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Background. Studies indicate the dramatic reduction of shear stress (SS) within the rapamycin eluting stent (RES) segment of
coronary arteries. It remains unclear about the role of rapamycin in endothelialization of stented arteries where SS becomes low.
Since mTOR (mammalian target of rapamycin) pathway is involved in the antioxidative sestrins expression, we hypothesized that
rapamycin attenuated low SS (LSS) induced endothelial dysfunction through mTOR and sestrin1 associated redox regulation.
Methods and Results. To mimic the effect of LSS on the stented arteries, a parallel plate flow chamber was used to observe
the interplay of LSS and rapamycin on endothelial cells (ECs). The results showed LSS significantly induced EC apoptosis
which was mitigated by pretreatment of rapamycin. Rapamycin attenuated LSS induced reactive oxygen species (ROS) and
reactive nitrogen species (RNS) production via prohibition of sestrin1 downregulation. Activities of mTORC1 and mTORC2 were
detected contradictorily modulated by LSS. Inhibition of rictor expression by target small interfering RNA (siRNA) transfection
prohibited sestrin1 downregulation induced by LSS, but inhibition of raptor did not. Conclusions. Rapamycin may prohibit sestrin1
downregulation through targeting mTORC2 in appeasing LSS induced EC oxidative apoptosis. Our results provide the in vitro
evidence to explain the pathophysiology of RES stented arteries.

1. Introduction

Rapamycin, the specific inhibitor of mTOR (mammalian
target of rapamycin), is a natural product of the soil acti-
nomycete streptomyces hygroscopicus [1]. Rapamycin and
its derivatives are widely employed in the rapamycin elut-
ing stent (RES) because they successfully prevent in-stent
restenosis [2]. However, rapamycin is suspected to compro-
mise endothelial function and induce endothelial apoptosis
[3] and even implicate to delayed endothelialization [4–7].
Conversely, other researchers found rapamycin was not such
cytotoxic to ECs as it arrested ECs at G0/G1 phase of cell cycle
without inducing apoptosis [8]. Furthermore, rapamycin was
reported to attenuate high-amplitude, mechanical stretch-
induced apoptosis in pulmonary microvascular endothelial
cells [9]. Therefore, the potential of rapamycin on EC apop-
tosis needs to be clarified.

Low shear stress (LSS) is a well-established risk fac-
tor resulting in endothelial dysfunction and atherosclerotic
lesions [10, 11]. Data from our previous in vivo studies
demonstrated that SS on the luminal surface of stented
coronary artery reduced dramatically after implantation of
RES [12, 13]. In the parallel flow chamber study we found
that LSS induced endothelial apoptosis and accumulation
of reactive oxygen species (ROS) [14]. However, the role
of rapamycin on endothelial oxidative stress and apoptosis
induced by LSS remains unknown.

Sestrins are a small gene family which encode three
conserved proteins in mammals, sestrin1, sestrin2, and ses-
trin3 [15]. Sestrins, which exhibit oxidoreductase activity,
are transcripted by p53 and FoxO to increase antioxidative
responses upon stress [16–18]. Sestrins are on the convergence
of oxidative insults and the mTOR signals [19–21]; therefore,
we hypothesized rapamycin attenuated endothelial oxidative
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stress and apoptosis induced by LSS via mTOR and sestrins
related redox regulation.

2. Materials and Methods

2.1. Cell Culture. Human umbilical vein endothelial cells
(HUVECs) were obtained from Cellbank of Chinese Aca-
demy of Sciences (Shanghai, China). Rat aortic endothelial
cells (RAECs) were isolated from male Sprague-Dawley rats
(Laboratory Animal Center of Nanjing Medical University,
Nanjing, China) according to the method described previ-
ously [22]. The use of animal material in this study con-
forms to the International Guiding Principles for Biomedical
Research Involving Animals. All animal handling procedures
were approved by the animal ethics board of NanjingMedical
University. Cells were cultured in DMEM (GIBICO) supple-
mented with 10% fetal bovine serum (GIBICO), at 37∘C in a
5% CO

2
incubator. Passage 5–8 of RAECs was used in this

research.

2.2. Application of LSS. The parallel flow chamber was made
by Shanghai Medical Instrument School (Shanghai, China)
as described [23]. In brief, by sandwiching a silicon gasket
between two stainless steel plates, the cells grown to conflu-
ence on coverslip were on the lower plate and subjected to
fluid flow powered by a reciprocal pump. SS of 2 dyne/cm2 on
the parallel surface of the plate can be obtained bymodulating
the proportion of fluid volume passing the flow chamber to
that shunting into tank.

2.3. Materials and Reagents. Rapamycin, DAPI, 4,5-Diami-
nofluorescein diacetate (DAF-2DA), and dihydroethidium
(DHE) were purchased from Sigma-Aldrich. MitoSOX Red,
MitoTracker Red CMX ROS, and Trizol reagents were
obtained from Invitrogen. Primary antibodies of phospho-
mTOR (Ser2448), mTOR, phospho-p70 S6 (Thr389), p70
S6 Kinase, phospho-Akt (Ser473), Akt, Rictor, Raptor, and
secondary antibody were obtained from Cell Signaling Tech-
nology. Reverse transcription reagent Kit and SYBR real-
time PCR kit were from Takara (Dalian, China). Termi-
nal deoxynucleotidyl transferase-mediated nick end labeling
(TUNEL) kit was purchased from Roche Applied Science
(Indianapolis, IN).

2.4. Detection of Apoptosis. The cells were treated with DAPI
dye at a final concentration of 10𝜇g/mL for 10min before
microscopic observation. The DNA strand breaks were
detected using a TUNEL kit according to the manufacturer’s
instructions.

2.5. Western Blotting. Protein samples containing 40 𝜇g total
protein were separated on 10% SDS-PAGE gels and trans-
ferred to PVDFmembranes.Themembranes were incubated
with antibodies and visualized by chemiluminescence. The
intensity of bands was quantified by NIH Image J software
1.43.

2.6. Detection of Reactive Oxygen Species (ROS) and Reactive
Nitrogen Species (RNS). For detection of RNS and ROS,
cells were gently washed twice with PBS and incubated in
HBSS solution containing 5 𝜇mol/L DAF-2DA for 30min,
5 𝜇mol/L DHE for 20 minutes, 2𝜇mol/L mitoTracker for
15min, and 5𝜇mol/L mitoSOX for 10min at 37∘C. Images
were obtained by fluorescencemicroscope and imported into
Image J software where the fluorescent densities and sizes
were analyzed under fixed thresholds.

2.7. siRNA. Rictor and raptor small interfering RNA (siRNA)
and control siRNA were purchased from Dharmacon. Trans-
fection of ECs with siRNA (100 nM) was performed using
Hiperfect (Qiagen) according to the manufacturer’s instruc-
tions. In brief, subconfluent HUVECs were grown on cov-
erslip in serum free medium with siRNAs. After 24 h of
transfection, the cells were washed one time and cultured
in medium with 10% FBS. Western blot was performed to
confirm the efficiency of siRNA knockdown.

2.8. Real-Time PCR. Nuclear extracts were prepared using
Trizol reagent and quantified using a Nanodrop 2000. The
sequences of the forward and reverse strands for human
sestrin1 primers used were forward: 5󸀠-GCATGTTCCAAC-
ATTTCGTG-3󸀠 and reverse: 5󸀠-GTTCCAAATTGCCCG-
TCTAA-3󸀠. For human gapdh, the primer sequences were
5󸀠-TGAGAAGTATGACAACAGCCTCA-3󸀠 and 5󸀠-AGT-
CCTTCCACGATACCAAAGTT-3󸀠. Messenger RNA levels
of sestrin1 gene relative to reference gapdh were determined
by two-step real-time PCR.

2.9. Statistics. The data were expressed as the mean ± stan-
dard deviation. The comparison of groups was performed
by student 𝑡 test or one-way ANOVA analysis. The Newman
Keuls test was applied for post hoc pairwise multiple com-
parisons. A level of 𝑃 < 0.05 was considered significant. One
sample 𝑡 test was used for the comparison of mRNA expres-
sion by relative quantitative RT-PCR, where concentration of
control group was deemed as a constant 1. 95% confidence
interval not including 1 was considered significant.

3. Results

3.1. Rapamycin Mitigated LSS Induced Endothelial Apopto-
sis. LSS caused significant decrease in HUVECs viability
with cell shrinkage and easy detachment from the coverslip
compared to static culture (Figure 1(a)). Rapamycin with
the concentration of 100 ng/mL was delivered 30min before
application of LSS and continuously used in flow medium
for 120min. Rapamycin preserved HUVECs shape and via-
bility after exposure to LSS while rapamycin alone had no
impact on morphology and viability of HUVECs at static
condition (Figure 1(b)). After exposure to flow, apoptotic
RAECs stained by DAPI increased in contrast to those in
static state and this trend was ameliorated by rapamycin.
Apoptotic cells were not increased by treatment of rapamycin
at static condition. TUNEL assay further confirmed effect of
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Figure 1: LSS induced EC apoptosis was attenuated by rapamycin. LSS at 2 dyne/cm2 caused EC viability reduction and apoptosis which was
attenuated by rapamycin (RAPA) at the concentration of 100 ng/mL (a) HUVECs shape change and detachment after being subjected to LSS
for the various time points. (b) Pretreated HUVECs with RAPA for 30min and continuously delivered RAPA during flow study for 120min
abrogated LSS effect on cell shape change and detachment. (c) DAPI and TUNEL staining were used to label apoptotic RAECs (arrows show
apoptotic cells). Adding RAPA appeased LSS induced apoptosis and RAPA alone had no influence on apoptosis. Scale bars: 100𝜇m ((a)-(b)),
25 𝜇m (c).

LSS on EC apoptosis and the protective effect of rapamycin
(Figure 1(c)).

3.2. Rapamycin Attenuated LSS Induced ROS/RNS Production
in HUVECs. Rapamycin ameliorated the effect of LSS on
promoting HUVECsmitochondrial ROS production assayed
by mitoSOX (Figure 2(a)). Consistent result was observed
with DHE in HUVECs (Figure 2(b)). Rapamycin attenu-
ated LSS induced RNS accumulation detected by DAF-2DA
(Figure 2(c)), which was a probe to detect peroxynitrite
in the presence of superoxide [24]. The comparison of

fluorescence intensity demonstrated that rapamycin could
reduce ROS/RNS production induced by LSS (Figure 2(d)).
Rapamycin alone had no effect on ROS/RNS production
(Figure 2(e)).

3.3. Protection of Rapamycin from LSS Induced ROS/RNS
in RAECs. The effect of rapamycin on appeasing LSS
induced mitochondrial ROS production was confirmed in
RAECs assayed by mitoTracker (Figure 3(a)). Protection of
rapamycin was testified with DHE in RAECs (Figure 3(b)).
Rapamycin attenuated LSS induced RNS accumulation
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Figure 2: Rapamycin attenuated LSS induced ROS/RNS production in HUVECs. ROS/RNS accumulation caused by LSS at 2 dyne/cm2 for
120min was attenuated by rapamycin (RAPA) at the concentration of 100 ng/mL in HUVECs. (a) RAPA ameliorated the effect of LSS on
promoting ROS production examined by mitoSOX. (b) Consistent result was observed with DHE staining. (c) RAPA attenuated LSS induced
RNS accumulation assayed by DAF-2DA. Scale bars: 50 𝜇m ((a)–(c)). (d) The line graph was the statistical results of fluorescence intensity
and size at the fixed color threshold which showed the significant reduction of ROS or RNS production in RAPA + LSS group, ∗𝑃 < 0.05;
𝑛 = 10. (e) RAPA did not significantly increase ROS or RNS production as compared with vehicle DMSO, 𝑃 = 0.1279 with ANOVA, 𝑛 = 10.

detected by DAF-2DA was also reaffirmed in RAECs
(Figure 3(c)).Thequantified analysis of fluorescence intensity
was demonstrated in column graphs (Figure 3(d)).

3.4. LSS Reduced Sestrin1 Expression and Caused Contra-
dictory Activation of mTORC1 and mTORC2. To study the
mechanism of rapamycin on mitigation of LSS induced
oxidative apoptosis, antioxidative sestrin1 gene expression
and the activities of two complexes of mTOR, mTORC1
and mTORC2, were measured after shearing HUVECs.
Sestrin1 transcription decreased after shearing HUVECs
at 2 dyne/cm2 for 120min as compared with static cells

(Figure 4(a)). To test the mTORC1 activity, mTOR phospho-
rylation at Ser2448 site and its downstream S6K1 Thr389
phosphorylation were examined. After application of LSS,
the phosphorylation of mTOR at Ser2448 site in HUVECs
was maximally activated at 5min and declined after 15min
(Figure 4(b)).The phosphorylation for S6K1 in HUVECs was
also gradually inhibited by LSS after a transient activation
(Figure 4(c)).Thedownward trend of the two kinases’ activity
was incorporated in the line graph where percentage of
phosphorylated kinases was quantified relative to the total
kinases (Figure 4(d)). The phosphorylation of Akt Ser 473
which served as readout ofmTORC2 activationwas increased
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Figure 3: Rapamycin attenuated LSS induced ROS/RNS production in RAECs. ROS/RNS accumulation caused by LSS at 2 dyne/cm2 was
attenuated by rapamycin (RAPA) at the concentration of 100 ng/mL in RAECs. (a) RAPA ameliorated the effect of LSS on promoting ROS
production examined by mitoTracker. (b) Consistent result was observed with DHE staining. (c) Rapamycin attenuated LSS induced RNS
accumulation assayed by DAF-2DA. Scale bars: 25 𝜇m ((a)–(c)). (d)The column graphs demonstrated the fluorescence intensity and size was
significantly reduced in RAPA + LSS group as compared with LSS group, 𝑃 < 0.05, 𝑛 = 4.

by LSS (Figure 4(e)). The upward trend was demonstrated in
the line graph (Figure 4(f)).

3.5. Prohibition of Sestrin1 Downregulation by Rapamycin
Sheltered ECs from LSS Insult via mTORC2 Inhibition. Inhi-
bition of rictor and raptor expression by small interfering
RNAs (siRNAs) was used to prevent mTORC2 and mTORC1
assembly and thus to inhibit their functions (Figure 5(a)).
Column graph showed the effectiveness of knockdown by
siRNAs (Figures 5(b)-5(c)). Both inhibition of mTORC2 and
mTORC1 assembly increased sestrin1 expression (Figures
5(d)-5(e)). Rapamycin at the concentration of 100 ng/mL
diminished LSS induced sestrin1 reduction in HUVECs
(Figure 5(f)). Inhibition of mTORC1 by raptor siRNA could
not prohibit the decreasing of sestrin1 expression when
exposed to LSS (Figure 5(g)). However, mTORC2 inhibition

by rictor siRNA could prohibit the reduction of sestrin1
expression induced by LSS (Figure 5(h)).

4. Discussion

The main finding of the current study is that rapamycin
protects ECs from LSS induced oxidative apoptosis by
prohibiting antioxidative sestrin1 gene downregulation via
mTORC2 inhibition.

The implication of SS changes on RES implantation is
yet lack of mechanistic explanation [25]. After implanting
bare metal stent, SS relates inversely to the intimal thickness
because LSS induces vascular smooth muscle cells (SMCs)
proliferation [26] and high SS induces SMCs apoptosis [27].
However, our previous hemodynamic studies and that of
others [28] found SS maintained to be low after deployment
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Figure 4: LSS reduced sestrin1 expression and caused contradictory activation of mTORC1 and mTORC2 in HUVECs. LSS reduced sestrin1
expression and caused contradictory activation of mTORC1 and mTORC2 in HUVECs. (a) Gene expression of sestrin1 normalized to the
house-keeping gene gapdh was significantly decreased after shearing HUVECs at 2 dyne/cm2 for 120min compared to static cells, ∗𝑃 < 0.05;
𝑛 = 4. (b) Immunoblotting of mTORC1 activity at mTOR Ser2448 and S6K1 Thr389 phosphorylation sites (c). (d) The line graph below
indicated the ratio of phosphorylated kinases to total proteins for each shearing time, with that of static cells set as 0min. All data are from 3
independent experiments. (e)mTORC2 activity was determined by immunoblotting of Akt Ser473 phosphorylationwith densimetric analysis
of 3 independent experiments (f).

of RES because rapamycin abrogated LSS effect on intimal
proliferation. In light of these observations, we speculate that
LSS maintained by RES and rapamycin itself interplay in
the pathophysiology of stented segment of coronary artery
and participate in the delayed endothelialization of stent
surface.

LSSwas reported to initiate endothelial apoptosis [29]. An
in vivo study uncovered that apoptosis of the ECs in the vessel
wall was characterized in the downstream of plaques where
LSS occurred [30], similar to our previous studies [14, 31].
The current study provided the evidence that when rap-
amycin was delivered 30min in advance and continuously
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Figure 5: Upregulation of sestrin1 expression by rapamycin protected ECs from LSS insults via mTORC2 inhibition. Upregulation of sestrin1
expression by rapamycin protected ECs from LSS insults via mTORC2 inhibition. (a) HUVECs were treated with siRNA against rictor, raptor,
or scrambled control siRNA (ctrl siRNA). 48 h after transfection, cells were harvested for the detection of Rictor, Raptor, and GAPDH protein
levels by western blot. ((b)-(c)) Percentage of knockdown rictor or raptor was analyzed relative to GAPDH, ∗𝑃 < 0.05; 𝑛 = 3. ((d)-(e)) 48 h
after transfection, sestrin1 expression was significantly elevated in rictor siRNA or raptor siRNA group, ∗𝑃 < 0.05; 𝑛 = 4. (f) Rapamycin
(RAPA) reduced LSS induced sestrin1 decreasing, ∗𝑃 < 0.05, 𝑛 = 4. (g) After mTORC1 inhibition with raptor siRNA transfection for 48 h,
HUVECs were exposed to LSS or kept static. Expression of sestrin1 determined by real time PCR was reduced after LSS exposure, ∗𝑃 < 0.05,
𝑛 = 4. (h) After inhibition of mTORC2 with rictor siRNA, sestrin1 expression was not decreased by LSS in HUVECs as compared with static
group, 𝑃 = 0.7731, 𝑛 = 4.

used in flow medium, endothelial apoptosis induced by LSS
could be ameliorated.

It was demonstrated that rapamycin induced vascu-
lar dysfunction by increasing superoxide production and
decreasing nitric oxide (NO) synthesis [32]. Nonetheless,
another group reported that rapamycin appeased oxida-
tive stress with the consequence of attenuating senescent
endothelial dysfunction [33]. It is plausible because aging is
a disease of oxidative stress and rapamycin is a medication to
prolong life span [34, 35]. In corneal ECs, rapamycin at 25 and
50 nM of concentration reduced tert-butyl hydroperoxide
induced apoptosis [36]. Rapamycin was also reported to
protect vasculature by preserving nitric oxide (NO)mediated
vascular reactivity [37] and by inhibiting hydrogen peroxide

induced vascular loss of contractility [38] and even reduced
endothelial apoptosis confronting mechanic stress [9]. These
results are consistent with our data that rapamycin protects
ECs from oxidative apoptosis induced by LSS.

mTOR functions in the formation of two complexes,
mTORC1 and mTORC2. Blocking complexes assembly can
inhibit mTOR activity. mTORC1, the mTOR-raptor complex,
is sensitive to rapamycin. mTORC2 that contains rictor can
be inhibited by rapamycin in ECs in prolonged time course
[39]. Biophysical cues were reported to activate cellular
mTOR pathway recently [40]. Time course study indicated
mTORC1 was inhibited by LSS after a transient activation
while mTORC2 was activated. The contradictory activity
of mTORC2 and mTORC1 possibly made mTORC2 to be
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the priority candidate inhibited by rapamycin other than
mTORC1. Cheng et al. [41] reported rapamycin modulated
eNOS expression in high and low SS conditions, implying
that mTOR was activated in regulation of eNOS expression
when exposed to both high and low SS. Furthermore, they
found that the modulation was discrete and that rapamycin
reduced high SS boosted eNOS expression while it attenuated
LSS reduced eNOS expression. Nonetheless, they failed to
propose the rationale of the contradictory modulation of
eNOS by rapamycin in the setting of SS. Provided LSS acti-
vated the samemTOR complex as high SS, rapamycin should
have the consistent other than discrete effect on eNOS
expression in both high and low SS exposure. Through
specific inhibition of mTORC1 and mTORC2 by siRNAs, this
present study uncovered thatmTORC2, the insensitive action
site of rapamycin, was the actual target of rapamycin in LSS
exposed ECs.

This study also found antioxidative sestrin1 was downreg-
ulated in LSS exposed ECs, implying LSS induced ROS/RNS
accumulation could partly be due to the diminished ses-
trin1 expression. Considering there is no report about the
posttranscription regulation of sestrins expression, this study
next investigated sestrin1 gene expression by inhibition of
mTORC1 and mTORC2. Sestrin1 expression was boosted by
inhibition of mTORC1 and mTORC2. In the presence of LSS,
we further identified the inhibiting site of rapamycin was
mTORC2 in sheared ECs. Upregulation of sestrin1 by rosigli-
tazone reduced ROS and protected retinal cells against
apoptosis [42], congruous to this study that boosting of
sestrin1 expression by rapamycin mediated redox dependent
antiapoptotic effect.

In the current study we selected 2 dyne/cm2 as the LSS
applied on ECs since 0 to 4 dyne/cm2 was usually used as
LSS in the parallel flow chamber research.This was obviously
different fromSSmapped on the reconstructed lumen surface
of stented coronary arteries, on which LSS was defined as
less than 12 dyne/cm2 [43] or even higher [13]. Therefore,
results from the present study must be interpreted cautiously
considering the different conditions in vitro and in vivo.

In conclusion, our results fit well into a model that
rapamycin alleviates LSS induced oxidative apoptosis by
prohibiting sestrin1 downregulation through mTORC2 inhi-
bition. Our results provide an in vitro evidence to explain
the pathophysiology of RES stented segments of coronary
arteries.
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