∑

𝑖=1

𝐹𝑖e𝑖. (3)

Let the number of thrusters be 𝑛; define the thrust vector
of thruster as

F = [𝐹1, 𝐹2, . . . , 𝐹𝑛]
𝑇
. (4)

The resultant force of thrust can be written as

U = BF, (5)

where

B = [e1, . . . , e𝑛] = [b1, . . . , b𝑛] . (6)

Considering the torqueT acting on the satellite generated
from the thrust, the torque produced by one thruster is

T𝑖 = d𝑖 × F𝑖 = (d𝑖 × e𝑖) 𝐹𝑖. (7)

So the resultant torque acting on the satellite is

T =

𝑛

∑

𝑖=1

T𝑖 =
𝑛

∑

𝑖=1

(d𝑖 × e𝑖) 𝐹𝑖, (8)

which is written as

T = AF, (9)

where

A = [d1 × e1, . . . , d𝑖 × e𝑖, . . . , d𝑛 × e𝑛] = [a1, . . . , a𝑛] .
(10)

Noticing that the elements in A and B have the relation of

a𝑇
𝑖
b𝑖 = 0. (11)

Then, the thruster control allocation model gets

opt. 𝑓 (F)

s.t. [

U
T] = [

B
A] F

0 ≤ F ≤ Fmax.

(12)

If we only consider the attitude control, the model could
be written as

opt. 𝑓 (F)

s.t. T = AF

0 ≤ F ≤ Fmax.

(13)

Defining A as control efficiency matrix and seeing from the
derivation process of themodel, thematrixA is closely related
to the thruster position and angle. In the actual process of
satellite on-orbit operation, there are many factors leading to
the uncertainty of the controls effectiveness matrix, such as
the Sun’s gravity and Earth’s gravity gradient on the impact of
satellite center ofmass, and the installation angle and position
errors appeared in the process of installing the thrusters.
Defining A as nominal control efficiency matrix, ΔA(𝑡) as
deviation of the controls effectiveness matrix, and Aact as
actual control efficiency matrix, we have

Aact = ΔA + A. (14)

The actual torque acting on the satellite is

Tact = AactF. (15)
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The deviation of thrust distribution is

Tact − T = AactF − AF = ΔAF. (16)

For solving the uncertainty problem of control efficiency
matrix, there is no difference between the model of attitude-
orbit control and the model of attitude control. Therefore,
for simplification, the derivations below are all based on the
model of attitude control.

Taking minimum error as index, the model of control
effectiveness uncertainty matrix of satellite attitude control
can be written as

min ‖F‖

s.t. T = AactF

0 ≤ F ≤ Fmax.

(17)

Noticing the uncertain parameters in this model makes it
difficult to be solved. Without considering the condition of
model uncertainty, pseudoinverse method is generally used
[15].

3. Robust Control Allocation Algorithm

For the uncertainty problem of control efficiency matrix in
the process of satellite thruster allocation, a robust control
allocation algorithm is given in this section. This method
models the uncertain parameters in the model and then
transforms the uncertain parameters model into a thruster
allocation model, which can be solved in mathematical
method. The specific process is as follows:

(1) describe the uncertainty of the control effectiveness
matrix using uncertainty ellipsoid set;

(2) model the deviation of control efficiency matrix as
uncertainty ellipsoid is set to get thruster allocation
models with deterministic parameters;

(3) transform the thruster allocation model reasonably;
in order to solve it, use mathematical method;

(4) give the “satisfied solution” of model by adopting
the mathematical method, so as to solve the thrust
allocation problem.

3.1. Description of the Control EffectivenessMatrix Uncertainty
UsingUncertainty Ellipsoid Set. First, we give the definition of
ellipsoid and uncertainty ellipsoidal set.

Definition 1 (the definition of ellipsoid). Assuming the R𝑘-
dimensional Euclidean geometry space, there are matrix A ∈

R𝑚×𝑛 and vector x = [𝑥1, . . . , 𝑥𝑛]
𝑇, where 𝑚 ≤ 𝑘 and 𝑛 ≤ 𝑘.

Then, we call the set which satisfies the equation

𝑈 = {𝑓 (x) ∈ R
𝑘
| ‖Ax‖2 ≤ 1} (18)

as the ellipsoid determined by matrix A and function 𝑓(⋅),
where 𝑓(x) is the projection function of x𝑛 → x𝑘. There are
three kinds of situations specifically as follows:

(1) 𝑚 = 𝑛 = 𝑘, and the matrix A is nonsingular; in this
situation, the ellipsoid determined by matrix A is a
normal ellipsoid in R𝑘-dimensional space;

(2) 𝑚 = 𝑛 < 𝑘, and the matrix A is nonsingular; in this
situation, the ellipsoid determined by matrix A is in
R𝑘-dimensional space; the vector x has no definition
in (𝑘 − 𝑛)-dimensional space, so it can be imaged that
the projection of set 𝑈 is a “flat” ellipsoid in the R𝑘-
dimensional space;

(3) 𝑚 ̸= 𝑛, and the matrix A is singular; in this situation,
the vector x is radially unbounded in (𝑛 − 𝑚)-
dimensional space, the projection of set 𝑈 is an
“elliptical cylinder” in the R𝑘-dimensional space.

Definition 2 (the definition of uncertainty ellipsoidal set). If
the following conditions are satisfied, we call uncertainty set
Ξ as uncertainty ellipsoid set:

(1) Ξ is the intersection of limited multiple ellipsoid;
(2) Ξ is bounded;
(3) there are matrix A and function 𝑓(⋅), which makes

Ξ = {𝑓(x) ∈ R𝑘 | ‖Ax‖2 ≤ 1}.

The advantages of taking uncertainty ellipsoid set model
as a quantitative description of uncertainty are as follows:

(1) from the view ofmathematics, the ellipsoid has simple
parametric expressions and is easy to implement;

(2) for every random uncertainty problem with proba-
bility distribution, a suitable uncertainty ellipsoid set
could be found to describe it;

(3) the intersection of uncertainty ellipsoid set can
approximate more complex sets of uncertainty;

(4) the optimization model with uncertain set is easier
to be analyzed and more convenient for computer
processing.

As mentioned above, thruster allocation problem is to
give a reasonable solution of the allocation problem satisfying
the thruster limit constraints. So the core of the proposed
robust optimization method is solving the robust reference
model for the parameter combinations in each of the uncer-
tain sets; by satisfying all the constraint conditions, the
“appropriate” solution is obtained.That is to say, we pay more
attention to the performance under the state of large works,
rather than the performance for once.

3.2. The Robust Model Reference. The robust optimization
method for solving the problems of controls effectiveness
matrix uncertainty, whose core idea is to transform the
original control allocation model into a convex optimization
problem which can be solved by mathematical method. The
key of this problem is to establish the corresponding alter-
native model, called robust reference model, and then find
the optimal solution using the related theory of the optimiza-
tion [16].
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In view of the practical problems, how to find the robust
reference model is the key to solve the problem of control
allocation with uncertain parameters. Obviously, robust ref-
erencemodel is closely related to the original problemmodel.
So we should first make sure the original problem of control
allocation model determines which decision variables leads
to uncertainty and then determine the range of variation of
the uncertainty variables and give a full description, so as
to determine the objective function, constraint function of
control allocation model, and variation range of uncertain
variables. Ben-Tal andNemirovski studied uncertaintymodel
under the linear and nonlinear model and proved that the
robust reference model of the original control allocation
problem could be obtained by mathematical derivation [17].

The establishment process of robust reference model is as
follows:

(1) analyze the original problem and determine the
objective function constraint conditions and opti-
mization variables of the problem;

(2) determine the uncertain variables and the variation
range of them;

(3) derive the equivalent model to eliminate the problem
of the model which cannot be solved and brought by
the uncertainty variable.

According to the control allocation model above, estab-
lish corresponding robust reference model and analyze it.
Take the fuel optimal as the optimization goal, and, consid-
ering the uncertainty of the controls effectiveness matrix, the
robust reference model can be written as

min ‖F‖

s.t. AactF = T, ∀a𝑖 ∈ Ξ
(1)

𝑖
, ∀𝑖

0 ≤ F ≤ Fmax,

(19)

where a𝑖 is the 𝑖th column of the uncertain matrix A and
belongs to the uncertain set Ξ(1)

𝑖
.

3.3. The Cone Optimization Model for Robust Thrust Dis-
tribution. In view of the uncertainty of control efficiency
matrix in the thruster allocation, make the following three
assumptions:

(1) control efficiency matrix A is uncertain, but its vari-
able elements 𝑎𝑖𝑗 are random in the uncertainty set
and change independently of each other;

(2) the random variables 𝑎𝑖𝑗 have normal value, that is,
the ideal value;

(3) the matrix parameters obey normal distribution; the
uncertain sets is a standard ellipsoid.

Theorem 3. Robust control allocation problem with uncer-
tainty ellipsoid is as follows:

min ‖x‖

s.t. Ax ≥ b, ∀a𝑖 ∈ Ξ𝑖, ∀𝑖

0 ≤ x ≤ xmax.

(20)

If it is satisfied,
(1) matrix 𝐴 has uncertainty, but the values in each

column are all in the scope of ellipsoid:

Ξ𝑖 = {a𝑖 | a𝑖 = a𝑖 + Θ𝑖k𝑖,
󵄩
󵄩
󵄩
󵄩
k𝑖
󵄩
󵄩
󵄩
󵄩
≤ 𝜌} , (21)

where 𝑖 = 1, . . . , 𝑛, a𝑖 is the normal value and Θ𝑖 is
symmetric positive definite matrix;

(2) The uncertainties of column a𝑖 are independent of each
other; the model above is equivalent to the following
cone optimization problem:

min ‖x‖

s.t. a𝑇
𝑖
x − 𝜌 󵄩󵄩󵄩

󵄩
Θ𝑖x

󵄩
󵄩
󵄩
󵄩
≥ b𝑖, ∀𝑖 = 1, . . . , 𝑛

0 ≤ x ≤ xmax.

(22)

Proof. The robust control allocation problem with ellipsoid
uncertainty can be rewritten as

min ‖x‖

s.t. a𝑇
𝑖
x + x𝑇Θ𝑖k𝑖 ≥ b𝑖

Ω = {𝑘𝑖 |
󵄩
󵄩
󵄩
󵄩
𝑘𝑖

󵄩
󵄩
󵄩
󵄩
≤ 𝜌}

0 ≤ x ≤ xmax

∀𝑖 = 1, . . . , 𝑛.

(23)

Further, it can be rewritten into
min ‖x‖

s.t. a𝑇
𝑖
x − b𝑖 +min

k𝑖∈Ω
x𝑇Θ𝑖k𝑖 ≥ 0

Ω = {𝑘𝑖 |
󵄩
󵄩
󵄩
󵄩
𝑘𝑖

󵄩
󵄩
󵄩
󵄩
≤ 𝜌}

0 ≤ x ≤ xmax

∀𝑖 = 1, . . . , 𝑛.

(24)

As Θ𝑖 is positive definite and x ≥ 0, equation

min
k𝑖∈Ω

x𝑇Θ𝑖k𝑖 = −𝜌
󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑇

𝑖
x󵄩󵄩󵄩󵄩
󵄩 (25)

is set up; substituting it into (24) yields

min ‖x‖

s.t. a𝑇
𝑖
x − b𝑖 − 𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑇

𝑖
x󵄩󵄩󵄩󵄩
󵄩
≤ 0

0 ≤ x ≤ xmax

∀𝑖 = 1, . . . , 𝑛.

(26)

According to the attitude control thrust allocation model
in (19), the model can be rewritten as

min ‖F‖

s.t. [

Aact
−Aact

] F ≥ [ T
−T]

0 ≤ x ≤ xmax.

(27)
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Let

C = [

Aact
−Aact

] , D = [

T
−T] ; (28)

thereupon

min ‖F‖

s.t. CF ≥ D

0 ≤ F ≤ Fmax.

(29)

The model has the form of Theorem 3 and can be converted
into cone quadratic optimization problem

min ‖F‖

s.t. 𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑇

𝑖
F󵄩󵄩󵄩󵄩
󵄩
≥ c𝑇
𝑖
F − d𝑖

0 ≤ F ≤ Fmax

∀𝑖 = 1, . . . , 2𝑛.

(30)

Through the transformation above, the robust reference
model can be transformed to a quadratic cone optimization
problem, and then the thruster allocation problem with
uncertain parameters can be transformed into a quadratic
cone optimization problem with certain parameters, and it
can be solved by mathematical methods.

3.4. The Solution Algorithm Based on Interior-Point Method.
We transform the control allocation problem with uncertain
controls effectiveness matrix into a quadratic cone program-
ming problem; considering the need of calculation efficiency,
the numerical method based on interior-point method can
be used; the interior-point method can refer to reference [18].
Here is the simple idea, and the corresponding solving
process is given.

In this paper, the European norm is 2-norm by default; if
we write the inequality constraints in model (30) as

𝜌

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑇

𝑖
F (𝑡)󵄩󵄩󵄩󵄩

󵄩
≤ c𝑇
𝑖
F (𝑡 − Δ𝑇) − d𝑖, (31)

where Δ𝑇 is the sampling period, so the robust allocation
problem of thrust is actually the following mathematical
problem:

min ‖Ax − b‖

‖x‖ ≤ 𝜌0.
(32)

The dual problem of it is

‖Ax − b‖ ≤ 𝜇,

‖x‖ = min .
(33)

Theorem 4. x is the solution of (31), if and only if 𝜆 > 0; let

A𝑇 (Ax − b) = −𝜆x (34a)

𝜑 = x𝑇x − 𝜌2
0
= 0. (34b)

The solving process adopts cross iteration method for (34a)
and (34b), that is, solving x for (34a) according to the given 𝜆,
and then adjusts the value of 𝜆 according to the sign of 𝜑 until
the obtained 𝜆0 and x0 make (33) an equation. The key of
this method is to simplify A to a double diagonal matrix by
Householder transformation before solving.

Let e1 = (1, 0, . . . , 0)
𝑇, for any vector a = (𝛼1, . . . , 𝛼𝑛)

𝑇
∈

R𝑛; there is the Householder transformation

V = I − uu𝑇

𝜋

, 𝜋 =

1

2

u𝑇u, (35)

making Va = −𝜎e1, where u = a + 𝜎e1 and 𝜎 = ‖a‖ sign(𝛼1),
and if a = 0, there is V = I.

Make

A = [a1, a2, . . . , a𝑛] . (36)

LetQ1 be the Householder transformation taking a1 in place
of a; then we have

B1 = Q1A =

[

[

[

[

[

𝛿1 𝛽12 ⋅ ⋅ ⋅ 𝛽1𝑛

0 𝛽22 ⋅ ⋅ ⋅ 𝛽2𝑛

...
...

...
0 𝛽𝑚1 ⋅ ⋅ ⋅ 𝛽𝑚𝑛

]

]

]

]

]

, (37)

where 𝛿1 = ‖a1‖ sign(𝛼11); let b1 = (𝛽12, . . . , 𝛽1𝑛)
𝑇; then

U󸀠 = I𝑛−1 −
u󸀠u󸀠𝑇

𝜋
󸀠
, 𝜋
󸀠
=

1

2

u󸀠𝑇u󸀠, (38)

where u󸀠 = b1 + ‖b1‖(sign𝛽12)e1; it is obvious that

b𝑇
1
U󸀠 = (𝜀1, 0, . . . , 0) . (39)

While 𝜀1 = ‖b1‖ sign𝛽12, thus let

U1 = (
1 0

0 U󸀠) ; (40)

there is

A1 = B1U1 =

[

[

[

[

[

[

[

[

[

[

[

𝛿1 𝜀1 0 ⋅ ⋅ ⋅ 0

0 𝛽
󸀠

22
𝛽
󸀠

23
⋅ ⋅ ⋅ 𝛽

󸀠

2𝑛

0 𝛽
󸀠

32
𝛽
󸀠

33
⋅ ⋅ ⋅ 𝛽

󸀠

3𝑛

...
...

...
...

0 𝛽
󸀠

𝑚2
𝛽
󸀠

𝑚2
⋅ ⋅ ⋅ 𝛽
󸀠

𝑚𝑛

]

]

]

]

]

]

]

]

]

]

]

. (41)

It is easy to be seen that repeating the process above yields

A1 = A

A2 = Q1A1U1
...

A𝑛−1 = Q𝑛−2A𝑛−2U𝑛−2
A𝑛 = Q𝑛−1A𝑛−1U𝑛−1

A𝑛+1 = Q𝑛A𝑛.

(42)
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A could be transformed into double diagonalmatrixA𝑛+1, the
Q𝑖,U𝑖 here are all Householder transformation.

For overactuated spacecraft, the control efficiency matrix
A𝑚×𝑛 satisfies 𝑚 < 𝑛 (for underactuated spacecraft, the rel-
ationship is 𝑚 > 𝑛); there are 2𝑚 − 1 Householder transfor-
mationsQ1, . . . ,Q𝑚−1,U1 ⋅ ⋅ ⋅U𝑚; make

Q𝑚−1 ⋅ ⋅ ⋅Q1AU1 ⋅ ⋅ ⋅U𝑚 = (LO) , (43)

where

(LO) =

[

[

[

[

[

[

[

[

𝛿1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝜀1 𝛿2 0 ⋅ ⋅ ⋅ 0

0 𝜀2 d d
...

... d d 𝛿𝑚−1 0

0 ⋅ ⋅ ⋅ 0 𝜀𝑚−1 𝛿𝑚

]

]

]

]

]

]

]

]

. (44)

By carrying out the above process, the problem to be
solved could be converted into

[

[

[

[

[

[

[

[

[

𝛿1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝜀1 𝛿2 0 ⋅ ⋅ ⋅ 0

0 𝜀2 d d
...

... d d 𝛿𝑚−1 0

0 ⋅ ⋅ ⋅ 0 𝜀𝑚−1 𝛿𝑚

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

𝜉1

𝜉2

𝜉3

...
𝜉𝑛

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

𝜑1

𝜑2

𝜑3

...
𝜑𝑛

]

]

]

]

]

]

]

]

]

. (45)

Resolve A as A = LU, where

L =

[

[

[

[

[

[

[

[

𝛽1 0 ⋅ ⋅ ⋅ 0

𝜀1 𝛽2

0 𝜀2 d d
...

... d d 𝛽𝑚−1 0

0 ⋅ ⋅ ⋅ 0 𝜀𝑚−1 𝛽𝑚

]

]

]

]

]

]

]

]

,

U =

[

[

[

[

[

[

[

[

1 𝛾1 0 ⋅ ⋅ ⋅ 0

0 1 d
...

d d 0

... d 1 𝛾𝑛−1

0 ⋅ ⋅ ⋅ 0 1

]

]

]

]

]

]

]

]

.

(46)

And then solve the equations

Lz = f ,
Ux = z.

(47)

So the problem can be solved.
The whole idea of solving is as follows:

(1) giving the initial value of 𝜆0, which satisfies,
(2) writing the matrix A as the component form of

column vector and finding the homologous corre-
sponding transformation matrix by (35)–(40),

(3) transformingA into a double diagonal matrix by (41),
(4) making LU decomposition for A by (45), transform-

ing it into the form of (46), and solving x in (34a),
(5) substituting x into (34b) and judging the sign of 𝜑,
(6) changing the value of 𝜆 and repeating the process

above until 𝜑 = 0 to find the solution x.

4. Simulation and Analysis

The given robust control allocation algorithm is simulated in
this section. The thruster configuration is as shown in the
Figure 3 (numbers 1–16 are thrusters).

The control efficiency matrix of the thruster attitude
control is

𝐴1 =
[

[

[

0 0 0 0 0 0 0 0 −0.16 0.16 0 0 0.16 −0.16 0 0

0 0 0 0 0 0 0 0 0 0 −0.16 0.16 0 0 0.16 −0.16

0.16 −0.16 0.16 −0.16 −0.16 0.16 −0.16 0.16 0 0 0 0 0 0 0 0

]

]

]

. (48)

Taking the attitude control of tracking satellite in last
period of rendezvous and docking process as the background,
the rotational inertia of minisatellite is I = [0.1500; 00.150;

000.15] kg⋅m2; the initial attitude quaternion is q(𝑡0) =

[0.7035 − 0.4708 0.3430 0.4073]
𝑇, corresponding to the ini-

tial attitude angles 𝜑0 = 30
∘, 𝜃0 = 60

∘, and 𝜓0 = −50
∘; the ini-

tial attitude angular velocity is𝜔𝑏0 = [0 0 0]
𝑇; PD control law

is adopted in the controller; the parameters of control law are
𝑘𝑝 = 0.32 and 𝑘𝑑 = 0.8.

Figure 4 shows the curves of attitude quaternion and
attitude angular velocity by adopting the robust thrust allo-
cation strategy. It can be seen that the angular velocity of
tracking satellite relative to main satellite tends to 0, and
the direction of it is adjusted; the rendezvous and docking
mission can be fulfilled. It is proved that this robust thrust
allocation algorithm can adjust the initial state deviation
into the expectation state, which proves the feasibility of this
algorithm.
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Figure 3: TheThrusters of Micro-SIM.
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Figure 4: The curves of attitude quaternion and attitude angular velocity.

Figure 5 and Table 1 show the results of 10 random simu-
lations when the control efficiency matrix is with the uncer-
tainty of 20%. It can be seen that the robust thrust allocation
method could fulfill the mission of attitude control. The
changing curves of error are smooth and steady, the cumu-
lative deviation of torque in three axes directions decreases
by about 20%, and the maximum distribution deviation
decreases by about 26%, which proves the effectiveness of this
method.

Figure 6 and Table 2 show the results of 10 random simu-
lations when the control efficiency matrix is with the uncer-
tainty of 10%. It can be seen that the robust thrust allocation
method is effective as well. The range ability in error of this
robust allocation algorithm decreases and distributes more
uniform in both sides of 0-line. The result shows that the
cumulative deviation of torque decreases by about 40.7%,

and the maximum distribution deviation decreases by about
16.3%.

Figure 7 and Table 3 show the results of 10 random simu-
lations when the control efficiency matrix is with the uncer-
tainty of 5%. The result shows that the cumulative deviation
of torque decreases by about 36.5%, and the maximum
distribution deviation decreases by about 19.9%. The above
simulation shows that this proposed robust allocation algo-
rithm is correct and effective.

5. Conclusion

The thrust allocation problem of overactuated spacecraft is
researched in this paper, and the deviation of the controls
effectiveness matrix is analyzed. By the description of ellip-
soid uncertainty, the uncertain model parameters problem
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Figure 5: The curves of torque distribution deviation when the control efficiency matrix is with the uncertainty of 20%.

Table 1: The simulation result when the control efficiency matrix is with the uncertainty of 20%.

The cumulative error of torque (N/m) The maximum distribution deviation of torque (N/m)

𝑥-axis 𝑦-axis 𝑧-axis 𝑥-axis 𝑦-axis 𝑧-axis

Pseudoinverse thruster allocation 0.3245 0.2364 0.2807 0.0181 0.0132 0.0156

Robust thruster allocation 0.2662 0.1936 0.2191 0.0116 0.0085 0.0146
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Figure 6: The curves of torque distribution deviation when the control efficiency matrix is with the uncertainty of 10%.

Table 2: The simulation result when the control efficiency matrix is with the uncertainty of 10%.

The cumulative error of torque (N/m) The maximum distribution deviation of torque (N/m)

𝑥-axis 𝑦-axis 𝑧-axis 𝑥-axis 𝑦-axis 𝑧-axis

Pseudoinverse thruster allocation 0.2568 0.1871 0.2222 0.0140 0.0102 0.0121

Robust thruster allocation 0.1185 0.0864 0.1901 0.0109 0.0079 0.0116
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Figure 7: The curves of torque distribution deviation when the control efficiency matrix is with the uncertainty of 5%.

Table 3: The simulation result when the control efficiency matrix is with the uncertainty of 5%.

The cumulative error of torque (N/m) The maximum distribution deviation of torque (N/m)

𝑥-axis 𝑦-axis 𝑥-axis 𝑦-axis 𝑥-axis 𝑦-axis

Pseudoinverse thruster allocation 0.1077 0.0784 0.0931 0.0056 0.0041 0.0049

Robust thruster allocation 0.0583 0.0425 0.0765 0.0041 0.0030 0.0046
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is transformed into a quadratic cone optimization problem
and is solved by interior-point method. Finally, the feasibility
and effectiveness of the robust thrust allocation algorithm is
proved by three kinds of deviation. We can get the following
conclusions:

(1) the uncertainty problem of control efficiency matrix
can be effectively described using uncertainty ellip-
soid set; at the same time, the model is more con-
ducive to further derivation and simplification;

(2) by transforming the robust reference model to sec-
ondary cone optimization model, the problem of
uncertainty model can be solved effectively, and the
mathematical optimization method can be used con-
veniently for solving;

(3) compared with the traditional algorithm, multiple
simulations show that the cumulative deviation of
torque by using this robust thrust allocation algo-
rithmdecreases up to 20%, and themaximumerror of
the distribution can be reduced more than 15%, when
the control efficiency matrix has uncertainty of 5%
and 20%. The control precision of thruster allocation
link is improved.
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