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This paper deals with 𝐻
∞

controller design problem for event-triggered networked control systems (NCSs), where the next task
release time and finishing time are predicted based on the sampled states. A new model of NCSs that involves the network
conditions, state, and event-triggered communication strategy is proposed. Based on this model, some novel criteria for the
asymptotic stability analysis and 𝐻

∞
state feedback controller design of the event-triggered NCSs with timevarying delay are

established to guarantee a prescribed 𝐻
∞

disturbance rejection attenuation level. Finally, a numerical example is provided to
illustrate the effectiveness of the proposed method.

1. Introduction

NCSs are spatially distributed systems for which com-
munication between sensors, actuators, and controllers is
connected by a shared communication network. In recent
years, NCSs have brought many innovative impacts on
control systems. They are becoming increasingly important
in industrial processes for many advantages, such as low
installation and maintenance costs, high reliability, increased
system flexibility, and decreased wiring and [1]. As such,
network-based analysis and design have many industrial
applications in, for example, aircrafts, manufacturing plants,
robots, automobiles, and remote surgery [2–7]. However,
great challenges are also met due to the network induced
imperfection, namely, time delays, packet losses, disorder,
time-varying transmission intervals, and competition ofmul-
tiple nodes accessing networks as well as data quantization,
which can deteriorate the performance of the NCSs and
even destabilize the systems [3]. So far, much effort has
been devoted to modeling, analysis, and design of NCSs in
the presence of network-induced delays, packet dropouts,
and disorder; see, for example, [8–14] and the references
therein.

Notice that the network in NCSs is the shared band-
limited digital communication network [3]. One common
problem to be addressed when considering NCSs is whether
there is sufficient communication bandwidth to feedback
information to the controller and then send the control
commands to the actuators and the plant. Traditionally,
the control task is executed periodically; this allows the
closed-loop system to be analyzed and the controller to be
designed using the well-developed theory on sampled-data
systems [15]. However, the control strategy obtained based
on this approach is conservative in the sense that resource
usage is more frequent than necessary to ensure a specified
performance level, since stability is guaranteed in the worst
case scenarios under sufficiently fast periodic execution
of the control action. To overcome this drawback, several
researchers suggested the idea of event-triggered control.
Event-triggered communication scheme has been proved to
be an efficient way to reduce the transmitted data in the net-
works, which can relieve the burden of network bandwidth
occupation in comparison with a traditional periodic sam-
pling method. In [16], started from the paradigm that a real-
time scheduler could be regarded as a feedback controller that
decides which task is executed at any given instant, a simple
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event-triggered scheduler based on this feedback paradigm
was investigated to guarantee performance thus relaxing the
more traditional periodic execution requirements. In [17],
a decentralized event-triggered implementation, over sen-
sor/actuator networks, of centralized nonlinear controllers
was presented. In [18], a new self-triggering scheme that
ensures finite-gain 𝐿

2
stability of the resulting self-triggered

feedback systems was proposed. This scheme relaxes the
assumptions that the magnitude of the process noise is
bounded by a linear function of the norm of the system
state. In [19], a novel event-triggering scheme was presented
to ensure exponential stability of the resulting sampled-
data system. The scheme postpones the triggering of events
over previously proposedmethods and therefore enlarges the
intersampling period. The control design problem of event-
triggered networked systems with both state and control
input quantizations was addressed in [20]. An innovative
delay system model was proposed, and the criteria for the
asymptotical stability analysis and control synthesis of event-
triggered NCSs were established. Unfortunately, to the best
of the authors’ knowledge, up to now, the stabilization and
𝐻
∞

control problems for general NCSs with simultaneous
consideration of the network-induced time-varying delays
and event-triggered communication scheme have not been
adequately addressed yet, which still remains an interesting
research topic. This motivates the current research.

In this paper, the 𝐻
∞

state feedback controller design
method for the event-triggered NCSs with time-varying
delays is presented. Different from some existing ones, the
feedback NCSs in this paper is modeled as a delay system
considering the network-induced delays and event-triggering
scheme. By using Lyapunov-Krasovskii function approach,
some new sufficient conditions that guarantee the asymptotic
stability of the closed-loop NCSs are established in terms
of linear matrix inequities (LMIs). Moreover, the explicit
expression of feedback gain is also derived with event-
triggering and network-induced delays. Finally, a simulation
example is given to illustrate the effectiveness of the proposed
method.

Notation. R𝑛 and 𝑍
+ denote the 𝑛-dimensional Euclidean

space and positive integer set, respectively. R𝑚×𝑛 is the set of
𝑚×𝑛 real matrices. Sym{𝑋} denotes the expression𝑋+𝑋

⊤. 𝐼
𝑛

denotes the 𝑛 × 𝑛 identity matrix. The notation 𝑋 > 0 (resp.,
𝑋 ≥ 0) denotes a real symmetric positive definite (positive
semidefinite). In symmetric block matrices, “∗” is used as
ellipsis for terms induced by symmetry; diag{⋅ ⋅ ⋅ } denotes the
block-diagonal matrix. Matrixes, if not explicitly stated, are
assumed to have appropriate dimensions.

2. Problem Formulation

Consider the NCSs with event-triggering shown in Figure 1.
The physical plant is given by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵
𝜔
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,

(1)
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Event
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x(kh)

x(tkh)
𝜏ca(ik)
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Figure 1: The structure of event-triggered NCSs with time-varying
delay.

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input vector, 𝜔(𝑡) ∈ 𝐿

2
[0,∞) is the disturbance input, and

𝑧(𝑡) ∈ R𝑝 is the control output vector, respectively. 𝐴, 𝐵,
𝐵
𝜔
, 𝐶, and 𝐷 are the parameter matrices with appropriate

dimensions. The initial condition of the system (1) is given
by 𝑥(𝑡

0
) = 𝑥
0
. Throughout this paper, we assume that system

(1) is controlled throughout a network with a networked
state feedback controller, which is directly connected to the
actuator through a zero-order holder (ZOH) [21].

The purpose of this paper is to design a linear controller
𝑢(𝑡) = 𝐾𝑥(𝑡), where𝐾 is amatrix to be determined later, such
that the resulting closed-loop system satisfies the required
𝐻
∞

performance.
To facilitate theoretical development, the following

assumptions, which are common in NCSs research in open
literature, are made in this paper.

Assumption 1. The sensors in the communication network
are time-triggered with a constant sampling period ℎ, while
the controllers and actuators are event-triggered.

Assumption 2. The signal in a network is transmitted with a
single packet, and the computational delay of the controller
is negligible [22–25], and the data packet losses do not occur
in transmission.

Assumption 3. The total network-induced delay 𝜏
𝑘
(𝑘 ∈ 𝑍

+

)

is bounded; that is, 0 < 𝜏
𝑚

≤ 𝜏
𝑘

≤ 𝜏
𝑀
, where 𝜏

𝑚
and 𝜏

𝑀

denote the lower and upper delay bounds, respectively [15,
21].

As depicted in (1), considering the limited capacity of
the communication channels and also for reducing the data
transmission rate in the network, we show a framework of
the proposed event-triggered communication scheme for the
NCSs. The event-triggered communication scheme can be
expressed as [20]


⊤

𝛾𝑘+𝑗ℎ
𝑉
𝛾𝑘+𝑗ℎ

≥ 𝜎𝑥
⊤

(𝑖
𝑘+𝑗

ℎ)𝑉𝑥 (𝑖
𝑘+𝑗

ℎ) , (2)
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where 
𝛾𝑘+𝑗ℎ

= 𝑥(𝑖
𝑘+𝑗

ℎ) − 𝑥(𝑖
𝑘
ℎ) is the error between the

current sampling data 𝑥(𝑖
𝑘+𝑗

ℎ) and the latest transmitted
sampling data 𝑥(𝑖

𝑘
ℎ), 𝑉 is a positive matrix, 𝑗 ∈ 𝑍

+, and
𝜎 ∈ [0, 1].

Remark 4. The communication scheme (2) is characterized
by the parameters 𝜎, 𝑉, and ℎ. Only the sampled state
data 𝑥(𝑖

𝑘+𝑗
ℎ) that satisfy the quadratic condition will be

transmitted to the controller. Obviously, this scheme will
determine the load of the communication in the network. As
a special case, if 𝜎 = 0 in (2), inequality (2) holds for all the
sampled state data 𝑥(𝑖

𝑘+𝑗
ℎ); this schemewill reduce to a time-

triggered communication scheme.

Under communication scheme (2), we assume that the
release times are 𝑡

0
ℎ, 𝑡
1
ℎ, 𝑡
2
ℎ, . . ., where 𝑡

0
ℎ is the initial

time; 𝛾
𝑘
ℎ = 𝑡

𝑘+1
ℎ − 𝑡
𝑘
ℎ denotes the transmission period of

the event generator. Take the network-induced time-varying
delay 𝜏

𝑖𝑘
into consideration; these release signals will arrive at

the controller side at the instants 𝑡
0
ℎ+𝜏
0
, 𝑡
1
ℎ+𝜏
1
, 𝑡
2
ℎ+𝜏
2
,. . .,

respectively.
Based on the above analysis, considering the effect of the

time-varying delay in the communication network and the
event-triggered communication scheme (2), for 𝑡 ∈ [𝑡

𝑘
ℎ +

𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ+𝜏
𝑖𝑘+1

), the system (1) under the control 𝑢(𝑡) = 𝐾𝑥(𝑡)

can be described as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡
𝑘
ℎ) + 𝐵

𝜔
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡
𝑘
ℎ) ,

𝑢 (𝑡
𝑘
ℎ) = 𝐾𝑥 (𝑡

𝑘
ℎ) , 𝑡 ∈ [𝑡

𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) .

(3)

Based on the above analysis, we consider the following
intervals:

[𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) . (4)

It is easy to make the conclusion that 𝛾
𝑘
ℎ ≥ ℎ.

(1) If 𝛾
𝑘
ℎ ≤ ℎ + 𝜏

𝑀
− 𝜏
𝑖𝑘+1

, we define

𝜏 (𝑡) = 𝑡 − 𝑡
𝑘
ℎ, 𝑡 ∈ [𝑡

𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) . (5)

Furthermore, we define an error vector as


𝑘
(𝑡) = 0. (6)

(2) If 𝛾
𝑘
ℎ > ℎ+𝜏

𝑀
−𝜏
𝑖𝑘+1

, it can be easily shown that 𝑙 ≥ 1

exists such that

𝑙ℎ + 𝜏
𝑀

− 𝜏
𝑖𝑘+1

< 𝛾
𝑘
ℎ ≤ (𝑙 + 1) ℎ + 𝜏

𝑀
− 𝜏
𝑖𝑘+1

. (7)

Then the range [𝑡
𝑘
ℎ+ 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ+ 𝜏
𝑖𝑘+1

) can be divided into
the following 𝑙 + 1 subranges:

[𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

)

= [𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘
ℎ + ℎ + 𝜏

𝑀
)

∪ {

𝑙−1

⋃

𝑛=1

[𝑡
𝑘
ℎ + 𝑛ℎ + 𝜏

𝑀
, 𝑡
𝑘
ℎ + (𝑛 + 1) ℎ + 𝜏

𝑀
)}

∪ [𝑡
𝑘
ℎ + 𝑙ℎ + 𝜏

𝑀
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) .

(8)

Define a function 𝜏(𝑡) as

𝜏 (𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑡 − 𝑡
𝑘
ℎ 𝑡 ∈ [𝑡

𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘
ℎ + ℎ + 𝜏

𝑀
) ,

𝑡 − 𝑡
𝑘
ℎ − 𝑛ℎ

𝑡 ∈

𝑙−1

⋃

𝑛=1

[𝑡
𝑘
ℎ + 𝑛ℎ + 𝜏

𝑀
, 𝑡
𝑘
ℎ + (𝑛 + 1) ℎ + 𝜏

𝑀
) ,

𝑡 − 𝑡
𝑘
ℎ − 𝑙ℎ

𝑡 ∈ [𝑡
𝑘
ℎ + 𝑙ℎ + 𝜏

𝑀
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) .

(9)

It follows from (9) that

𝜏
𝑚

≤ 𝜏 (𝑡) ≤ ℎ + 𝜏
𝑀
. (10)

At this time, we define the error vector as


𝑘
(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

0 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘
ℎ + ℎ + 𝜏

𝑀
) ,

𝑥 (𝑡
𝑘
ℎ + 𝑛ℎ) − 𝑥 (𝑡

𝑘
ℎ)

𝑡 ∈

𝑙−1

⋃

𝑛=1

[𝑡
𝑘
ℎ + 𝑛ℎ + 𝜏

𝑀
, 𝑡
𝑘
ℎ + (𝑛 + 1) ℎ + 𝜏

𝑀
) ,

𝑥 (𝑡
𝑘
ℎ + 𝑙ℎ) − 𝑥 (𝑡

𝑘
ℎ)

𝑡 ∈ [𝑡
𝑘
ℎ + 𝑙ℎ + 𝜏

𝑀
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) .

(11)

Combining (6) and (11), it can be seen that


⊤

𝑘
(𝑡) 𝑉

𝑘
(𝑡) < 𝜎𝑥

⊤

(𝑡 − 𝜏 (𝑡)) 𝑉𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) .

(12)

Combining (5), (6), (9), and (11) together with (3), define
ℎ
1
= 𝜏
𝑚
, ℎ
2
= 𝜏
𝑀
+ℎ; we can obtain the following closed-loop

system as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝜏 (𝑡)) − 𝐵𝐾
𝑘
(𝑡) + 𝐵

𝜔
𝜔 (𝑡) ,

𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑖𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑖𝑘+1

) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝐾𝑥 (𝑡 − 𝜏 (𝑡)) − 𝐷𝐾
𝑘
(𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− ℎ
2
, 𝑡
0
− ℎ
1
) ,

(13)

where we define 𝜙(𝑡) as the initial function of 𝑥(𝑡).
Tomake the theoretical development easier, the following

definition will be used.
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Definition 5. The closed-loop system (13) is said to be asymp-
totically stable with an 𝐻

∞
disturbance attenuation level 𝛾;

that is, (1) system (13) is asymptotically stable with 𝜔(𝑡) ≡ 0.
(2) Under zero initial condition, ‖𝑧(𝑡)‖

2
< 𝛾‖𝜔(𝑡)‖

2
, for any

nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞) and a prescribed 𝛾 > 0.

3. Main Results

Firstly, we develop a stability criterion for the system (13)
with time-varying communication delay. Then, Theorem 7 is
presented which lays the foundation for the 𝐻

∞
controller

design.

Theorem 6. For some given parameters ℎ
1
, ℎ
2
, 𝛾, 𝜎, and

feedback gain 𝐾, under the event-triggered communication
scheme (2), the system (13) is asymptotically stable with an𝐻

∞

performance index 𝛾 for the disturbance attention, if there exist
real matrixes 𝑃 > 0, 𝑄

𝑖
> 0, 𝐿

𝑖
> 0 (𝑖 = 1, 2), 𝑉 > 0, and 𝐺

with appropriate dimensions such that the following LMIs hold:

[

Σ
11

∗

Σ
21

Σ
22

] < 0, (14)

[

𝐿
2

∗

𝐺 𝐿
2

] > 0, (15)

where

Σ
11

=

[

[

[

[

[

[

[

[

Φ
11

∗ ∗ ∗ ∗ ∗

Φ
21

Φ
22

∗ ∗ ∗ ∗

Φ
31

Φ
32

Φ
33

∗ ∗ ∗

0 Φ
42

Φ
43

Φ
44

∗ ∗

Φ
51

0 0 0 Φ
55

∗

Φ
61

0 0 0 0 Φ
66

]

]

]

]

]

]

]

]

,

Σ
21

= [ℎ
1
𝜉
⊤

1
𝐿
⊤

1
ℎ𝜉
⊤

1
𝐿
⊤

2
𝜉
⊤

2
]

⊤

,

Σ
22

= diag {−𝐿
1

−𝐿
2

−𝐼} ,

Φ
11

= 𝑃𝐴 + 𝐴
⊤

𝑃 + 𝑄
1
+ 𝑄
2
− 𝐿
1
, Φ
21

= 𝐿
1
,

Φ
22

= −𝑄
1
− 𝐿
2
− 𝐿
1
, Φ
31

= 𝐾
⊤

𝐵
⊤

𝑃,

Φ
32

= −𝐺 + 𝐿
2
, Φ
33

= 𝜎𝑉 − 2𝐿
2
+ 𝐺 + 𝐺

⊤

,

Φ
42

= 𝐺, Φ
43

= −𝐺 + 𝐿
2
, Φ
44

= −𝑄
2
− 𝐿
2
,

Φ
51

= −𝐾
⊤

𝐵
⊤

𝑃, Φ
55

= −𝑉, Φ
61

= 𝐵
⊤

𝜔
𝑃, Φ

66
= −𝛾
2

𝐼,

𝜉
1
= [𝐴 0 𝐵𝐾 0 −𝐵𝐾 𝐵

𝜔
] ,

𝜉
2
= [𝐶 0 𝐷𝐾 0 −𝐷𝐾 0] ,

ℎ = ℎ
2
− ℎ
1
.

(16)
Proof . Construct a Lyapunov-Krasovskii functional candi-
date as

𝑉 (𝑡) = 𝑥
⊤

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−ℎ1

𝑥
⊤

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ2

𝑥
⊤

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ℎ
1
∫

0

−ℎ1

∫

𝑡

𝑡+𝑠

�̇�
⊤

(V) 𝐿
1
�̇� (V) 𝑑V 𝑑𝑠

+ ℎ∫

−ℎ1

−ℎ2

∫

𝑡

𝑡+𝑠

�̇�
⊤

(V) 𝐿
2
�̇� (V) 𝑑V 𝑑𝑠,

(17)

where 𝑃 > 0, 𝑉 > 0, 𝑄
𝑗
> 0, and 𝐿

𝑗
> 0 (𝑗 = 1, 2). Taking

the derivation of 𝑉(𝑡) for 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1

ℎ + 𝜏
𝑘+1

) and by
adding and subtracting the term 

⊤

𝑘
(𝑡)𝑉
𝑘
(𝑡), we have

�̇� (𝑡) = 2𝑥
⊤

(𝑡) 𝑃�̇� (𝑡) + 𝑥
⊤

(𝑡) 𝑄
1
𝑥 (𝑡)

− 𝑥
⊤

(𝑡 − ℎ
1
) 𝑄
1
𝑥 (𝑡 − ℎ

1
) + 𝑥
⊤

(𝑡) 𝑄
2
𝑥 (𝑡)

− 𝑥
⊤

(𝑡 − ℎ
2
) 𝑄
2
𝑥 (𝑡 − ℎ

2
) + ℎ
2

1
�̇�
⊤

(𝑡) 𝐿
1
�̇� (𝑡)

− ℎ
1
∫

𝑡

𝑡−ℎ1

�̇�
⊤

(V) 𝐿
1
�̇� (V) 𝑑V + ℎ

2

�̇�
⊤

(𝑡) 𝐿
2
�̇� (𝑡)

− ℎ∫

𝑡−ℎ1

𝑡−ℎ2

�̇�
⊤

(V) 𝐿
2
�̇� (V) 𝑑V + 

⊤

𝑘
(𝑡) 𝑉

𝑘
(𝑡)

− 
⊤

𝑘
(𝑡) 𝑉

𝑘
(𝑡) + 𝑧

⊤

(𝑡) 𝑧 (𝑡) − 𝑧
⊤

(𝑡) 𝑧 (𝑡) .

(18)

Applying Jensen’s inequality [26] and convex reciprocally
approach [27] to deal with the integral items in (18), noticing
(15), we obtain

−ℎ
1
∫

𝑡

𝑡−ℎ1

�̇�
⊤

(V) 𝐿
1
�̇� (V) 𝑑V ≤ −𝜂

⊤

(𝑡) Π
1
𝜂 (𝑡) ,

− ℎ∫

𝑡−ℎ1

𝑡−ℎ2

�̇�
⊤

(V) 𝐿
2
�̇� (V) 𝑑V

= −ℎ[∫

𝑡−ℎ1

𝑡−𝜏(𝑡)

�̇�
⊤

(V) 𝐿
2
�̇� (V) 𝑑V

+∫

𝑡−𝜏(𝑡)

𝑡−ℎ2

�̇�
⊤

(V) 𝐿
2
�̇� (V) 𝑑V]

≤ −

ℎ

𝜏 (𝑡) − ℎ
1

[𝑥
⊤

(𝑡 − ℎ
1
) 𝐿
2
𝑥 (𝑡 − ℎ

1
)

−𝑥
⊤

(𝑡 − 𝜏 (𝑡)) 𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))]

−

ℎ

ℎ
2
− 𝜏 (𝑡)

[𝑥
⊤

(𝑡 − 𝜏 (𝑡)) 𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))

−𝑥
⊤

(𝑡 − ℎ
2
) 𝐿
2
𝑥 (𝑡 − ℎ

2
)]

≤ −𝜂
⊤

(𝑡) Π
2
𝜂 (𝑡) ,

(19)
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with 𝜂
⊤

(𝑡) = [𝑥
⊤

(𝑡) 𝑥
⊤

(𝑡 − ℎ
1
) 𝑥
⊤

(𝑡 − 𝜏(𝑡)) 𝑥
⊤

(𝑡 −

ℎ
2
) 
⊤

𝑘
(𝑡) 𝜔

⊤

(𝑡)],

Π
1
=

[

[

[

[

[

[

[

[

𝐿
1

∗ 0 0 0 0

−𝐿
1

𝐿
1

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

]

]

]

]

]

]

,

Π
2
=

[

[

[

[

[

[

[

[

0 0 0 0 0 0

0 𝐿
2

∗ ∗ 0 0

0 𝐺 − 𝐿
2

2𝐿
2
− 𝐺 − 𝐺

⊤

∗ 0 0

0 −𝐺 𝐺 − 𝐿
2

𝐿
2

0 0

0 0 0 0 0 0

0 0 0 0 0 0

]

]

]

]

]

]

]

]

.

(20)

Notice that Σ⊤
21
Σ
−1

22
Σ
21

= −[ℎ
2

1
𝜉
⊤

1
𝐿
1
𝜉
1
+ ℎ
2

𝜉
⊤

1
𝐿
2
𝜉
1
+ 𝜉
⊤

2
𝜉
2
],

�̇�(𝑡) = 𝜉
1
𝜂(𝑡), and 𝑧(𝑡) = 𝜉

2
𝜂(𝑡); we have

𝜂
⊤

(𝑡) [Σ
⊤

21
Σ
−1

22
Σ
21
] 𝜂 (𝑡)

= −𝜂
⊤

(𝑡) [ℎ
2

1
𝜉
⊤

1
𝐿
1
𝜉
1
+ ℎ
2

𝜉
⊤

1
𝐿
2
𝜉
1
+ 𝜉
⊤

2
𝜉
2
] 𝜂
⊤

(𝑡)

= −ℎ
2

1
�̇�
⊤

(𝑡) 𝐿
1
�̇� (𝑡) − ℎ

2

�̇�
⊤

(𝑡) 𝐿
2
�̇� (𝑡) − 𝑧

⊤

(𝑡) 𝑧 (𝑡) .

(21)

Combining (12), (17), (19), and (21), we obtain

�̇� (𝑡) ≤ 𝜂
⊤

(𝑡) (Σ
11

− Σ
⊤

21
Σ
−1

22
Σ
21
) 𝜂 (𝑡)

− 𝑧
⊤

(𝑡) 𝑧 (𝑡) + 𝛾
2

𝜔
⊤

(𝑡) 𝜔 (𝑡) ,

(22)

where Σ
11
, Σ
21
,and Σ

22
are defined in (14).

By the Schur complements, the Lyapunov-Krasovskii
function (14) guarantees that �̇�(𝑡) < 0 in (17); we can derive
that the system (13) with 𝜔(𝑡) ≡ 0 is asymptotically stable
and ‖𝑧(𝑡)‖

2
< 𝛾‖𝜔(𝑡)‖

2
under zero initial condition. This

completes the proof.

Now we are in a position to design the state feedback𝐻
∞

controller for the closed-loop system (13).

Theorem 7. For given parameters ℎ
1
, ℎ
2
, 𝛾, and 𝜎, under the

event-triggered communication scheme (2), the system (13) is
asymptotically stable with an𝐻

∞
performance index 𝛾 for the

disturbance attention, and the feedback gain𝐾 = 𝑌𝑋
−1, if there

exist real matrixes𝑋 > 0,𝑄
𝑖
> 0, �̃�

𝑖
> 0 (𝑖 = 1, 2), �̃� > 0, and

𝐺 with appropriate dimensions such that the following matrix
inequities hold:

[

[

Σ


11
∗

Σ


21
Σ


22

]

]

< 0, (23)

[

[

�̃�
2

∗

𝐺 �̃�
2

]

]

> 0, (24)

where

Σ


11
=

[

[

[

[

[

[

[

[

[

Φ̃
11

∗ ∗ ∗ ∗ ∗

Φ̃
21

Φ̃
22

∗ ∗ ∗ ∗

Φ̃
31

Φ̃
32

Φ̃
33

∗ ∗ ∗

0 Φ̃
42

Φ̃
43

Φ̃
44

∗ ∗

Φ̃
51

0 0 0 Φ̃
55

∗

Φ̃
61

0 0 0 0 Φ̃
66

]

]

]

]

]

]

]

]

]

,

Σ


21
= [ℎ
1

̃
𝜉
⊤

1
ℎ
̃
𝜉
⊤

1

̃
𝜉
⊤

2
]

⊤

,

Σ


22
= diag {−𝑋�̃�

−1

1
𝑋, −𝑋�̃�

−1

2
𝑋, −𝐼} ,

Φ̃
11

= 𝑋𝐴 + 𝐴
⊤

𝑋 + 𝑄
1
+ 𝑄
2
− �̃�
1
, Φ̃
21

= �̃�
1
,

Φ̃
22

= −𝑄
1
− �̃�
2
− �̃�
1
, Φ̃
31

= 𝑌
⊤

𝐵
⊤

, Φ̃
32

= −𝐺 + �̃�
2
,

Φ̃
33

= 𝜎�̃� − 2�̃�
2
+ 𝐺 + 𝐺

⊤

, Φ̃
42

= 𝐺,

Φ̃
43

= −𝐺 + �̃�
2
, Φ̃
44

= −𝑄
2
− �̃�
2
, Φ̃
51

= −𝑌
⊤

𝐵
⊤

,

Φ̃
55

= −�̃�, Φ
61

= 𝐵
⊤

𝜔
, Φ̃
66

= −𝛾
2

𝐼,

̃
𝜉
1
= [𝐴𝑋 0 𝐵𝑌 0 −𝐵𝑌 𝐵

𝜔
] ,

̃
𝜉
2
= [𝐶𝑋 0 𝐷𝑌 0 −𝐷𝑌 0] ,

ℎ = ℎ
2
− ℎ
1
.

(25)

Proof . Define 𝑋 = 𝑃
−1, 𝑋𝑄

𝑖
𝑋 = 𝑄

𝑖
, 𝑋𝐿
𝑖
𝑋 = �̃�

𝑖
(𝑖 =

1, 2), 𝑋𝑉𝑋 = �̃�, 𝑋𝐺𝑋 = 𝐺, and 𝑌 = 𝐾𝑋, and pre- and
postmultiply (14), (15) with diag{𝑋,𝑋,𝑋,𝑋,𝑋, 𝐼, 𝐿

−1

1
, 𝐿
−1

2
, 𝐼},

diag{𝑋,𝑋}, and their transposes, respectively. By Schur com-
plement, we can obtain (23) and (24) from (14) and (15).
Therefore, we can know from Theorem 6, (23), and (24)
that the system (13) is asymptotically stable with an 𝐻

∞

performance index 𝛾 for the disturbance attention.

Remark 8. Theorem 7 provides a useful way of codesign
for both the state feedback controller gain and the event-
triggered parameter by solving a set of LMIs in (23). However,
the derived matrix inequalities cannot be solved directly by
making use of the MATLAB LMI control toolbox due to
the nonlinear terms such as 𝑋𝑉𝑋 in (23). To reduce the
conservatism that may result from the driving LMIs based on
(23), one can apply the cone complementarity linearization
(CCL) algorithm [28]. The information of the transmission
delay is also involved in (23). So our design method can be
used to deal with the case with network transmission delay.
For given condition on the time-varying delay, by solving
(23), the state feedback gain matrix𝐾 and triggered constant
𝑉 can be obtained, which can be used to guarantee the
required𝐻

∞
performance.

4. Illustrative Example

In this section, a numerical example is provided to validate
the effectiveness of the theoretical results. The inverted
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pendulum introduced by [18] is considered. The plant’s state-
space representation is given by

�̇� (𝑡) =

[

[

[

[

[

[

[

0 1 0 0

0 0 −

𝑚𝑔

𝑀

0

0 0 0 1

0 0

𝑔

𝑙

0

]

]

]

]

]

]

]

𝑥 (𝑡) +

[

[

[

[

[

[

[

[

0

1

𝑀

0

−

1

𝑀𝑙

]

]

]

]

]

]

]

]

𝑢 (𝑡) . (26)

We choose other parameter matrices as

𝐶 = [1 1 1 1]

⊤

, 𝐷 = 0.1, 𝐵
𝜔
= 𝐶
⊤

,

𝜔 (𝑡) = {

sgn (sin 𝑡) if 𝑡 ∈ [0, 10]

0 otherwise,

(27)

where 𝑀 = 10 is the cart mass and 𝑚 = 1 is the mass
of the pendulum bob, 𝑙 = 3 is the length of the pendulum
arm, and 𝑔 = 10 is the gravitational acceleration. The initial
state is chosen as 𝑥

0
= [0.98, 0, 0.2, 0]

⊤. As we can see,
the eigenvalues of the system matrices are 0, 0, 1.8257, and
−1.8257; thus the system is unstable without a controller.
Applying Theorem 7 with 𝜎 = 0.1, 𝛾 = 200, ℎ

1
= 0.01, and

ℎ
2
= 0.11, the corresponding feedback gain and the triggered

matrix are obtained as

𝐾 = [−1.9739 −9.7238 53.0167 34.9453] , (28)

𝑉 =

[

[

[

[

70.8218 58.5581 23.0154 32.7182

58.5581 88.5920 8.3766 28.5856

23.0154 8.3766 171.6515 103.9430

32.7182 28.5856 103.9430 91.7903

]

]

]

]

. (29)

Taking the sampling period ℎ = 0.1 s, the release instants
and release intervals of system (26) are shown in Figure 2.
The state response of system (26) with feedback controller
gain (28) and event-triggered communication scheme (29)
are depicted in Figure 3, respectively. Figure 3 shows that the
system state converges to zero.

5. Conclusion

To reduce the communication load in the network, a novel
event-triggered scheme has been proposed to determine
when the sampling signal data will be transmitted. An event-
triggered 𝐻

∞
control design method has been proposed for

NCSs with time-varying delay. A delay system model has
been used to describe the prosperities of the event trigger
and effects of the transmission delay on the system. Based on
this model, new criteria for stability with an𝐻

∞
norm bound

and 𝐻
∞

control design are developed. Since the relationship
between the network-induced delay, the state feedback con-
troller gain, and the trigger parameters are established, it can
be used to schedule NCSs resources through adjusting one
or more parameters for a better tradeoff between the control
performance and the network conditions. The numerical
example is given to demonstrate the effectiveness of the
proposed algorithm.
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