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A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic
method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and
effective shaping of the chains of infinitelymany closed-loop poles. Uncertainty of plant delays of a certain structure is considered in
a sense of a robust simultaneous stabilization. Robust performance is achieved usingmixed sensitivity design, which is incorporated
into the addressed control law.

1. Introduction

Time-delay systems are an important and well established
topic inmodern control theory [1–3]. Its diverse applications,
for instance, in dynamics of fluids, internal combustion,
heating systems, regenerative chatter in metal cutting, and
networked control systems, led to the development of various
complex approaches to system and controller synthesis [4–8].
Infinite dimensional spectrum of such systems might cause
difficulties in appropriate spectrum assignment using stan-
dard control laws, which consequently means that stabiliza-
tion cannot be always achieved. Due to the complexity of the
spectrum, much interest has been shown in the development
of control laws based on the computation of rightmost poles,
since such algorithms ensure results with high precision
[9–12]. In principle, with a limited number of controller
parameters only a few poles can be placed to desired positions
in the complex plane [13]. As it has been shown in [8], some
controller parameters might be used to directly assign a few
dominant poles to an arbitrary position in the complex plane.
The remaining controller parameters are then used to shift the
chains of infinitely many system poles as far to the left of the
dominant poles as possible. Another pole-placement-based

technique has been introduced in [14] for retarded systems
and in [15] for neutral systems. The method is based on
continuous modifications applied to controller parameters
in order to shift the rightmost or unstable poles to the left
half plane in a quasicontinuous way, while monitoring other
eigenvalues. A direct optimization approach [16, 17], used to
minimize the spectral abscissa, has been introduced in [18].

Alternative eigenvalue based control laws might be con-
sidered, which incorporate different algebraic approaches
[19]. General SISO time-delay plants treated in the form of
a transfer function and its admissible coprime-inner/outer
factorizations, derived by using numerical algorithms for
computation of closed-loop poles, were discussed in [20]. In
addition, an optimalH

∞
controller was designed.

In this paper, a control law for retarded time-delay sys-
tems is considered, which results in a controller in the form
of a transfer function as a quotient of quasipolynomials. An
individual quasipolynomial in the numerator and the denom-
inator consists of several delayed terms that result in a closed-
loop quasipolynomial of a certain structure of sequentially
solvable polynomial Diophantine equations. The structure of
the controller is examined and derived in the case of infinite
solutions of individual polynomial equations. As has been
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shown in [21] only a few such equations can be solved for
an arbitrary polynomial, which suggests that the remainder
of the closed-loop spectrum cannot be assigned accordingly.
In [21], the unsuitable dynamics of the remaining spectrum
has been algebraically eliminated by the specific structure
imposed on the controller, which allows finite spectrum
assignment. In our presented work, elimination of any part
of the spectrum is not admissible and therefore we tackle the
problem of infinite closed-loop spectrum assignment, which
is indispensable especially in the case of uncertain delays.
As soon as delays are perturbed, any delay compensation
technique based on preestimated delays does not eliminate
delayed terms out of the closed-loop completely, which
results in an infinite closed-loop spectrum. We demonstrate
that certain estimation technique of a predetermined region
of poles [22] might be used in order to shape infinite
closed-loop spectrumaswell as infinite closed-loop spectrum
with uncertain delays. We present an algebraic method for
infinite closed-loop spectrum assignment, which reduces
the number of parameters in the search routine for the
appropriate stabile closed-loop spectrum. The algorithm for
the search routine of the appropriately shaped infinite closed-
loop spectrum is presented. It is shown that mixed sensitivity
design might be incorporated into the addressed control
law regarding uncertain time delays to obtain an optimal
controller.

The paper is organized as follows. After some preliminar-
ies, we derive different controller parameterizations concern-
ing different types of free polynomials. Then, we propose an
algebraic method for closed-loop spectrum assignment and
present a spectrum shaping technique, where we show spec-
trum shapingwith uncertain delays as well. After that, we give
algorithm of a search routine for appropriate stabile closed-
loop spectrum and present the mixed sensitivity design
for robust controller synthesis. Finally, we demonstrate our
results on an example and give final remarks in conclusions.

2. Preliminaries

Time-delay system of a retarded type, with internal or state
and output discrete commensurate delays, is defined as in
[22, 23]:

�̇� (𝑡) = 𝐴

0
𝑥 (𝑡) +

𝑞

∑
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0
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Definition 1. Let 𝑄
𝑖
(𝑠) for 𝑖 ∈ Z
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0
be polynomials with

real coefficients and 𝑑
𝑖
are nonnegative real numbers in an

ascending order. A function of the form
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(𝑠) 𝑒

−𝑑𝑖𝑠 (3)
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0
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1
.

System (1) can be represented with a SISO transfer
function [19, 21]:
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where 𝐴(𝑠) and 𝐵(𝑠) are retarded quasipolynomials:
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−𝑖𝜏𝑠 are alternative polynomials
in variable 𝑒−𝜏𝑠 and represent an equivalent description of
quasipolynomials as Definition 1.

Considering control law
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with 𝑟(𝑡) being any given bounded reference signal, 𝑃(𝑠) and
𝑅(𝑠) are retarded quasipolynomials of the form (3) and the
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Assumption 1. We consider controller structure (8) with the
same number of delays in the numerator and the denom-
inator 𝑘

ℎ
= 𝑙

ℎ
= V and deg𝑅

0
= deg𝑃

0
> deg𝑅

𝑖
= deg𝑃

𝑖
,

𝑖 ∈ NV
1
, with 𝑅

0
(𝑠) being monic.

Assumption 2. Quasipolynomials 𝐴(𝑠) and 𝐵(𝑠) as well
as polynomials 𝐴

0
(𝑠) and 𝐵

0
(𝑠) have no common zeroes.

Complex Laplace argument (𝑠) is hereafter omitted for clarity.
Controller (8) results in closed-loop characteristic quasi-

polynomial of the form
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(9)

where 𝑞 = max(𝑛
ℎ
, 𝑚

ℎ
) and V is as Assumption 1.

Regarding the closed-loop structure (9), which might
be represented as a sum of several polynomial Diophantine
equations with specific delay terms 𝑒−𝑖𝜏𝑠, the following result
can be stated.

Proposition 2. Let 𝐴, 𝐵, 𝑃, and 𝑅 be quasipolynomials given
by Definition 1 and Assumptions 1 and 2 hold. Then individual
polynomial Diophantine equations in (9) for 𝑖 ∈ ZV

0
,

𝐴
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𝑅
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+ 𝐵
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have solutions for arbitrary 𝐷
𝑖
, where the equation for 𝑖 = 0

has always infinite solutions (deg𝑅
0
> deg𝐴

0
− 1) and

equations for 𝑖 ∈ NV
1
have a unique (deg𝑅

𝑖
= deg𝐴

0
− 1) or

infinite solutions (deg𝑅
𝑖
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0
− 1), if the following is true:
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𝑖
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0
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𝑗
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𝑗
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1
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1
, and𝑑
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0
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𝑖
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0
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𝑖
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0
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1
.

Proof. Polynomial equations (10) need to be solved sequen-
tially since individual controller variables are present in
several equations. Equations (10) for 𝑖 ∈ NV

1
become

𝐴

0
𝑅

𝑖
+ 𝐵

0
𝑃
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𝑖
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0
− 𝐵

𝑖
𝑃

0
. (12)

For the expression on the left side, the following must
hold:

deg𝑅
𝑖
≥ deg𝐴

0
− 1, (13)

in order, (12) remains consistent polynomial equation. For the
same reason, the degree of the expression on the right must
not exceed the degree of the expression on the left; therefore,
the following must hold:

max (deg𝐴
𝑖
, deg𝐵

𝑖
) + deg𝑅

0

≤ deg𝐴
0
+ deg𝑅

𝑖
= deg𝐷

𝑖
.

(14)

From (14), (11) follows straightforwardly.
In the case of the equality in expression (14), selecting

leading term of 𝐷
𝑖
according to 𝑑

𝑖 deg𝐷𝑖 = 𝑎

𝑖 deg𝐴𝑖 +
𝑏

𝑖 deg𝐴𝑖𝑝0 deg𝑃0 results in the reduction of the degree of the
expression on the right and therefore inconsistency of (12).

It can be shown that the first equation of (10) for 𝑖 = 0 has
always infinite solutions.Theminimal allowed degree of 𝑅

𝑖
is

deg𝑅
𝑖
= deg𝐴

0
− 1, 𝑖 ∈ NV

1
, and the maximal allowed degree

of 𝑅
0
is determined by the equality of (11). If we join the two

expressions, we can conclude that
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0
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𝑗
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𝑘

(deg𝐵
𝑘
))

− 1 > deg𝐴
0
− 1,

(15)

and consequently the first Diophantine equation always has
infinite solutions.

Remark 3. According to Proposition 2, only V out of V + 𝑞
equations can be arbitrarily assigned as equations for 𝑖 ∈ N

V+𝑞
V+1

consist of controller variables already assigned in equations
𝑖 ∈ ZV

0
, which suggests that infinite closed-loop spectrum

assignment is not a straightforward task.

3. Controller Parameterization

For the parameterization of infinite number of controllers, we
make the following assumption and give the result.

Assumption 3. To derive free parameters in all solvable Dio-
phantine equations (10), the following must hold: deg𝑅

𝑖
>

deg𝐴
0
− 1 and deg𝑅

0
= 2 deg𝐴

0
−max

𝑗
(deg𝐴

𝑗
) > deg𝐴

0
,

which we derive with the same procedure as (15) in the proof
of Proposition 2.

Theorem 4. Considering Assumptions 1, 2, and 3, the con-
troller (8) can be expressed in the form
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where 𝜅
𝑖
are polynomials of degree 0 ≤ deg 𝜅

𝑖
= deg𝑅
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−
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0
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0
, which results in the following closed-loop

characteristic quasipolynomial:
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∑
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∑
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The proof of Theorem 4 can be found in the appendix.

Remark 5. Polynomial equations (10) need to be solved
sequentially for each change of a specific free parameter in
an individual polynomial equation. The importance of the
result ofTheorem 4 lies in the fact that all the infinitely many
solutions of individual polynomial equations are expressed
using free polynomials 𝜅

𝑖
. It is evident that as soon as

controller variables 𝑃 and 𝑅 are derived it is not needed to
solve polynomial equations again in case of a change of any
parameter of free polynomials.

In the same way as individual Diophantine equations, the
whole closed-loop characteristic quasipolynomial (9) can be
treated as a single Diophantine equation. This leads to the
following closed-loop [24] representation:

𝐷 = 𝐴 (𝑅 − 𝐵𝜆) + 𝐵 (𝑃 + 𝐴𝜆)

= 𝐴𝑅 + 𝐵𝑃,

(18)

where 𝜆 is a sum of polynomials 𝜆
𝑖
as defined in (19) and a

corresponding controller structure of the form

𝐾

𝜆
= {

𝑃 + 𝐴𝜆

𝑅 − 𝐵𝜆

} = {

∑

V
𝑖=0
𝑃

𝑖
𝑒

−𝑖𝜏𝑠

+ ∑

𝑛ℎ

𝑖=0
𝐴

𝑖
𝑒

−𝑖𝜏𝑠

∑

V
𝑖=0
𝜆

𝑖
𝑒

−𝑖𝜏𝑠

∑

V
𝑖=0
𝑅

𝑖
𝑒

−𝑖𝜏𝑠
− ∑

𝑚ℎ

𝑖=0
𝐵

𝑖
𝑒

−𝑖𝜏𝑠
∑

V
𝑖=0
𝜆

𝑖
𝑒

−𝑖𝜏𝑠

=

𝑃 + ∑

V+𝑛ℎ
𝑖=0

∑

min(𝑖,𝑛ℎ)
𝑘=0

𝐴

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

𝑅 − ∑

V+𝑚ℎ
𝑖=0

∑

min(𝑖,𝑚ℎ)
𝑘=0

𝐵

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

} ,

(19)

where 𝜆
𝑖
are polynomials of degree 0 ≤ deg𝑅

𝑖
− deg𝐴

0
≤

deg 𝜆
𝑖
≤ deg𝑅

𝑖
− deg𝐵

𝑖
− 1, 𝑖 ∈ ZV

0
.

The two presented controller structures (16) and (19)
consisting of different types of free polynomials might be
joined in a unified controller structure𝐾

𝛾
.

Theorem 6. Considering Assumptions 1, 2, and 3, unified
controller structure

𝐾

𝛾
= {

𝑃 + ∑

V
𝑖=0
∑

min(𝑖,𝑛ℎ)
𝑘=0

𝐴

𝑘
𝜅

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

+ ∑

V+𝑛ℎ
𝑖=0

∑

min(𝑖,𝑛ℎ)
𝑘=0

𝐴

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

𝑅 − ∑

V
𝑖=0
∑

min(𝑖,𝑚ℎ)
𝑘=0

𝐵

𝑘
𝜅

𝑖−𝑘
𝑒

−𝑖𝜏𝑠
− ∑

V+𝑚ℎ
𝑖=0

∑

min(𝑖,𝑚ℎ)
𝑘=0

𝐵

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

} , (20)

where 𝜆
𝑖
and 𝜅

𝑖
are polynomials of degree as in (16) and (19),

respectively, results in the closed-loop characteristic quasipoly-
nomial (17).

The proof of Theorem 6 can be found in the appendix.

4. Infinite Closed-Loop Spectrum Assignment

Due to the part of the closed-loop quasipolynomial that
cannot be assigned arbitrarily, finite closed-loop spectrum
assignment cannot be achieved without the cancelation or
compensation of that part of the spectrum [21]. On the other
hand, appropriate infinite closed-loop spectrum assignment
might be achieved with the help of a numerical routine
for reliably computing the rightmost poles of a closed-loop
spectrum. The quasipolynomial of the form (9) might be
determined with a direct search routine by continuously
selecting controller variables and by closely observing the
rightmost dominant poles of the closed-loop system by
shifting the chains of infinitely many poles as far to the left
of the dominant poles as possible. This might be achieved

by minimizing the norm of the delayed terms in (9) [22].
Such search routine is computationally expensive since the
number of controller parameters rapidly increases with the
higher order of individual controller polynomials and the
number of delayed controller polynomials. Another search
routine could be constructed in a manner of continuously
selecting closed-loop solution objectives of (9) represented
as an overdetermined system of linear equations, where
the individual closed-loop solution objective is designed by
selecting values of the first equation representing a Hur-
witzian polynomial and zeroing all other equations. Such
solution objective will tend to minimize the effects of delayed
parts of (9) by shifting the chains of infinitely many poles
as far to the left as possible and consists of far less search
parameters. The control objective can be expressed as an
overdetermined system of linear equations by deriving the
approximate solution of the expression min

𝑥
‖𝑆𝑥 − 𝐷‖, [25]

using ordinary least squares method by

𝑥 = (𝑆

𝑇

𝑆)

−1

𝑆

𝑇

𝐷,
(21)
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where 𝑥 = [𝑅

0
𝑃

0
⋅ ⋅ ⋅ 𝑅V 𝑃V]

𝑇

, 𝑥 ∈ R∑
V
𝑖=0

2 deg𝑅𝑖 , 𝑅
𝑖
∈

Rdeg𝑅𝑖 , and 𝑃
𝑖
∈ Rdeg𝑃𝑖 , 𝑖 ∈ ZV

0
, are controller parameters (8),

𝑆 is Sylvester matrix of (9), and 𝐷 is the appropriately sized
solution objective of the closed-loop quasipolynomial.

Through a close inspection of (9), we can conclude that,
by selecting the sufficiently large number of delayed terms
in (8), the solutions of the first few equations will never be
included in the last few equations in (9), which do not have
arbitrary solutions. Having that in mind, we can directly
assign to the first few equations an arbitrary closed-loop poly-
nomial 𝐷

𝑖
and derive solutions of the remaining equations

according to (21), which is presented in the following result
defining the sufficient structure of controller (8).

Proposition 7. The solutions of the first 𝑗th polynomial equa-
tions in the sum (9) or (17)will not be part of theNV+𝑞

V+1 equations
if V = 𝑞 + 𝑗, 𝑗 ∈ N. Therefore, assigning first 𝑗th equations
arbitrarily and rearranging remaining equations NV+𝑞

𝑗+1
in (9)

into (21), where the solution objective 𝐷 is appropriately sized
vector of zeroes and

𝑥 = [𝑅

𝑗+1
𝑃

𝑗+1
⋅ ⋅ ⋅ 𝑅V 𝑃V]

𝑇

, 𝑥 ∈ R
∑

V
𝑖=𝑗+1

2 deg𝑅𝑖
,

(22)

will result in a consistent system of overdetermined equations.

Proof. According to Proposition 2, equations for 𝑖 ∈ ZV
0
in

the sum (9) have arbitrary solutions. Choosing V = 𝑞 + 𝑗, the
remaining equations, which do not have arbitrary solutions,
become for 𝑖 ∈ N

2𝑞+𝑗

𝑞+𝑗+1
and consist of controller variables 𝑃

𝑖

and 𝑅
𝑖
, where 𝑖 ∈ N

𝑞+𝑗

𝑗+1
. Therefore, controller variables 𝑃

𝑖
and

𝑅

𝑖
, where 𝑖 ∈ Z

𝑗

0
, are not present in the remaining equations.

So assigning and exchanging these variables with the values
everywhere in (9) and rearranging remaining equations of (9)
into (21) will result in a consistent system of overdetermined
equations.

Remark 8. The result of Proposition 7 can be directly applied
onto a search routine by continuously selecting polynomials
of the first or of the first few equations in the sum (9), where
the first one is always Hurwitzian, deriving solutions of the
first few equations by Proposition 2 and deriving solutions
of the remaining equations by (21) and by closely inspecting
closed-loop poles of (9). Hence, such search routine allows
direct assignment of poles of the first nondelayed equation or
of the first few equations and tends to minimize the effects of
the remaining delayed equations.

5. Shaping of the Infinite
Closed-Loop Spectrum

In order to appropriately shape the chains of infinitely many
poles in the closed loop, by shifting them as far to the
left from the dominant rightmost poles as possible, we can
either compute sufficiently many rightmost poles, which is
computationally expensive, or use the estimation technique
of a predetermined region of poles presented in [9]. From

the information of the real part of the rightmost pole 𝑟 =

max(R(𝑠)) and the distance from the real part of rightmost
pole 𝑑 on the real axes of the complex plane, we can specify
a search criterion based on the predetermined region. This
means that all the characteristic poles of the closed-loop
quasipolynomial in the vertical strip of the complex plain
𝑑 < R(𝑠) ≤ 𝑟 must belong to the predetermined region of a
certain size. The estimation of the region with the belonging
poles is given with the following result.

Proposition 9 (see [9]). All characteristic roots of (1) satisfy
R(𝑠) ≥ 𝜉, 𝜉 ∈ R, belonging to the set

Ω

𝜉
:= {⋃𝜎(𝐴

0
+

𝑞

∑

𝑘=1

𝐴

𝑘
𝑧

ℎ𝑘
) : 𝑧 ∈ C, |𝑧| ≤ 𝑒

−𝜉𝜏

, 𝑘 ∈ N
𝑞

1
}

⋂{𝑠 ∈ C : R (𝑠) ≥ 𝜉} .

(23)

The boundary of Ω
𝜉
is included in

𝜓

𝜉
:= ( ⋃

𝜔∈[0,2𝜋)

𝜎(𝐴

0
+

𝑞

∑

𝑘=1

𝐴

𝑘
𝑒

−𝜉𝜏ℎ𝑘
𝑒

𝑗𝜔ℎ𝑘
))

⋂{𝑠 ∈ C : R (𝑠) ≥ 𝜉} .

(24)

For more information and proof see [26, Appendix A.1].

Remark 10. To derive the boundary 𝜓
0
of characteristic roots

of (1) in the vertical stripe 𝑑 < R(𝑠) ≤ 𝑟, we need to shift the
origin of (1) by −𝑟+𝑑, which can be done by introducing new
variable 𝑠 → 𝑠 − 𝑟 + 𝑑 in the characteristic matrix Δ(𝑠):

Δ (𝑠) := 𝑠𝐼 − 𝐴

0
−

𝑞

∑

𝑘=1

𝐴

𝑘
𝑒

−𝑠𝜏ℎ𝑘
.

(25)

After shifting the origin, (24)must be executed in𝑝ℎ
𝑞
grid

points over the interval [0, 2𝜋), because the function 𝜔 →

𝑒

𝑗𝜔ℎ𝑞 has period 2𝜋/ℎ
𝑞
. The value of the boundary 𝜓

0
might

present a constraint of the search routine of the closed-loop
quasipolynomial.

6. Shaping of the Infinite Closed-Loop
Spectrum in Case of a Delay Mismatch

The structure of the delay uncertainty is in a form of
multiplicative

{ℎ

1
𝜏 < ⋅ ⋅ ⋅ < ℎ

𝑖
𝜏 < ⋅ ⋅ ⋅ < ℎ

𝑞
𝜏 : 𝜏 = 𝜏 (1 + Δ𝜏) ,

𝜏 ∈ R, Δ ∈ [0, 1] } ,

(26)

or additive uncertainty

{ℎ

1
𝜏 < ⋅ ⋅ ⋅ < ℎ

𝑖
𝜏 < ⋅ ⋅ ⋅ < ℎ

𝑞
𝜏 : 𝜏 = 𝜏 +

Δ𝜏

ℎ

𝑖

,

𝜏 ∈ R, Δ ∈ [0, 1] } ,

(27)
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which both introduce slightly more delayed terms in (9) as
a result of multiplication between the delayed terms of the
plant and the controller.Therefore, the closed-loop spectrum
might change significantly as well. The same constraint as
in Proposition 9 and Remark 10 might also be applied to
the plant with an uncertain delay. It can be shown that,
in the search routine, it is sufficient to consider only the
boundary 𝜓

𝜉,𝜏
as the boundaries 𝜓

𝜉,Δ𝜏
are included inside of

𝜓

𝜉,𝜏
,𝜓

𝜉,Δ𝜏
⊆ 𝜓

𝜉,𝜏
. First we give an important property of time-

delay systems.

Proposition 11 (see [22]). If 𝑠 is a characteristic root of the
system (1), then it satisfies

|𝑠| ≤











𝐴

0









2

+

𝑞

∑

𝑖=1











𝐴

𝑖









2

𝑒

−R(𝑠)𝜏ℎ𝑖
.

(28)

Proof. The expression Δ(𝑠) = 0 (25) is equivalent to

𝑠 ∈ 𝜎(𝐴

0
+

𝑞

∑

𝑖=1

𝐴

𝑖
𝑒

−𝑠𝜏ℎ𝑖
) .

(29)

Interpreting the argument of 𝜎(⋅) as a matrix leads to

|𝑠| ≤























𝐴

0
+

𝑞

∑

𝑖=1

𝐴

𝑖
𝑒

−𝑠𝜏ℎ𝑖





















2

, (30)

from which (28) follows straightforwardly.

Using Proposition 11 and the result in Proposition 9, we
can derive the following result.

Proposition 12. For any positiveΔ ∈ [0, 1],𝜓
𝜉,Δ𝜏

⊆ 𝜓

𝜉,𝜏
holds,

where in (28) only the delay is perturbed according to (26) or
(27).

Proof. Regarding Proposition 11 and themultiplicative uncer-
tainty (26) leads to

|𝑠| ≤











𝐷

0









2

+

𝑞

∑

𝑘=1











𝐷

𝑘









2

𝑒

−𝜎𝜏(1+Δ𝜏)ℎ𝑘

≤











𝐷

0









2

+

𝑞

∑

𝑘=1











𝐷

𝑘









2

𝑒

−𝜎𝜏(1+𝜏)ℎ𝑘
,

(31)

and regarding the additive uncertainty (27) leads to

|𝑠| ≤











𝐷

0









2

+

𝑞

∑

𝑘=1











𝐷

𝑘









2

𝑒

−𝜎(𝜏ℎ𝑘+Δ𝜏)

≤











𝐷

0









2

+

𝑞

∑

𝑘=1











𝐷

𝑘









2

𝑒

−𝜎(𝜏ℎ𝑘+𝜏)

,

(32)

where 𝐷

𝑖
, 𝑖 ∈ Z

𝑞

0
, is the closed-loop quasipolynomial

(9) in matrix form considering the delay uncertainty. Both
expressions (31) and (32) are based on a simple comparison

of exponential functions; namely, 𝑒−𝜎Δ𝜏 ≤ 𝑒−𝜎𝜏and 𝑒−𝜎𝜏Δ𝜏ℎ𝑘 ≤
𝑒

−𝜎𝜏𝜏ℎ𝑘 , respectively, 𝜎 ∈ R
−
. Since the area that contains

all the characteristic roots in specific complex plane R(𝑠)
of perturbed system is larger, it is sufficient to consider the
boundary 𝜓

𝜉,𝜏
of the largest set Ω

𝜉,𝜏
.

Finally, we can present the algorithm for the derivation
of the infinite closed-loop spectrum, considering appropriate
shaping of the chains of the infinitely many poles and
constraints on the delay mismatch. The main objective of the
algorithm is the minimization of function:

(𝐾) → 𝛼 (𝐾) + 𝜓

0
(𝐾) + 𝜓

0,𝜏
(𝐾) , (33)

where 𝛼 is spectral abscissa:

𝛼 := sup {R (𝑠) , 𝑠 is characteristic root} . (34)

Besides the spectral abscissa and the criterion based on
Proposition 9, we might improve the objective function (34)
by additional constraints, for instance, on the position of the
dominant rightmost poles in the complex plane in the sense
of damping, overshoot, or rise time [27].

As the spectral abscissa is a nonsmooth function, a gra-
dient sampling algorithm presented in [16, 17] or differential
evolution [28] might be used for the minimization of (34).

The important part of the algorithm is computation of
only a few rightmost characteristic roots of (1). There are
several numerical solutions [9–12] in the form of algorithms,
with a distinct exception [9], which is based on an estimation
of all roots in a predetermined region (24). Such an algorithm
can be easily adapted in a way of computation of only a few
rightmost roots with continuously shifting of the origin of the
complex plane, in such a way that the predetermined region
of all roots is as small as possible but large enough that it
contains only a few rightmost roots (Remark 10).The shifting
of the originmight be performed using a bisection algorithm.
In this way, only a few rightmost roots are computed, which is
much more efficient in the search for the appropriate closed-
loop quasipolynomial, in contrast to the derivation of large
number of roots, which is computationally very expensive.

Algorithm 13. We have the following.
(1) Choose V = 𝑞 + 𝑗 as Proposition 7.
(2) Assign a Hurwitzian polynomial to first and any

polynomial to the remaining 𝑗th equations according
to the optimization method and derive a closed-loop
spectrum (9) using Proposition 7.

(3) Derive the first few rightmost poles of (9).
(4) Derive 𝜓

0
spectrum of (9) using Proposition 9.

(5) Derive the first few rightmost poles of (9) considering
delay uncertainty (26) or (27).

(6) Derive 𝜓
0,𝜏

spectrum of (9) using Proposition 9 and
considering delay uncertainty (26) or (27).

(7) Compute the objective function (33) and derive
improved values from minimization algorithm for
step (2).

(8) Continue with step (2) until appropriate closed-loop
spectrum is derived.
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7. Robust Optimization via Mixed
Sensitivity Design

Mixed sensitivity can be presented as an optimization prob-
lem of minimizing theH

∞
norm [24, 29] of the

min
𝜆

















[

𝑊

𝑆
(𝑠)𝑆(𝑠, 𝜆)

𝑊

𝑇
(𝑠)𝑇(𝑠, 𝜆)

]















∞

≤ 𝛾, 𝛾 ∈ R
+
, (35)

where 𝑊

𝑆
(𝑠) and 𝑊

𝑇
(𝑠) are weighting filters in a form

of frequency depended bounds, which characterize robust
stability and robust performance; 𝑆(𝑠, 𝜆) and 𝑇(𝑠, 𝜆) are
sensitivity and complementary sensitivity. Applying (19) to
sensitivity and complementary sensitivity leads to

𝑆 (𝑠, 𝜆) =

𝐴 (𝑅 − 𝐵𝜆)

𝐴𝑅 + 𝐵𝑃

=

𝐴 (𝑅 − ∑

V+𝑚ℎ
𝑖=0

∑

min(𝑖,𝑚ℎ)
𝑘=0

𝐵

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

)

𝐴𝑅 + 𝐵𝑃

,

𝑇 (𝑠, 𝜆) =

𝐵 (𝑃 + 𝐴𝜆)

𝐴𝑅 + 𝐵𝑃

=

𝐵 (𝑃 + ∑

V+𝑛ℎ
𝑖=0

∑

min(𝑖,𝑛ℎ)
𝑘=0

𝐴

𝑘
𝜆

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

)

𝐴𝑅 + 𝐵𝑃

.

(36)

When considering the delay uncertainty (26) or (27),
structures of 𝑆(𝑠, 𝜆) and 𝑇(𝑠, 𝜆) are slightly altered.Therefore,
the characteristic quasipolynomial depends on polynomials
𝜆

𝑖
as well:

̃

𝑆 (𝑠, 𝜆) =

̃

𝐴 (𝑅 − 𝐵𝜆)

̃

𝐴 (𝑅 − 𝐵𝜆) +

̃

𝐵 (𝑃 + 𝐴𝜆)

,

̃

𝑇 (𝑠, 𝜆) =

̃

𝐵 (𝑃 + 𝐴𝜆)

̃

𝐴 (𝑅 − 𝐵𝜆) +

̃

𝐵 (𝑃 + 𝐴𝜆)

,

(37)

where ̃𝐴 and ̃𝐵 are as in (4), only perturbed according to (26)
or (27), respectively. By applying the uncertain ̃

𝑆(𝑠, 𝜆) and
̃

𝑇(𝑠, 𝜆) to the optimization procedure (35), we derive

min
𝜆

































[

[

[

[

𝑊

𝑆
(𝑠)𝑆(𝑠, 𝜆)

𝑊

𝑇
(𝑠)𝑇(𝑠, 𝜆)

̃

𝑊

𝑆
(𝑠)

̃

𝑆(𝑠, 𝜆)

̃

𝑊

𝑇
(𝑠)

̃

𝑇(𝑠, 𝜆)

]

]

]

]

































∞

≤ 𝛾, 𝛾 ∈ R
+
, (38)

with ̃

𝑊

𝑆
(𝑠) and ̃

𝑊

𝑇
(𝑠) being weighting filters characterizing

sensitivity and complementary sensitivity of the plant with
uncertain delays.

Optimal controller design might be performed by min-
imizing (38) and by closely observing right most poles of
̃

𝑇(𝑠, 𝜆) in sense or infinite closed-loop spectrum shaping
according to Algorithm 13.

8. Example: Level Control of
a Chain of Evaporators

The dynamics of the level control of a chain of evaporators
may be modeled by a delayed first order plus integrator
transfer function [30, 31]:

𝐹 =

−𝑘𝑒

−𝜏𝑠

𝑠 (𝑇𝑠 + 1)

, (39)

where parameters 𝜏 = 5𝑠, 𝑘 = −0.1, and 𝑇 = 5𝑠. Time
delay considered with appropriate uncertainty, for instance,
using (26), 𝜏 = 𝜏(1 + Δ2). Representing the transport delay
as output delay and incorporating direct nondelayed output
connections into themodel (39) to represent themodel in the
form of (2), which might be achieved either by the observer
[32, 33] or even by a classical smith predictor [31, 34], lead to
the following model representation:

̃

𝐹 =

−𝑘 (𝑠 + 1 + 𝑒

−𝜏𝑠

)

𝑠 (𝑇𝑠 + 1)

.

(40)

The following controller was designed

𝐾

𝛾
=

𝑃

0
+ 𝑃

5
𝑒

−5𝑠

+ 𝐴

0
𝜆

0
+ 𝐴

0
𝜆

5
𝑒

−5𝑠

𝑅

0
+ 𝑅

5
𝑒

−5𝑠
− 𝐵

0
𝜆

0
− 𝐵

5
𝜆

0
𝑒

−5𝑠
− 𝐵

0
𝜆

5
𝑒

−5𝑠
, (41)

where the number of delayed controller polynomials was set
according to Proposition 7, V = 𝑞 + 𝑗 = 5 + 0 = 5. The
degree of individual controller polynomials was set using the
result of Proposition 2. Selecting deg𝑃

5
= deg𝑅

5
= 1 and

1 < deg𝑃 = deg𝑅
0
= 2 ≤ 3. According to Theorem 6 and

(19) 0 ≤ deg 𝜆
0
= 0 ≤ 1 and 0 ≤ deg 𝜆

5
= 0 ≤ 0. Applying

Algorithm 13, where𝜓
0
and𝜓

0,𝜏
were computed according to

Proposition 9 and Remark 10 for 𝑑 = 0.2 (Figure 1). What is
clear is that the higher the value 𝑑 is, the larger the region
𝜓

0,𝜏
is. So from the numerical point of view, 𝑑 should be set

small. Optimal H
∞

controller (38) was designed for 𝑊
𝑆
=

̃

𝑊

𝑆
= (0.5𝑠 + 0.01746)/(𝑠 + 0.002182) and 𝑊

𝑇
=

̃

𝑊

𝑇
=

(8𝑠+4.583)/(𝑠+9.165) (Figure 4)with the following controller
parameters: 𝑝

02
= 1, 𝑝

01
= −1.3884 ⋅ 10

5, 𝑝
00
= −5.1942 ⋅ 10

5,
𝑝

51
= −0.4432⋅10

5,𝑝
50
= 2.3201⋅10

5, 𝑟
02
= 1, 𝑟

01
= 0.012⋅10

5,
𝑟

00
= 3.4481 ⋅ 10

5, 𝑟
51
= −44.3231, 𝑟

50
= −655.9617, 𝜆

0
=

−1000, and 𝜆
5
= 0. The step response of ̃𝑇(𝑠, 𝜆) is shown in

Figure 2 in blue and of 𝑇(𝑠, 𝜆) in red. Closed-loop poles of
𝑇(𝑠, 𝜆) are shown in Figure 3 in blue and of 𝑇(𝑠, 𝜆), 𝜏 = 3𝜏,
and Δ = 1 in green, respectively.

9. Conclusions

Aunified controller structure for retarded time-delay systems
composed of two different types of free polynomials was
derived. An algebraic method for infinite closed-loop spec-
trum assignment was presented and a search algorithm for
the appropriate infinite closed-loop spectrum was proposed.
To shape the chains of infinitelymany poles, a search criterion
based on predetermined regions of poles was established and
it was shown that the same technique was applicable for the
closed-loop spectrum with uncertain time delays. Finally,
optimal robust controller synthesis using mixed sensitivity
approach was demonstrated in a control example.
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Figure 1: Poles of ̃𝑇(𝑠, 𝜆) shifted by −𝑟 + 0.2 in green and red,
respectively; the spectrum 𝜓

0,𝜏
is in blue.

Step response

Time (s)

A
m

pl
itu

de

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: Step response of ̃𝑇(𝑠, 𝜆) in blue and of 𝑇(𝑠, 𝜆) in red.

Appendix

Proof of Theorem 4. Considering Assumptions 1, 2, and 3,
polynomial equations (10) have infinite solutions, where an
individual polynomial equation in (10) can be represented in
the form of an underdetermined system of linear equations
with free parameters. The number of free parameters coin-
cides with the number of parameters in 𝜅

𝑖
, which represent

an equivalent representation.
As shown in Proposition 2, if in the previous equation

free parameters change, this leads to the change of the term
on the right side of (10), which results in the change of the
solutions in the current equation. Therefore, (10) need to be
solved sequentially, but as Theorem 4, only once. After the
first solution of (10), changes of free parameters relative to
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Figure 3: Closed-loop poles of𝑇(𝑠, 𝜆) in blue and of ̃𝑇(𝑠, 𝜆) in green.

the free parameters of the original solution can be expressed
with polynomials 𝜅

𝑖
:

𝐴

0
𝑅

𝑁𝑖
+ 𝐵

0
𝑃

𝑁𝑖
+

𝑖

∑

𝑗=1

𝐴

𝑗
𝑅

𝑁𝑖−𝑗
+ 𝐵

𝑗
𝑃

𝑁𝑖−𝑗
= 𝐷

𝑖
. (A.1)

Changing the free parameters in the first equation can be
represented as a change of controller variables 𝑅

0
and 𝑃

0
to

𝑅

𝑁0
= 𝑅

0
− 𝐵

0
𝜅

0
and 𝑃

𝑁0
= 𝑃

0
+ 𝐴

0
𝜅

0
, which results in

𝐴

0
(𝑅

0
− 𝐵

0
𝜅

0
) + 𝐵

0
(𝑃

0
+ 𝐴

0
𝜅

0
) = 𝐷

𝑖
, (A.2)

and the change of the solutions in the second equation

𝐴

0
𝑅



𝑁1
+ 𝐵

0
𝑃



𝑁1
= 𝐷

1
− 𝐴

1
(𝑅

0
− 𝐵

0
𝜅

0
)

− 𝐵

1
(𝑃

0
+ 𝐴

0
𝜅

0
) .

(A.3)

By insertion of𝐷
1
from (10) into (A.3), the amount of the

change of 𝑅

𝑁1
and 𝑃

𝑁1
can be expressed in accordance with

the change of 𝑅
𝑁0

and 𝑃
𝑁0
:

𝐴

0
𝑅



𝑁1
+ 𝐵

0
𝑃



𝑁1

= 𝐴

0
𝑅

1
+ 𝐵

0
𝑃

1
+ 𝐴

1
𝐵

0
𝜅

0
− 𝐵

1
𝐴

0
𝜅

0

= 𝐴

0
(𝑅

1
− 𝐵

1
𝜅

0
) + 𝐵

0
(𝑃

1
+ 𝐴

1
𝜅

0
) .

(A.4)

Considering the change of free parameters in the second
equation same as in (A.2), we derive 𝑅

𝑁1
= 𝑅



𝑁1
− 𝐵

0
𝜅

1
=

𝑅

1
− 𝐵

1
𝜅

0
− 𝐵

0
𝜅

1
and 𝑃

𝑁1
= 𝑃



𝑁1
+𝐴

0
𝜅

1
= 𝑃

1
+𝐴

1
𝜅

0
+𝐴

0
𝜅

1
.

When substituting 𝑅
𝑁1

and 𝑃
𝑁1

in (A.1), the second equation
becomes

𝐴

0
(𝑅

1
− 𝐵

1
𝜅

0
− 𝐵

0
𝜅

1
) + 𝐵

0
(𝑃

1
+ 𝐴

1
𝜅

0
+ 𝐴

0
𝜅

1
)

= 𝐷

1
− 𝐴

1
(𝑅

0
− 𝐵

0
𝜅

0
) − 𝐵

1
(𝑃

0
+ 𝐴

0
𝜅

0
) .

(A.5)
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Figure 4: Bode diagram of 1/𝑊
𝑆
in pale blue, 1/𝑊

𝑇
in purple, 𝑇(𝑠, 𝜆) in red, ̃𝑇(𝑠, 𝜆) in blue, 𝑆(𝑠, 𝜆) in black, and ̃𝑆(𝑠, 𝜆) in green.

Derivation of appropriate controller variables is executed
sequentially. Generally we can write for the 𝑖th equation

𝐴

0
𝑅



𝑁1
+ 𝐵

0
𝑃



𝑁1

= 𝐷

𝑖
−

𝑖

∑

𝑗=1

𝐴

𝑗
(𝑅

𝑖−𝑗
−

min(𝑖−𝑗,𝑚ℎ)

∑

𝑘=0

𝐵

𝑘
𝜅

𝑖−𝑗−𝑘
)

+ 𝐵

𝑗
(𝑃

𝑖−𝑗
+

min(𝑖−𝑗,𝑛ℎ)

∑

𝑘=0

𝐴

𝑘
𝜅

𝑖−𝑗−𝑘
) .

(A.6)

After replacing𝐷
𝑖
in (A.6) with an equivalent representa-

tion from (10) and cancelation of individual terms, we derive

𝐴

0
𝑅



𝑁𝑖
+ 𝐵

0
𝑃



𝑁𝑖

= 𝐴

0
𝑅

𝑖
+ 𝐵

0
𝑃

𝑖
+

𝑖

∑

𝑗=1

(𝐴

𝑗
𝑅

𝑖−𝑗
+ 𝐵

𝑗
𝑃

𝑖−𝑗
)

−

𝑖

∑

𝑗=1

𝐴

𝑗
(𝑅

𝑖−𝑗
−

min(𝑖−𝑗,𝑚ℎ)

∑

𝑘=0

𝐵

𝑘
𝜅

𝑖−𝑗−𝑘
)

− 𝐵

𝑗
(𝑃

𝑖−𝑗
+

min(𝑖−𝑗,𝑛ℎ)

∑

𝑘=0

𝐴

𝑘
𝜅

𝑖−𝑗−𝑘
)

= 𝐴

0
(𝑅

𝑖
−

min(𝑖,𝑚ℎ)

∑

𝑘=1

𝐵

𝑘
𝜅

𝑖−𝑘
)

+ 𝐵

0
(𝑃

𝑖
+

min(𝑖,𝑛ℎ)

∑

𝑘=1

𝐴

𝑘
𝜅

𝑖−𝑘
) .

(A.7)

After considering the influence of free parameters, we
derive the final form of 𝑅

𝑁𝑖
and 𝑃

𝑁𝑖
:

𝐴

0
𝑅

𝑁𝑖
+ 𝐵

0
𝑃

𝑁𝑖
= 𝐴

0
(𝑅

𝑖
−

min(𝑖,𝑚ℎ)

∑

𝑘=0

𝐵

𝑘
𝜅

𝑖−𝑘
)

+ 𝐵

0
(𝑃

𝑖
+

min(𝑖,𝑛ℎ)

∑

𝑘=0

𝐴

𝑘
𝜅

𝑖−𝑘
) .

(A.8)

After replacing controller variables in (A.1) with (A.8), we
derive (17), which completes the proof of Theorem 4.

Proof of Theorem 6. The two presented types of free polyno-
mials expressed in (16) and (19) might be joined in a unified
controller structure 𝐾

𝛾
(20). The proof relies on the fact that

free polynomials 𝜆 cancel out in the closed loop (18) and
therefore might be included into the controller structure (16)
as well. The following closed-loop representation with the
controller𝐾

𝛾
,

𝐷 = 𝐴(𝑅 −

V

∑

𝑖=0

min(𝑖,𝑚ℎ)

∑

𝑘=0

𝐵

𝑘
𝜅

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

− 𝐵𝜆)

+ 𝐵(𝑃 +

V

∑

𝑖=0

min(𝑖,𝑛ℎ)

∑

𝑘=0

𝐴

𝑘
𝜅

𝑖−𝑘
𝑒

−𝑖𝜏𝑠

+ 𝐴𝜆) ,

(A.9)

leads to the same closed-loop representation as in (17).
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[30] P. Albertos and P. Garćıa, “Robust control design for long time-
delay systems,” Journal of Process Control, vol. 19, no. 10, pp.
1640–1648, 2009.

[31] J. E. Normey-Rico and E. F. Camacho, “Unified approach
for robust dead-time compensator design,” Journal of Process
Control, vol. 19, no. 1, pp. 38–47, 2009.
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