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This paper concerns the problem of stability analysis for delayed stochastic genetic regulatory networks. By introducing an
appropriate Lyapunov-Krasovskii functional and employing delay-range partition approach, a new stability criterion is given to
ensure the mean square stability of genetic regulatory networks with time-varying delays and stochastic disturbances. The stability
criterion is given in the form of linear matrix inequalities, which can be easily tested by the LMI Toolbox of MATLAB. Moreover,
it is theoretically shown that the obtained stability criterion is less conservative than the one in W. Zhang et al., 2012. Finally, a
numerical example is presented to illustrate our theory.

1. Introduction

With the further progress of gene expression, researchers find
that a gene expression is affected by other genes; conversely,
it also influences others. Based on this reciprocal impact
relation, gene expression forms a complex network—genetic
regulatory network (GRN). GRNs are dynamical systems,
which consist of an interaction of genes, proteins, and small
molecules. In the past two decades, scholars have established
mathematical models to represent GRNs. Basically, there
are four types of GRN models, that is, Petri net model [1],
Bayesian networkmodel [2], Booleanmodel [3, 4], and (func-
tional) differential equation model [5, 6]. The concentrations
of mRNA and protein are described as the state variables in
the functional differential equation model.

As dynamical systems, stability analysis is the first priority
to explore GRNs. On the one hand, time delay inevitably
occurs in GRNs due to the slow process of transcription,
translation, and translocation [7]. On the other hand, internal
noises of cells caused by random birth and death of the
individualmolecules and external noises from environmental
fluctuations make the gene expression be best viewed as a
stochastic process [8, 9]. So, it is very necessary to analyze
the stability of GRNs with time-varying delays and stochastic
disturbances [6, 10–18].

Recently, for a class of GRNs with interval time-varying
delays and stochastic disturbances (see (17a), (17b) below),
Wu et al. [18] established several delay-range-dependent
and/or rate-dependent global stochastic asymptotical
stability criteria in terms of linear matrix inequalities (LMIs)
by using the stochastic analysis approach, employing some
free-weighting matrices and introducing a type of Lyapunov-
Krasovskii functional which includes the items like
∫
−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 d𝜃 and ∫
−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
3

(𝑠)𝑄ℎ
3

(𝑠)d𝑠 d𝜃,
where 𝑃 and 𝑄 are real symmetric positive definite matrices.
Furthermore, in [18], the item −∫

𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 in the

stochastic differential of ∫−𝜏1
−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 d𝜃 was first
estimated by employing Leibniz-Newton formula and the
inequality

− 2𝜉𝑇 (𝑡)𝑀∫
𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ
1

(𝑠) d𝑠

≤ (𝜏 (𝑡) − 𝜏
1

) 𝜉𝑇 (𝑡)𝑀𝑃−1𝑀𝑇𝜉 (𝑡)

+ ∫
𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠) 𝑃ℎ
1

(𝑠) d𝑠,

(1)
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where 𝑀 is a free-weighting matrix, and then 𝜏(𝑡) − 𝜏
1

was enlarged to 𝜏
2

− 𝜏
1

. Clearly, the conservatism would be
produced because 𝜏(𝑡) − 𝜏

1

is enlarged to 𝜏
2

− 𝜏
1

. In order to
reduce the conservatism, Zhang et al. [17] first estimated the
item−∫

𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 by using Leibniz-Newton formula
and the inequality

− 2𝜉𝑇 (𝑡) 𝑆 ∫
𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ
1

(𝑠) d𝑠

≤ (1 − 𝛼) (𝜏 (𝑡) − 𝜏
1

) 𝜉𝑇 (𝑡) 𝑆𝑃−1𝑆𝑇𝜉 (𝑡)

+ 𝛼 (𝜏 (𝑡) − 𝜏
1

) 𝜉𝑇 (𝑡)𝑁𝑃−1𝑁𝑇𝜉 (𝑡)

+ ∫
𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠) 𝑃ℎ
1

(𝑠) d𝑠,

(2)

where 𝑆 and 𝑁 are free-weighting matrices and 𝛼 is an
adjusting parameter with 0 < 𝛼 < 1, and then a so-called
convex combination technique was employed to obtain less
conservative delay-range-dependent and/or rate-dependent
global stochastic asymptotical stability criteria. It should be
emphasized that the Lyapunov-Krasovskii functional used in
[17] includes not only the items like∫−𝜏1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 d𝜃

and ∫
−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
3

(𝑠)𝑄ℎ
3

(𝑠)d𝑠 d𝜃, but also the items like

∫
𝑡

𝑡−𝛼𝜏

1

𝑥𝑇(𝑠)𝑄
4

𝑥(𝑠)d𝑠 and∫𝑡−𝛼𝜏1
𝑡−𝜏

1

𝑥𝑇(𝑠)𝑄
4

𝑥(𝑠)d𝑠 involved in the
adjustable parameter 𝛼, which can be viewed as a generalized
delay-partition approach due to the adjustable parameter 𝛼.
Generally, an appropriate delay-partition approach can bring
less conservative stability criteria (see [19] and the references
therein).

Note that free-weighting matrices (e.g., matrices 𝑀, 𝑆,
and 𝑁 above) have been employed in both [17, 18] to obtain
less conservative stability criteria. However, it is emphasized
in [18, Remark 2] that free-weightingmatricesmay produce a
super-high amount of computation for the feasible solutions
of LMIs. In order to overcome the disadvantage, in this paper
we will propose a delay-range partition (DRP) approach to
estimate accurately the item −∫

𝑡−𝜏

1

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 (see (27)
and (30)), where no free-weighting matrix is involved. By
employing an appropriate Lyapunov-Krasovskii functional
and introducing a DRP approach, a mean square stability
criterion for GRNs with time-varying delays and stochastic
disturbances is first established.Then it is theoretically shown
that the proposed stability criterion is less conservative than
[17,Theorem 1]. Finally, a numerical example is given to illus-
trate the theoretical results proposed here. The main contri-
bution of this paper can be listed as follows: (i) the Lyapunov-
Krasovskii functional employed in this paper does not
include the items like ∫

−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
3

(𝑠)𝑄ℎ
3

(𝑠)d𝑠 d𝜃 which are

required in [17, 18]; (ii) the items like−∫𝑡−𝜏1
𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠)𝑃ℎ
1

(𝑠)d𝑠 in
the stochastic differential of Lyapunov-Krasovskii functional
are estimated accurately by proposing a DRP approach;
(iii) theoretical comparison of the stability criterion [17,
Theorem 1] and the one proposed in this paper is given; and

(iv) there is no free-weightingmatrix involved, which reduces
the computational complexity.

The rest of the paper is organized as follows. In Section 2,
the model of GRNs to be studied is described. A DRP-based
mean square stability criterion (Theorem 3 below) for GRNs
with time-varying delays and stochastic disturbances is estab-
lished in Section 3.The theoretical comparison ofTheorem 3
and [17,Theorem 1] is presented in Section 4. In Section 5, an
example is given to show the validity of the obtained results.
Finally, in Section 6, the conclusions are drawn.

Notation. For a positive integer 𝑛, set ⟨𝑛⟩ = {1, 2, . . . , 𝑛}. 𝑅𝑛
denotes the 𝑛-dimensional Euclidean space. We denote by
𝑅𝑚×𝑛 the set of 𝑚 × 𝑛matrices over 𝑅. 𝐴𝑇 and 𝐴−1 represent
the transpose and inverse of a matrix𝐴, respectively. For real
symmetric matrices 𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌)
means that the matrix𝑋−𝑌 is positive semidefinite (positive
definite). 𝐼

𝑛

is the 𝑛×𝑛 identitymatrix. In a symmetricmatrix,
⋆ denotes the entries implied by symmetry.

2. Model Description

The following differential equations have been used recently
to describe GRNs [7]:

𝑚̇
𝑖

(𝑡) = − 𝑎
𝑖

𝑚
𝑖

(𝑡) + 𝑏
𝑖

(𝑝
1

(𝑡 − 𝜎 (𝑡)) , 𝑝
2

(𝑡 − 𝜎 (𝑡)) , . . . ,

𝑝
𝑛

(𝑡 − 𝜎 (𝑡))) ,
(3a)

𝑝̇
𝑖

(𝑡) = −𝑐
𝑖

𝑝
𝑖

(𝑡) + 𝑑
𝑖

𝑚
𝑖

(𝑡 − 𝜏 (𝑡)) , 𝑖 ∈ ⟨𝑛⟩, (3b)

where𝑚
𝑖

(𝑡) and 𝑝
𝑖

(𝑡) are the concentrations of the 𝑖thmRNA
andprotein at time 𝑡, respectively;𝑎

𝑖

> 0, 𝑐
𝑖

> 0, and𝑑
𝑖

> 0 are
constants, representing the degradation rate of the 𝑖thmRNA,
the degradation rate of the 𝑖th protein, and the translation rate
of the 𝑖th mRNA to 𝑖th protein, respectively; both 𝜎(𝑡) and
𝜏(𝑡) are transcriptional and translational delays, respectively;
𝑏
𝑖

is the regulatory function of the 𝑖th gene, which is generally
a nonlinear function of the variables 𝑝

1

(𝑡), 𝑝
2

(𝑡), . . . , 𝑝
𝑛

(𝑡),
but it is monotonic with each variable.

For convenience, we give the following assumptions
throughout the paper.

Assumption 1. The delays 𝜎(𝑡) and 𝜏(𝑡) are differentiable
functions satisfying

0 ≤ 𝜎
1

≤ 𝜎 (𝑡) ≤ 𝜎
2

, 0 ≤ 𝜏
1

≤ 𝜏 (𝑡) ≤ 𝜏
2

, (4a)

𝜎̇ (𝑡) ≤ 𝜎
𝑑

< +∞, ̇𝜏 (𝑡) ≤ 𝜏
𝑑

< +∞, (4b)

where 𝜎
1

, 𝜎
2

, 𝜎
𝑑

, 𝜏
1

, 𝜏
2

, and 𝜏
𝑑

are constants.

Assumption 2. The function 𝑏
𝑖

is taken as

𝑏
𝑖

(𝑝
1

(𝑡) , 𝑝
2

(𝑡) , . . . , 𝑝
𝑛

(𝑡)) =
𝑛

∑
𝑗=1

𝑏
𝑖𝑗

(𝑝
𝑗

(𝑡)) , (5)
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which is called SUM logic. Here, 𝑏
𝑖𝑗

is a monotonic function
of the Hill form; that is,

𝑏
𝑖𝑗

(𝑥) =

{{{{{{{{{{
{{{{{{{{{{
{

𝛼
𝑖𝑗

(𝑥/𝛽
𝑗

)
𝐻

𝑗

1 + (𝑥/𝛽
𝑗

)
𝐻

𝑗

if transcription factor 𝑗 is

an activator of gene 𝑖,

𝛼
𝑖𝑗

1

1 + (𝑥/𝛽
𝑗

)
𝐻

𝑗

if transcription factor 𝑗 is

a represssor of gene 𝑖,

(6)

where 𝐻
𝑗

is the Hill coefficient, 𝛽
𝑗

is a scalar, and 𝛼
𝑖𝑗

is a bounded constant, which denotes the dimensionless
transcriptional rate of transcription factor 𝑗 to gene 𝑖.

Clearly, GRN ((3a), (3b)) can be rewritten as

𝑚̇
𝑖

(𝑡) = − 𝑎
𝑖

𝑚
𝑖

(𝑡) +
𝑛

∑
𝑗=1

𝑤
𝑖𝑗

ℎ
𝑗

(𝑝
𝑗

(𝑡 − 𝜎 (𝑡))) + V
𝑖

, (7a)

𝑝̇
𝑖

(𝑡) = − 𝑐
𝑖

𝑝
𝑖

(𝑡) + 𝑑
𝑖

𝑚
𝑖

(𝑡 − 𝜏 (𝑡)) , 𝑖 ∈ ⟨𝑛⟩, (7b)

where

𝑤
𝑖𝑗

=

{{{{{{{{{
{{{{{{{{{
{

𝛼
𝑖𝑗

if transcription factor 𝑗 is
an activator of gene 𝑖,

0 if there is no connection
between 𝑗 and 𝑖,

−𝛼
𝑖𝑗

if transcription factor 𝑗 is
a represssor of gene 𝑖,

ℎ
𝑗

(𝑥) =
(𝑥/𝛽
𝑗

)
𝐻

𝑗

1 + (𝑥/𝛽
𝑗

)
𝐻

𝑗

, V
𝑖

= ∑
𝑗∈V
𝑖

𝛼
𝑖𝑗

,

(8)

and V
𝑖

is the set of all the transcription factors 𝑗 which is a
repressor of gene 𝑖.

RewritingGRN ((7a), (7b)) into compactmatrix form, we
obtain

𝑚̇ (𝑡) = − 𝐴𝑚 (𝑡) + 𝑊ℎ (𝑝 (𝑡 − 𝜎 (𝑡))) + V, (9a)

𝑝̇ (𝑡) = − 𝐶𝑝 (𝑡) + 𝐷𝑚 (𝑡 − 𝜏 (𝑡)) , (9b)

where
𝐴 = diag (𝑎

1

, 𝑎
2

, . . . , 𝑎
𝑛

) ,

𝑊 = [𝑤
𝑖𝑗

]
𝑛×𝑛

,

𝐶 = diag (𝑐
1

, 𝑐
2

, . . . , 𝑐
𝑛

) ,

𝐷 = diag (𝑑
1

, 𝑑
2

, . . . , 𝑑
𝑛

) ,

V = col (V
1

, V
2

, . . . , V
𝑛

) ,

𝑚 (𝑡) = col (𝑚
1

(𝑡) , 𝑚
2

(𝑡) , . . . , 𝑚
𝑛

(𝑡)) ,

𝑝 (𝑡) = col (𝑝
1

(𝑡) , 𝑝
2

(𝑡) , . . . , 𝑝
𝑛

(𝑡)) ,

ℎ (𝑝 (𝑡)) = col (ℎ
1

(𝑝
1

(𝑡)) , ℎ
2

(𝑝
2

(𝑡)) , . . . , ℎ
𝑛

(𝑝
𝑛

(𝑡))) .
(10)

Let (𝑚∗, 𝑝∗) be an equilibrium point of ((9a), (9b)); that
is, it is a solution of the following equation:

−𝐴𝑚∗ +𝑊ℎ (𝑝∗) + V = 0, −𝐶𝑝∗ + 𝐷𝑚∗ = 0. (11)

For convenience, we shift the equilibrium point (𝑚∗, 𝑝∗)
to the origin by using the transformations 𝑥(𝑡) = 𝑚(𝑡) − 𝑚∗
and 𝑦(𝑡) = 𝑝(𝑡) − 𝑝∗; then we have

𝑥̇ (𝑡) = − 𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) , (12a)

̇𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) , (12b)

where 𝑓(𝑦(𝑡)) = ℎ(𝑦(𝑡) + 𝑝∗) − ℎ(𝑝∗).
From the relationship between ℎ and 𝑓, one can easily

find that 𝑓 satisfies the following sector condition:

𝑓
𝑖

(0) = 0, 𝑙−
𝑖

≤
𝑓
𝑖

(𝑠)
𝑠

≤ 𝑙+
𝑖

, 𝑖 ∈ ⟨𝑛⟩, ∀0 ̸= 𝑠 ∈ 𝑅, (13)

where 𝑙−
𝑖

and 𝑙+
𝑖

are a pair of nonnegative scalars and
𝑓
𝑖

(𝑠) is the 𝑖th entry of 𝑓(𝑠). Since ℎ
𝑖

is a monotonically
increasing and differentiable function with saturation, we
have to choose 𝑙−

𝑖

as zero or a small positive number. Let
𝐿− = diag(𝑙−

1

, 𝑙−
2

, . . . , 𝑙−
𝑛

) and 𝐿+ = diag(𝑙+
1

, 𝑙+
2

, . . . , 𝑙+
𝑛

).
As shown in [15–17] the gene regulation is an intrinsically

noisy process. For this reason, in this paper, we consider a
class of GRNs with both time delays and noise disturbances
by the following model:

d𝑥 (𝑡) = [−𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))] d𝑡

+ 𝐻 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜎 (𝑡))) d𝜔 (𝑡) ,
(14a)

d𝑦 (𝑡) = [−𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡))] d𝑡, (14b)

where 𝜔(𝑡) is an 𝑚-dimensional Brown motion, 𝑚 ≥ 1, and
𝐻(𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑦(𝑡), 𝑦(𝑡 − 𝜎(𝑡))) is the noise intensity
matrix at time 𝑡 such that

trace (𝐻𝐻𝑇) ≤ 𝑥𝑇 (𝑡)𝐻
1

𝑥 (𝑡) + 𝑦𝑇 (𝑡)𝐻
2

𝑦 (𝑡)

+ 𝑥𝑇 (𝑡 − 𝜏 (𝑡))𝐻
3

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑦𝑇 (𝑡 − 𝜎 (𝑡))𝐻
4

𝑦 (𝑡 − 𝜎 (𝑡)) ,

(15)

where 𝐻
𝑖

(𝑖 = 1, 2, 3, 4) are real symmetric positive
semidefinite matrices.

For simplicity, set

ℎ
1

(𝑡) = − 𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

ℎ
2

(𝑡) = − 𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) ,

ℎ
3

(𝑡) = 𝐻 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜎 (𝑡))) .

(16)

Then, GRN ((14a), (14b)) can be represented as

d𝑥 (𝑡) = ℎ
1

(𝑡) d𝑡 + ℎ
3

(𝑡) d𝜔 (𝑡) , (17a)

d𝑦 (𝑡) = ℎ
2

(𝑡) d𝑡. (17b)
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3. Stability Criterion

In the following theorem, we will propose a DRP approach to
present an asymptotical stability criterion in the mean square
sense for GRNs with time-varying delays and stochastic
disturbance.

Theorem 3. For given scalars 𝛼 ∈ (0, 1), 𝜏
2

> 𝜏
1

> 0,
𝜎
2

> 𝜎
1

> 0, 𝜏
𝑑

and 𝜎
𝑑

, and positive integers 𝑠
1

and 𝑠
2

,
under the conditions (15) and ((4a), (4b)), we can conclude
that GRN ((14a), (14b)) is asymptotically stable in the sense
of mean square, if there exist a scalar 𝜌 > 0 and matrices
𝑈𝑇
𝑖

= 𝑈
𝑖

> 0 (𝑖 = 1, 2), 𝑉𝑇
𝑗

= 𝑉
𝑗

> 0, 𝑊𝑇
𝑗

= 𝑊
𝑗

> 0
(𝑗 = 1, 2, . . . , 7), and Λ := diag(𝜆

1

, 𝜆
2

, . . . , 𝜆
𝑛

) > 0 such that
the following LMIs hold:

𝑈
1

≤ 𝜌𝐼, (18)

Ψ
𝑘,𝑙

: = Ψ
1

+ Ψ
2

+ Ψ
3

+ Ψ
4

+ Ψ
5

+ Ψ
6

+Ψ
𝑘

+ Ψ
𝑙

< 0, ∀𝑘 ∈ ⟨𝑠
1

⟩, 𝑙 ∈ ⟨𝑠
2

⟩,
(19)

where

Ψ
1

= Ψ̃
1

+ Ψ̃𝑇
1

+ 𝜌 (𝑒𝑇
1

𝐻
1

𝑒
1

+ 𝑒𝑇
3

𝐻
2

𝑒
3

+ 𝑒𝑇
7

𝐻
3

𝑒
7

+ 𝑒𝑇
9

𝐻
4

𝑒
9

) ,

Ψ̃
1

= 𝑒𝑇
1

𝑈
1

(−𝐴𝑒
1

+𝑊𝑒
13

) + 𝑒𝑇
7

𝑈
2

(−𝐶𝑒
7

+ 𝐷𝑒
3

) ,

Ψ
2

= 𝑒𝑇
1

(𝑉
1

+ 𝑉
5

) 𝑒
1

+ 𝑒𝑇
4

(𝑉
2

− 𝑉
1

) 𝑒
4

+ 𝑒𝑇
5

(𝑉
3

− 𝑉
2

) 𝑒
5

+ 𝑒𝑇
2

[(1 + 𝛼𝜏
𝑑

) 𝑉
4

− (1 − 𝛼𝜏
𝑑

) 𝑉
3

] 𝑒
2

− (1 − 𝜏
𝑑

) 𝑒𝑇
3

𝑉
4

𝑒
3

− 𝑒𝑇
6

𝑉
5

𝑒
6

,

Ψ
3

= 𝑒𝑇
7

(𝑊
1

+𝑊
5

) 𝑒
7

+ 𝑒𝑇
10

(𝑊
2

−𝑊
1

) 𝑒
10

+ 𝑒𝑇
11

(𝑊
3

−𝑊
2

) 𝑒
11

+ 𝑒𝑇
8

[(1 + 𝛼𝜎
𝑑

)𝑊
4

− (1 − 𝛼𝜎
𝑑

)𝑊
3

] 𝑒
8

− (1 − 𝜎
𝑑

) 𝑒𝑇
9

𝑊
4

𝑒
9

− 𝑒𝑇
12

𝑊
5

𝑒
12

,

Ψ
4

= (−𝐴𝑒
1

+𝑊𝑒
13

)𝑇 (𝜏
1

𝑉
6

+ 𝜏
12

𝑉
7

) (−𝐴𝑒
1

+𝑊𝑒
13

)

+ (−𝐶𝑒
7

+ 𝐷𝑒
3

)𝑇 (𝜎
1

𝑊
6

+ 𝜎
12

𝑊
7

) (−𝐶𝑒
7

+ 𝐷𝑒
3

) ,

Ψ
5

= Ψ̃
5

+ Ψ̃𝑇
5

,

Ψ̃
5

= 𝑒𝑇
13

(𝐿+)−Λ𝐿−𝑒
9

− 𝑒𝑇
13

(𝐿+)−Λ𝑒
13

− 𝑒𝑇
9

Λ𝐿−𝑒
9

+ 𝑒𝑇
9

Λ𝑒
13

,

Ψ
6

= −
1
𝛼𝜏
1

(𝑒
4

− 𝑒
1

)𝑇𝑉
6

(𝑒
4

− 𝑒
1

)

−
1

(1 − 𝛼) 𝜏
1

(𝑒
5

− 𝑒
4

)𝑇𝑉
6

(𝑒
5

− 𝑒
4

)

−
1
𝛼𝜎
1

(𝑒
10

− 𝑒
7

)𝑊
6

(𝑒
10

− 𝑒
7

)

−
1

(1 − 𝛼) 𝜎
1

(𝑒
11

− 𝑒
10

)𝑇𝑊
6

(𝑒
11

− 𝑒
10

) ,

Ψ
𝑘

= −
𝑠
1

𝑘𝛼𝜏
12

(𝑒
2

− 𝑒
5

)𝑇𝑉
7

(𝑒
2

− 𝑒
5

)

−
𝑠
1

(1 − 𝛼) 𝑘𝜏
12

(𝑒
3

− 𝑒
2

)𝑇𝑉
7

(𝑒
3

− 𝑒
2

)

−
𝑠
1

(𝑠
1

− 𝑘 + 1) 𝜏
12

(𝑒
6

− 𝑒
3

)𝑇𝑉
7

(𝑒
6

− 𝑒
3

) ,

Ψ
𝑙

= −
𝑠
2

𝑙𝛼𝜎
12

(𝑒
8

− 𝑒
11

)𝑇𝑊
7

(𝑒
8

− 𝑒
11

)

−
𝑠
2

(1 − 𝛼) 𝑙𝜎
12

(𝑒
9

− 𝑒
8

)𝑇𝑊
7

(𝑒
9

− 𝑒
8

)

−
𝑠
2

(𝑠
2

− 𝑙 + 1) 𝜎
12

(𝑒
12

− 𝑒
9

)𝑇𝑊
7

(𝑒
12

− 𝑒
9

) ,

𝑒
𝑖

= [ 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
number 𝑖−1

𝐼
𝑛

0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
number 𝑛−𝑖

] , 𝑖 = 1, 2, . . . , 𝑛,

𝜎
12

= 𝜎
2

− 𝜎
1

, 𝜏
12

= 𝜏
2

− 𝜏
1

.
(20)

Proof. Let 𝛽(𝑡) = 𝜏
1

+𝛼(𝜏(𝑡)−𝜏
1

) and 𝛾(𝑡) = 𝜎
1

+𝛼(𝜎(𝑡)−𝜎
1

).
Choose a Lyapunov-Krasovskii functional candidate as

𝑉 (𝑡) =
4

∑
𝑖=1

𝑉
𝑖

(𝑡) , (21)

where

𝑉
1

(𝑡) = 𝑥𝑇 (𝑡) 𝑈
1

𝑥 (𝑡) + 𝑦𝑇 (𝑡) 𝑈
2

𝑦 (𝑡) ,

𝑉
2

(𝑡) = ∫
𝑡

𝑡−𝛼𝜏

1

𝑥𝑇 (𝑠) 𝑉
1

𝑥 (𝑠) d𝑠

+ ∫
𝑡−𝛼𝜏

1

𝑡−𝜏

1

𝑥𝑇 (𝑠) 𝑉
2

𝑥 (𝑠) d𝑠

+ ∫
𝑡−𝜏

1

𝑡−𝛽(𝑡)

𝑥𝑇 (𝑠) 𝑉
3

𝑥 (𝑠) d𝑠

+ ∫
𝑡−𝛽(𝑡)

𝑡−𝜏(𝑡)

𝑥𝑇 (𝑠) 𝑉
4

𝑥 (𝑠) d𝑠

+ ∫
𝑡

𝑡−𝜏

2

𝑥𝑇 (𝑠) 𝑉
5

𝑥 (𝑠) d𝑠,

𝑉
3

(𝑡) = ∫
𝑡

𝑡−𝛼𝜎

1

𝑦𝑇 (𝑠)𝑊
1

𝑦 (𝑠) d𝑠

+ ∫
𝑡−𝛼𝜎

1

𝑡−𝜎

1

𝑦𝑇 (𝑠)𝑊
2

𝑦 (𝑠) d𝑠

+ ∫
𝑡−𝜎

1

𝑡−𝛾(𝑡)

𝑦𝑇 (𝑠)𝑊
3

𝑦 (𝑠) d𝑠

+ ∫
𝑡−𝛾(𝑡)

𝑡−𝜎(𝑡)

𝑦𝑇 (𝑠)𝑊
4

𝑦 (𝑠) d𝑠

+ ∫
𝑡

𝑡−𝜎

2

𝑦𝑇 (𝑠)𝑊
5

𝑦 (𝑠) d𝑠,
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𝑉
4

(𝑡) = ∫
0

−𝜏

1

∫
𝑡

𝑡+𝜃

ℎ𝑇
1

(𝑠) 𝑉
6

ℎ
1

(𝑠) d𝑠 d𝜃

+ ∫
−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
1

(𝑠) 𝑉
7

ℎ
1

(𝑠) d𝑠 d𝜃

+ ∫
0

−𝜎

1

∫
𝑡

𝑡+𝜃

ℎ𝑇
2

(𝑠)𝑊
6

ℎ
2

(𝑠) d𝑠 d𝜃

+ ∫
−𝜎

1

−𝜎

2

∫
𝑡

𝑡+𝜃

ℎ𝑇
2

(𝑠)𝑊
7

ℎ
2

(𝑠) d𝑠 d𝜃,

(22)

and the matrices 𝑈𝑇
𝑖

= 𝑈
𝑖

> 0 (𝑖 = 1, 2), 𝑉𝑇
𝑗

= 𝑉
𝑗

> 0,
and 𝑊𝑇

𝑗

= 𝑊
𝑗

> 0 (𝑗 = 1, 2, . . . , 7) are taken from a feasible
solution to (18) and (19). By Itô’s formula, we can obtain the
following stochastic differential:

d𝑉 (𝑡) =
4

∑
𝑖=1

L𝑉
𝑖

(𝑡) d𝑡 + 2𝑥𝑇 (𝑡) 𝑈
1

ℎ
3

(𝑡) d𝜔 (𝑡) , (23)

whereL is the weak infinitesimal operator and

L𝑉
1

(𝑡) = 2𝑥𝑇 (𝑡) 𝑈
1

ℎ
1

(𝑡) + 2𝑦𝑇 (𝑡) 𝑈
2

ℎ
2

(𝑡)

+ ℎ𝑇
3

(𝑡) 𝑈
1

ℎ
3

(𝑡)

≤ 𝜂𝑇 (𝑡) Ψ
1

𝜂 (𝑡) ,

(24)

L𝑉
2

(𝑡) = 𝑥𝑇 (𝑡) (𝑉
1

+ 𝑉
5

) 𝑥 (𝑡)

+ 𝑥𝑇 (𝑡 − 𝛼𝜏
1

) (𝑉
2

− 𝑉
1

) 𝑥 (𝑡 − 𝛼𝜏
1

)

+ 𝑥𝑇 (𝑡 − 𝜏
1

) (𝑉
3

− 𝑉
2

) 𝑥 (𝑡 − 𝜏
1

)

+ (1 − ̇𝛽 (𝑡)) 𝑥𝑇 (𝑡 − 𝛽 (𝑡)) (𝑉
4

− 𝑉
3

) 𝑥 (𝑡 − 𝛽 (𝑡))

− (1 − ̇𝜏 (𝑡)) 𝑥𝑇 (𝑡 − 𝜏 (𝑡)) 𝑉
4

𝑥 (𝑡 − 𝜏 (𝑡))

− 𝑥𝑇 (𝑡 − 𝜏
2

) 𝑉
5

𝑥 (𝑡 − 𝜏
2

)

≤ 𝜂𝑇 (𝑡) Ψ
2

𝜂 (𝑡) ,
(25)

L𝑉
3

(𝑡) = 𝑦𝑇 (𝑡) (𝑊
1

+𝑊
5

) 𝑦 (𝑡)

+ 𝑦𝑇 (𝑡 − 𝛼𝜎
1

) (𝑊
2

−𝑊
1

) 𝑦 (𝑡 − 𝛼𝜎
1

)

+ 𝑦𝑇 (𝑡 − 𝜎
1

) (𝑊
3

−𝑊
2

) 𝑦 (𝑡 − 𝜎
1

)

+ (1 − ̇𝛾 (𝑡)) 𝑦𝑇 (𝑡 − 𝛾 (𝑡)) (𝑊
4

−𝑊
3

) 𝑦 (𝑡 − 𝛾 (𝑡))

− (1 − 𝜎̇ (𝑡)) 𝑦𝑇 (𝑡 − 𝜎 (𝑡))𝑊
4

𝑦 (𝑡 − 𝜎 (𝑡))

− 𝑦𝑇 (𝑡 − 𝜎
2

)𝑊
5

𝑦 (𝑡 − 𝜎
2

)

≤ 𝜂𝑇 (𝑡) Ψ
3

𝜂 (𝑡) ,
(26)

L𝑉
4

(𝑡) = ℎ𝑇
1

(𝑡) (𝜏
1

𝑉
6

+ 𝜏
12

𝑉
7

) ℎ
1

(𝑡)

− ∫
𝑡

𝑡−𝜏

1

ℎ𝑇
1

(𝑠) 𝑉
6

ℎ
1

(𝑠) d𝑠 − ∫
𝑡−𝜏

1

𝑡−𝜏

2

ℎ𝑇
1

(𝑠) 𝑉
7

ℎ
1

(𝑠) d𝑠

+ ℎ𝑇
2

(𝑡) (𝜎
1

𝑊
6

+ 𝜎
12

𝑊
7

) ℎ
2

(𝑡)

− ∫
𝑡

𝑡−𝜎

1

ℎ𝑇
2

(𝑠)𝑊
6

ℎ
2

(𝑠) d𝑠

− ∫
𝑡−𝜎

1

𝑡−𝜎

2

ℎ𝑇
2

(𝑠)𝑊
7

ℎ
2

(𝑠) d𝑠

≤ 𝜂𝑇 (𝑡) Ψ
4

𝜂 (𝑡)

−
1
𝛼𝜏
1

∫
𝑡

𝑡−𝛼𝜏

1

ℎ𝑇
1

(𝑠) d𝑠 𝑉
6

∫
𝑡

𝑡−𝛼𝜏

1

ℎ
1

(𝑠) d𝑠

−
1

(1 − 𝛼) 𝜏
1

∫
𝑡−𝛼𝜏

1

𝑡−𝜏

1

ℎ𝑇
1

(𝑠) d𝑠 𝑉
6

∫
𝑡−𝛼𝜏

1

𝑡−𝜏

1

ℎ
1

(𝑠) d𝑠

−
1

𝛽 (𝑡) − 𝜏
1

∫
𝑡−𝜏

1

𝑡−𝛽(𝑡)

ℎ𝑇
1

(𝑠) d𝑠 𝑉
7

∫
𝑡−𝜏

1

𝑡−𝛽(𝑡)

ℎ
1

(𝑠) d𝑠

−
1

𝜏 (𝑡) − 𝛽 (𝑡)
∫
𝑡−𝛽(𝑡)

𝑡−𝜏(𝑡)

ℎ𝑇
1

(𝑠) d𝑠 𝑉
7

∫
𝑡−𝛽(𝑡)

𝑡−𝜏(𝑡)

ℎ
1

(𝑠) d𝑠

−
1

𝜏
2

− 𝜏 (𝑡)
∫
𝑡−𝜏(𝑡)

𝑡−𝜏

2

ℎ𝑇
1

(𝑠) d𝑠V
7

∫
𝑡−𝜏(𝑡)

𝑡−𝜏

2

ℎ
1

(𝑠) d𝑠

−
1
𝛼𝜎
1

∫
𝑡

𝑡−𝛼𝜎

1

ℎ𝑇
2

(𝑠) d𝑠𝑊
6

∫
𝑡

𝑡−𝛼𝜎

1

ℎ
2

(𝑠) d𝑠

−
1

(1 − 𝛼) 𝜎
1

∫
𝑡−𝛼𝜎

1

𝑡−𝜎

1

ℎ𝑇
2

(𝑠) d𝑠𝑊
6

∫
𝑡−𝛼𝜎

1

𝑡−𝜎

1

ℎ
2

(𝑠) d𝑠

−
1

𝛾 (𝑡) − 𝜎
1

∫
𝑡−𝜎

1

𝑡−𝛾(𝑡)

ℎ𝑇
2

(𝑠) d𝑠𝑊
7

∫
𝑡−𝜎

1

𝑡−𝛾(𝑡)

ℎ
2

(𝑠) d𝑠

−
1

𝜎 (𝑡) − 𝛾 (𝑡)
∫
𝑡−𝛾(𝑡)

𝑡−𝜎(𝑡)

ℎ𝑇
2

(𝑠) d𝑠𝑊
7

∫
𝑡−𝛾(𝑡)

𝑡−𝜎(𝑡)

ℎ
2

(𝑠) d𝑠

−
1

𝜎
2

− 𝜎 (𝑡)
∫
𝑡−𝜎(𝑡)

𝑡−𝜎

2

ℎ𝑇
2

(𝑠) d𝑠𝑊
7

∫
𝑡−𝜎(𝑡)

𝑡−𝜎

2

ℎ
2

(𝑠) d𝑠.

(27)

For any scalars 𝑎, 𝑏 with 𝑎 < 𝑏, it follows from (16) that
∫
𝑏

𝑎

ℎ
1

(𝑡)d𝑡 = 𝑥(𝑏) − 𝑥(𝑎) − ∫
𝑏

𝑎

ℎ
3

(𝑡)d𝜔(𝑡) and ∫
𝑏

𝑎

ℎ
2

(𝑡)d𝑡 =
𝑦(𝑏) − 𝑦(𝑎), and hence

E(∫
𝑏

𝑎

ℎ𝑇
1

(𝑡) d𝑡𝑉
𝑗

∫
𝑏

𝑎

ℎ
1

(𝑡) d𝑡)

≥ [𝑥 (𝑏) − 𝑥 (𝑎)]𝑇𝑉
𝑗

[𝑥 (𝑏) − 𝑥 (𝑎)] , 𝑗 = 6, 7,
(28a)

∫
𝑏

𝑎

ℎ𝑇
2

(𝑡) d𝑡𝑊
𝑗

∫
𝑏

𝑎

ℎ
2

(𝑡) d𝑡

= [𝑦 (𝑏) − 𝑦 (𝑎)]𝑇𝑊
𝑗

[𝑦 (𝑏) − 𝑦 (𝑎)] , 𝑗 = 6, 7,

(28b)
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where E represents the mathematical expectation operator.
Next, from the sector condition (13), we can obtain that

0 ≤ − 2[(𝐿+)−𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) − 𝑦 (𝑡 − 𝜎 (𝑡))]
𝑇

× Λ [𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) − 𝐿−𝑦 (𝑡 − 𝜎 (𝑡))]

= 𝜂𝑇 (𝑡) Ψ
5

𝜂 (𝑡) .

(29)

When 𝜏(𝑡) ∈ [𝜏
1

+((𝑘−1)/𝑠
1

)𝜏
12

, 𝜏
1

+(𝑘/𝑠
1

)𝜏
12

] for some
positive integer 𝑘 ∈ ⟨𝑠

1

⟩ and 𝜎(𝑡) ∈ [𝜎
1

+ ((𝑙 − 1)/𝑠
2

)𝜎
12

, 𝜎
1

+
(𝑙/𝑠
2

)𝜎
12

] for some positive integer 𝑙 ∈ ⟨𝑠
2

⟩, it is easy to see
that

1
𝛽 (𝑡) − 𝜏

1

≥
𝑠
1

𝑘𝛼𝜏
12

,
1

𝜏 (𝑡) − 𝛽 (𝑡)
≥

𝑠
1

(1 − 𝛼) 𝑘𝜏
12

,
1

𝜏
2

− 𝜏 (𝑡)

≥
𝑠
1

(𝑠
1

− 𝑘 + 1) 𝜏
12

,

(30)

1
𝛾 (𝑡) − 𝜎

1

≥
𝑠
2

𝑙𝛼𝜎
12

,
1

𝜎 (𝑡) − 𝛾 (𝑡)
≥

𝑠
2

(1 − 𝛼) 𝑙𝜎
12

,
1

𝜎
2

− 𝜎 (𝑡)

≥
𝑠
2

(𝑠
2

− 𝑙 + 1) 𝜎
12

.

(31)

Then, the combination of (21)–(31) gives

EL𝑉 (𝑡) ≤ 𝜂𝑇 (𝑡) Ψ
𝑘,𝑙

𝜂 (𝑡) , (32)

where

𝜂 (𝑡) = col (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽 (𝑡)) , 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡 − 𝛼𝜏
1

) , 𝑥 (𝑡 − 𝜏
1

) , 𝑥 (𝑡 − 𝜏
2

) ,

𝑦 (𝑡) , 𝑦 (𝑡 − 𝛾 (𝑡)) , 𝑦 (𝑡 − 𝜎 (𝑡)) , 𝑦 (𝑡 − 𝛼𝜎
1

) ,

𝑦 (𝑡 − 𝜎
1

) , 𝑦 (𝑡 − 𝜎
2

) , 𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))) .
(33)

Due to (19), we have EL𝑉(𝑡) < 0, and hence GRN ((14a),
(14b)) is asymptotically stable in the mean square sense.

Remark 4. In the above theorem a DRP approach has been
proposed to establish an asymptotic mean square stability
criterion for GRN ((14a), (14b)). Both DRP approach and
the so-called piecewise analysis method (see, e.g., [20])
divide the delay-varying intervals into some parts with equal
length. Then DRP approach enlarges the expectation of
weak infinitesimal operator of the same Lyapunov-Krasovskii
functional in every subinterval, while the piecewise analysis
method constructs different Lyapunov-Krasovskii functional
in every subinterval.

Remark 5. Comparing with the Lyapunov-Krasovskii func-
tionals employed in Theorem 3 and [17, Theorem 1], we
remove the items ∫

−𝜏

1

−𝜏

2

∫
𝑡

𝑡+𝜃

trace[𝑓𝑇
1

(𝑠)𝑍
2

𝑓𝑇
1

(𝑠)]d𝑠 d𝜃 and

∫
−𝜎

1

−𝜎

2

∫
𝑡

𝑡+𝜃

trace[𝑓𝑇
2

(𝑠)𝑍
4

𝑓𝑇
2

(𝑠)]d𝑠 d𝜃, which is required in [17].

This will reduce the number of LMI variables to be solved,
and hence Theorem 3 requires less computer time than [17,
Theorem 1]. Furthermore, it will be shown in the next
section thatTheorem 3 is certainly less conservative than [17,
Theorem 1].

4. Theoretical Comparisons

In this part we will offer a theoretical comparison on
conservativeness of Theorem 3 and [17, Theorem 1]. For this
reason, we introduce [17, Theorem 1] as follows.

Lemma 6 (see [17, Theorem 1]). When 𝐿− = 0 and 𝐿+ = 𝐾,
GRN ((14a), (14b)) subject to ((4a), (4b)) is asymptotically
stable in the mean square sense, if there exist positive definite
matrices 𝑃

𝑖

, 𝑅
𝑖

(𝑖 = 1, 2), 𝑄
𝑗

(𝑗 = 1, 2, . . . , 8), and 𝑍
𝑘

(𝑘 =
1, 2, . . . , 6), a diagonal positive matrix Λ, matrices 𝑆

𝑖

, 𝐽
𝑖

, 𝑁
𝑖

,
𝑀
𝑖

,𝑈
𝑖

,𝑉
𝑖

,𝐿
𝑖

, and𝑇
𝑖

(𝑖 = 1, 2) of appropriate sizes, and positive
scalars 𝜌

1

, 𝜌
2

, and 𝜌
3

such that the following LMIs hold:

𝑃
1

≤ 𝜌
1

𝐼, 𝑍
3

≤ 𝜌
2

𝐼, 𝑍
4

≤ 𝜌
3

𝐼,

[[[

[

Ω
11

Ω
12

Ω
13

Ψ
𝑖14

⋆ −Ω
22

0 0
⋆ ⋆ −Ω

33

0
⋆ ⋆ ⋆ −Ψ

𝑖44

]]]

]

< 0, 𝑖 = 1, 2, 3, 4,
(34)

where

Ψ
114

= [𝜏12 (1 − 𝛼) 𝑆 𝜏
12

𝛼𝑁 𝜎
12

(1 − 𝛼) 𝐿 𝜎
12

𝛼𝑈
0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

Ψ
214

= [𝜏12 (1 − 𝛼) 𝑆 𝜏
12

𝛼𝑁 𝜎
12

𝑇
0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

Ψ
314

= [ 𝜏12𝐽 𝜎
12

(1 − 𝛼) 𝐿 𝜎
12

𝛼𝑈
0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

Ψ
414

= [ 𝜏12𝐽 𝜎
12

𝑇
0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

𝑆 = [0 𝑆𝑇
1

𝑆𝑇
2

0
𝑛×10𝑛

]
𝑇

,

𝑁 = [𝑁𝑇
1

𝑁𝑇
2

0
𝑛×11𝑛

]
𝑇

,

𝐿 = [0
𝑛×7𝑛

𝐿𝑇
1

𝐿𝑇
2

0
𝑛×4𝑛

]
𝑇

,

𝑈 = [0
𝑛×6𝑛

𝑈𝑇
1

𝑈𝑇
2

0
𝑛×5𝑛

]
𝑇

,

𝑇 = [0
𝑛×6𝑛

𝑇𝑇
1

0 𝑇𝑇
2

0
𝑛×4𝑛

]
𝑇

,

𝐽 = [𝐽𝑇
1

0 𝐽𝑇
2

0
𝑛×10𝑛

]
𝑇

,

Ψ
144

= diag (𝜏
12

(1 − 𝛼)𝑍
2

, 𝜏
12

𝛼𝑍
2

, 𝜎
12

(1 − 𝛼)𝑍
6

, 𝜎
12

𝛼𝑍
6

) ,

Ψ
244

= diag (𝜏
12

(1 − 𝛼)𝑍
2

, 𝜏
12

𝛼𝑍
2

, 𝜎
12

𝑍
6

) ,

Ψ
344

= diag (𝜏
12

𝑍
2

, 𝜎
12

(1 − 𝛼)𝑍
6

, 𝜎
12

𝛼𝑍
6

) ,

Ψ
444

= diag (𝜏
12

𝑍
2

, 𝜎
12

𝑍
6

) ,
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Ω
11

= [

[

Σ
11

Γ𝑇
1

𝜙
1

Γ𝑇
2

𝜙
2

⋆ −𝜙
1

0
⋆ ⋆ −𝜙

2

]

]
,

Σ
11

= [Θ1 Θ
3

⋆ Θ
2

] ,

Ω
22

= diag (𝜏
1

𝑍
1

, 𝜎
1

𝑍
5

) ,

Ω
12

= [𝜏1𝑀 𝜎
1

𝑉
0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

𝑀 = [𝑀𝑇
1

0 𝑀𝑇
2

0
𝑛×10𝑛

]
𝑇

,

𝑉 = [0
𝑛×6𝑛

𝑉𝑇
1

0 𝑉𝑇
2

0
𝑛×4𝑛

]
𝑇

,

Ω
13

= [ 𝑆 𝑁 𝑀 𝐽
0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

0
2𝑛×𝑛

] ,

Ω
33

= diag (𝑍
4

, 𝑍
4

, 𝑍
3

, 𝑍
4

) ,

Θ
1

=

[[[[[[[

[

Π
11

−𝑁
1

𝑀𝑇
2

+ 𝐽
1

0 𝑁
1

−𝑀
1

−𝐽
1

⋆ Π
22

−𝑆
1

+ 𝑆𝑇
2

0 𝑁
2

0
⋆ ⋆ Π

33

0 −𝑀
2

−𝐽
2

⋆ ⋆ ⋆ Π
44

0 0
⋆ ⋆ ⋆ ⋆ Π

55

0
⋆ ⋆ ⋆ ⋆ ⋆ −𝑅

1

]]]]]]]

]

,

Θ
3

=

[[[[[[[

[

0 0 0 0 0 0 𝑃
1

𝑊
0 0 0 0 0 0 0

𝐷𝑇𝑃
2

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]]]]]]]

]

,

Π
11

= −𝑃
1

𝐴 − 𝐴𝑇𝑃
1

+ 𝑄
4

+ (𝜌
1

+ 𝜏
1

𝜌
2

+ 𝜏
12

𝜌
3

)𝐻
1

+𝑀
1

+𝑀𝑇
1

+ 𝑅
1

,

Π
22

= (1 + 𝛼𝜏
𝑑

) 𝑄
1

− (1 − 𝛼𝜏
𝑑

) 𝑄
2

+ 𝑆
1

+ 𝑆𝑇
1

− 𝑁
2

− 𝑁𝑇
2

,

Π
33

= − (1 − 𝜏
𝑑

) 𝑄
1

+ (𝜌
1

+ 𝜏
1

𝜌
2

+ 𝜏
12

𝜌
3

)𝐻
2

+ 𝐽
2

+ 𝐽𝑇
2

− 𝑆
2

− 𝑆𝑇
2

,

Π
44

= 𝑄
3

− 𝑄
4

, Π
55

= 𝑄
2

− 𝑄
3

,

Γ
1

= [0 0 𝐷 0 0 0 −𝐶 0 0 0 0 0 0] ,

Γ
2

= [−𝐴 0 0 0 0 0 0 0 0 0 0 0 𝑊] ,

𝜙
1

= 𝜎
1

𝑍
5

+ 𝜎
12

𝑍
6

, 𝜙
2

= 𝜏
1

𝑍
1

+ 𝜏
12

𝑍
2

,

Θ
2

=

[[[[[[[[

[

Ξ
11

−𝑈
1

𝑉𝑇
2

+ 𝑇
1

0 𝑈
1

− 𝑉
1

−𝑇
1

0
⋆ Ξ

22

−𝐿
1

+ 𝐿𝑇
2

0 𝑈
2

0 0
⋆ ⋆ Ξ

33

0 −𝑉
2

−𝑇
2

Λ
⋆ ⋆ ⋆ Ξ

44

0 0 0
⋆ ⋆ ⋆ ⋆ Ξ

55

0 0
⋆ ⋆ ⋆ ⋆ ⋆ −𝑅

2

0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −2Λ𝐾−1

]]]]]]]]

]

,

Ξ
11

= −𝑃
2

𝐶 − 𝐶𝑇𝑃
2

+ 𝑄
8

+ (𝜌
1

+ 𝜏
1

𝜌
2

+ 𝜏
12

𝜌
3

)𝐻
3

+ 𝑉
1

+ 𝑉𝑇
1

+ 𝑅
2

,

Ξ
22

= (1 + 𝛼𝜎
𝑑

) 𝑄
5

− (1 − 𝛼𝜎
𝑑

) 𝑄
6

+ 𝐿
1

+ 𝐿𝑇
1

− 𝑈
2

− 𝑈𝑇
2

,

Ξ
33

= − (1 − 𝜎
𝑑

) 𝑄
5

+ (𝜌
1

+ 𝜏
1

𝜌
2

+ 𝜏
12

𝜌
3

)𝐻
4

− 𝐿
2

− 𝐿𝑇
2

+ 𝑇
2

+ 𝑇𝑇
2

,

Ξ
44

= 𝑄
7

− 𝑄
8

,

Ξ
55

= 𝑄
6

− 𝑄
7

.
(35)

In order to show thatTheorem 3 is less conservative than
[17, Theorem 1], the following propositions are required.

Proposition 7. Let Σ𝑇 = Σ, 𝐽
𝑗

, 𝑋
𝑗

(𝑗 = 1, 2, 3), and 𝑊𝑇 =
𝑊 > 0 be given real matrices of appropriate sizes. For given
scalars 𝛼 ∈ (0, 1) and 𝑐 > 0, set

S
1

= [(1 − 𝛼) 𝐽
1

𝛼𝐽
2

] , 𝑇
1

= diag ((1 − 𝛼)𝑊, 𝛼𝑊) ,

𝑆
2

= 𝐽
3

, 𝑇
2

= 𝑊,

Σ
0

= 𝐽
1

𝑋
1

+ 𝐽
2

𝑋
2

+ 𝐽
3

𝑋
3

.
(36)

If

[Σ + Σ
0

+ Σ𝑇
0

√𝑐𝑆
𝑖

⋆ −𝑇
𝑖

] < 0, 𝑖 = 1, 2, (37)

then there exists a (sufficiently large) positive integer 𝑠 such that

Σ −
𝑠

𝑘 (1 − 𝛼)
𝑐−1𝑋𝑇
1

𝑊𝑋
1

−
𝑠
𝑘𝛼

𝑐−1𝑋𝑇
2

𝑊𝑋
2

−
𝑠

𝑠 − 𝑘 + 1
𝑐−1𝑋𝑇
3

𝑊𝑋
3

< 0, ∀𝑘 ∈ ⟨𝑠⟩ .
(38)

Proof. It follows from (37) and the Schur complementary
lemma [21] that

Σ + Σ
0

+ Σ𝑇
0

+ 𝑐𝑆
𝑖

𝑇−1
𝑖

𝑆𝑇
𝑖

< 0, 𝑖 = 1, 2, (39)

and hence there exists a (sufficiently large) positive integer 𝑠
such that

Σ + Σ
0

+ Σ𝑇
0

+
𝑠 + 1
𝑠

𝑐𝑆
𝑖

𝑇−1
𝑖

𝑆𝑇
𝑖

< 0, 𝑖 = 1, 2. (40)

For an arbitrary but fixed 𝑘 ∈ ⟨𝑠⟩, one can derive from
(36) and (40) that

Σ + 𝐽
1

𝑋
1

+ 𝑋𝑇
1

𝐽𝑇
1

+
𝑘
𝑠
𝑐 (1 − 𝛼) 𝐽

1

𝑊−1𝐽𝑇
1

+ 𝐽
2

𝑋
2

+ 𝑋𝑇
2

𝐽𝑇
2

+
𝑘
𝑠
𝑐𝛼𝐽
2

𝑊−1𝐽𝑇
2

+ 𝐽
3

𝑋
3

+ 𝑋𝑇
3

𝐽𝑇
3

+
𝑠 − 𝑘 + 1

𝑠
𝑐𝐽
3

𝑊−1𝐽𝑇
3

< 0.

(41)
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Since

𝐽
1

𝑋
1

+ 𝑋𝑇
1

𝐽𝑇
1

+
𝑘 (1 − 𝛼)

𝑠
𝑐𝐽
1

𝑊−1𝐽𝑇
1

+
𝑠

𝑘 (1 − 𝛼)
𝑐−1𝑋𝑇
1

𝑊𝑋
1

≥ 0,

𝐽
2

𝑋
2

+ 𝑋𝑇
2

𝐽𝑇
2

+
𝑘𝛼
𝑠
𝑐𝐽
2

𝑊−1𝐽𝑇
2

+
𝑠
𝑘𝛼

𝑐−1𝑋𝑇
2

𝑊𝑋
2

≥ 0,

𝐽
3

𝑋
3

+ 𝑋𝑇
3

𝐽𝑇
3

+
𝑠 − 𝑘 + 1

𝑠
𝑐𝐽
3

𝑊−1𝐽𝑇
3

+
𝑠

𝑠 − 𝑘 + 1
𝑐−1𝑋𝑇
3

𝑊𝑋
3

≥ 0,
(42)

we obtain from (41) that (38) holds. The proof is completed.

Proposition 8. Let Ω𝑇 = Ω, 𝐽
𝑖

, 𝐿
𝑖

, 𝑋
𝑖

, 𝑌
𝑖

(𝑖 = 1, 2, 3), W𝑇 =
𝑊 > 0, and 𝑍𝑇 = 𝑍 > 0 be given real matrices of appropriate
sizes and 𝑐

𝑖

> 0 (𝑖 = 1, 2) and 𝛼 ∈ (0, 1) given scalars. Set

𝑆
11

= [𝑐
1

(1 − 𝛼) 𝐽
1

𝑐
1

𝛼𝐽
2

𝑐
2

(1 − 𝛼) 𝐿
1

𝑐
2

𝛼𝐿
2

] ,

𝑆
12

= [𝑐
1

(1 − 𝛼) 𝐽
1

𝑐
1

𝛼𝐽
2

𝑐
2

𝐿
3

] ,

𝑆
21

= [𝑐
1

𝐽
3

𝑐
2

(1 − 𝛼) 𝐿
1

𝑐
2

𝛼𝐿
2

] ,

𝑆
22

= [𝑐
1

𝐽
3

𝑐
2

𝐿
3

] ,

𝑇
11

= diag (𝑐
1

(1 − 𝛼)𝑊, 𝑐
1

𝛼𝑊, 𝑐
2

(1 − 𝛼)𝑍, 𝑐
2

𝛼𝑍) ,

𝑇
12

= diag (𝑐
1

(1 − 𝛼)𝑊, 𝑐
1

𝛼𝑊, 𝑐
2

𝑍) ,

𝑇
21

= diag (𝑐
1

𝑊, 𝑐
2

(1 − 𝛼)𝑍, 𝑐
2

𝛼𝑍) ,

𝑇
22

= diag (𝑐
1

𝑊, 𝑐
2

𝑍) ,

Ω
1

= 𝐽
1

𝑋
1

+ 𝐽
2

𝑋
2

+ 𝐽
3

𝑋
3

,

Ω
2

= 𝐿
1

𝑌
1

+ 𝐿
2

𝑌
2

+ 𝐿
3

𝑌
3

.

(43)

If

[Ω + Ω
1

+ Ω𝑇
1

+ Ω
2

+ Ω𝑇
2

𝑆
𝑖𝑗

⋆ −𝑇
𝑖𝑗

] < 0, 𝑖, 𝑗 = 1, 2, (44)

then there exists a pair of (sufficiently large) positive integers 𝑠
1

and 𝑠
2

such that

Ω −
𝑠
1

𝑘 (1 − 𝛼)
𝑐−1
1

𝑋𝑇
1

𝑊𝑋
1

−
𝑠
1

𝑘𝛼
𝑐−1
1

𝑋𝑇
2

𝑊𝑋
2

−
𝑠
1

𝑠
1

− 𝑘 + 1
𝑐−1
1

𝑋𝑇
3

𝑊𝑋
3

−
𝑠
2

𝑙 (1 − 𝛼)
𝑐−1
2

𝑌𝑇
1

𝑍𝑌
1

−
𝑠
2

𝑙𝛼
𝑐−1
2

𝑌𝑇
2

𝑍𝑌
2

−
𝑠
2

𝑠
2

− 𝑙 + 1
𝑐−1
2

𝑌𝑇
3

𝑍𝑌
3

< 0, ∀𝑘 ∈ ⟨𝑠
1

⟩ , 𝑙 ∈ ⟨𝑠
2

⟩ .

(45)

Proof. It follows from (44) that

Ω + Ω
1

+ Ω𝑇
1

+ Ω
2

+ Ω𝑇
2

+ 𝑆
𝑖𝑗

𝑇−1
𝑖𝑗

𝑆𝑇
𝑖𝑗

< 0, 𝑖, 𝑗 = 1, 2,
(46)

and hence

Ω + Ω
1

+ Ω𝑇
1

+ Ω
2

+ Ω𝑇
2

+ 𝛿𝑆
𝑖1

𝑇−1
𝑖1

𝑆𝑇
𝑖1

+ (1 − 𝛿) 𝑆
𝑖2

𝑇−1
𝑖2

𝑆𝑇
𝑖2

< 0, 𝑖 = 1, 2, ∀𝛿 ∈ [0, 1] ;
(47)

that is,

[Ω𝛿 + Ω
1

+ Ω𝑇
1

√𝑐
1

𝑆
𝑖

⋆ 𝑇̂
𝑖

] < 0, 𝑖 = 1, 2, ∀𝛿 ∈ [0, 1] , (48)

where

𝑆
1

= [(1 − 𝛼) 𝐽
1

𝛼𝐽
2

] , 𝑇̂
1

= diag ((1 − 𝛼)𝑊, 𝛼𝑊) ,

𝑆
2

= 𝐽
3

, 𝑇̂
2

= 𝑊,

Ω
𝛿

= Ω + Ω
2

+ Ω𝑇
2

+ 𝛿𝑐
2

𝑆
1

𝑇̃−1
1

𝑆𝑇
1

+ (1 − 𝛿) 𝑐
2

𝑆
2

𝑇̃−1
2

𝑆𝑇
2

,

𝑆
1

= [(1 − 𝛼) 𝐿
1

𝛼𝐿
2

] , 𝑇̃
1

= diag ((1 − 𝛼)𝑍, 𝛼𝑍) ,

𝑆
2

= 𝐿
3

, 𝑇̃
2

= 𝑍.
(49)

Applying Proposition 7 to Σ = Ω
𝛿

, Σ
0

= Ω
1

, 𝑆
𝑖

= 𝑆
𝑖

, 𝑇
𝑖

= 𝑇̂
𝑖

,
and 𝑐 = 𝑐

1

, we obtain that

Ω
𝛿

−
𝑠
1

𝑘 (1 − 𝛼)
𝑐−1
1

𝑋𝑇
1

𝑊𝑋
1

−
𝑠
1

𝑘𝛼
𝑐−1
1

𝑋𝑇
2

𝑊𝑋
2

−
𝑠
1

𝑠
1

− 𝑘 + 1

× 𝑐−1
1

𝑋𝑇
3

𝑊𝑋
3

< 0, ∀𝛿 ∈ [0, 1] , ∀𝑘 ∈ ⟨𝑠
1

⟩, 𝛿 ∈ [0, 1]
(50)

for some (sufficiently large) positive integer 𝑠
1

.
By the Schur complementary lemma, one can easily

derive from (50) that

[Ω𝑘 + Ω
2

+ Ω𝑇
2

√𝑐
2

𝑆
𝑖

⋆ −𝑇̃
𝑖

] < 0, 𝑖 = 1, 2, ∀𝑘 ∈ ⟨𝑠
1

⟩ , (51)

where

Ω
𝑘

= Ω −
𝑠
1

𝑘 (1 − 𝛼)
𝑐−1
1

𝑋𝑇
1

𝑊𝑋
1

−
𝑠
1

𝑘𝛼
𝑐−1
1

𝑋𝑇
2

𝑊𝑋
2

−
𝑠
1

𝑠
1

− 𝑘 + 1
𝑐−1
1

𝑋𝑇
3

𝑊𝑋
3

.
(52)

Again applying Proposition 7 to Σ = Ω
𝑘

, Σ
0

= Ω
2

, 𝑆
𝑖

= 𝑆
𝑖

,
𝑇
𝑖

= 𝑇̃
𝑖

, and 𝑐 = 𝑐
2

, one can complete the proof.

Proposition 9. Let 𝑝, 𝑞 ∈ 𝑅𝑛 and𝑀 ∈ 𝑅𝑛×𝑛 satisfying𝑀𝑇 =
𝑀 > 0. Then

(𝑝 + 𝑞)𝑇𝑀(𝑝 + 𝑞) ≤
1
𝛼
𝑝𝑇𝑀𝑝 +

1
1 − 𝛼

𝑞𝑇𝑀𝑞, ∀𝛼 ∈ (0, 1) .

(53)

Proof. One has

1
𝛼
𝑝𝑇𝑀𝑝 +

1
1 − 𝛼

𝑞𝑇𝑀𝑞 − (𝑝 + 𝑞)𝑇𝑀(𝑝 + 𝑞)

=
1 − 𝛼
𝛼

𝑝𝑇𝑀𝑝 +
𝛼

1 − 𝛼
𝑞𝑇𝑀𝑞 − 𝑝𝑇𝑀𝑞 − 𝑞𝑇𝑀𝑝
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= (√
1 − 𝛼
𝛼

𝑝 − √ 𝛼
1 − 𝛼

𝑞)
𝑇

𝑀(√
1 − 𝛼
𝛼

𝑝 − √ 𝛼
1 − 𝛼

𝑞)

≥ 0.
(54)

Now it is time to show thatTheorem 3 is less conservative
than [17, Theorem 1] in theory.

Theorem 10. Set 𝐿− = 0 and 𝐿+ = 𝐾. If the LMIs in (34) are
feasible, then the LMIs in (18) and (19) are feasible.

Proof. Set 𝜌 = 𝜌
1

, 𝑈
𝑖

= 𝑃
𝑖

(𝑖 = 1, 2), 𝑉
𝑗

= 𝑄
5−𝑗

, 𝑊
𝑗

=
𝑄
9−𝑗

(𝑗 = 1, 2, 3, 4), 𝑉
5

= 𝑅
1

, 𝑊
5

= 𝑅
2

, 𝑉
𝑘

= 𝑍
𝑘−5

, and
𝑊
𝑘

= 𝑍
𝑘−1

(𝑘 = 6, 7).Then it follows from (34) and the Schur
complementary lemma that (18) holds and

Σ
11

+ Ψ
4

+ 𝜏
1

𝑀𝑉−1
6

𝑀𝑇 + 𝜎
1

𝑉𝑊−1
6

𝑉𝑇 + 𝑆
𝑖𝑗

𝑇̃
𝑖𝑗

𝑆𝑇
𝑖𝑗

< 0,

𝑖, 𝑗 = 1, 2,
(55)

where

𝑆
11

= [𝜏
12

(1 − 𝛼) 𝑆 𝜏
12

𝛼𝑁 𝜎
12

(1 − 𝛼) 𝐿 𝜎
12

𝛼𝑈] ,

𝑆
12

= [𝜏
12

(1 − 𝛼) 𝑆 𝜏
12

𝛼𝑁 𝜎
12

𝑇] ,

𝑆
21

= [𝜏
12

𝐽 𝜎
12

(1 − 𝛼) 𝐿 𝜎
12

𝛼𝑈] ,

𝑆
22

= [𝜏
12

𝐽 𝜎
12

𝑇] ,

𝑇̃
11

= diag (𝜏
12

(1 − 𝛼)𝑉
7

, 𝜏
12

𝛼𝑉
7

, 𝜎
12

(1 − 𝛼)𝑊
7

, 𝜎
12

𝛼𝑊
7

) ,

𝑇̃
12

= diag (𝜏
12

(1 − 𝛼)𝑉
7

, 𝜏
12

𝛼𝑉
7

, 𝜎
12

𝑊
7

) ,

𝑇̃
21

= diag (𝜏
12

𝑉
7

, 𝜎
12

(1 − 𝛼)𝑊
7

, 𝜎
12

𝛼𝑊
7

) ,

𝑇̃
22

= diag (𝜏
12

𝑉
7

, 𝜎
12

𝑊
7

) ,
(56)

and 𝑆,𝑁, 𝐿, 𝑈, 𝑇, 𝐽,𝑀,𝑉,Ψ
4

, and Σ
11

are defined as noted
previously.

By simple computation one can derive from (55) that

[
Ω̃ + Ω̃

1

+ Ω̃𝑇
1

+ Ω̃
2

+ Ω̃𝑇
2

𝑆
𝑖𝑗

⋆ −𝑇̃
𝑖𝑗

] < 0, 𝑖, 𝑗 = 1, 2, (57)

where

Ω̃
1

= 𝑆 (𝑒
2

− 𝑒
3

) + 𝑁 (𝑒
5

− 𝑒
2

) + 𝐽 (𝑒
3

− 𝑒
6

) ,

Ω̃
2

= 𝐿 (𝑒
8

− 𝑒
9

) + 𝑈 (𝑒
11

− 𝑒
8

) + 𝑇 (𝑒
9

− 𝑒
12

) ,

Ω̃ = Ψ̃ + 𝑉 (𝑒
7

− 𝑒
11

) + (𝑒
7

− 𝑒
11

)𝑇𝑉𝑇 +𝑀(𝑒
1

− 𝑒
5

)

+ (𝑒
1

− 𝑒
5

)𝑇𝑀𝑇 + 𝜏
1

𝑀𝑉−1
6

𝑀𝑇 + 𝜎
1

𝑉𝑊−1
6

𝑉𝑇,

Ψ̃ = Ψ
1

+ Ψ
2

+ Ψ
3

+ Ψ
4

+ Ψ
5

,
(58)

and Ψ
𝑖

(𝑖 = 1, 2, . . . , 5) are defined as in (19).

By Proposition 8, there exists a pair of (sufficiently large)
positive integers 𝑠

1

and 𝑠
2

such that

Ω̃ + Ψ
𝑘

+ Ψ
𝑙

< 0, ∀𝑘 ∈ ⟨𝑠
1

⟩, 𝑙 ∈ ⟨𝑠
2

⟩, (59)

where Ψ
𝑘

and Ψ
𝑙

are defined as in (19). This, together with
Proposition 9, implies that

Ω̃ ≥ Ψ̃ − 𝜏−1
1

(𝑒
1

− 𝑒
5

)𝑇𝑉
6

(𝑒
1

− 𝑒
5

)

− 𝜎−1
1

(𝑒
7

− 𝑒
11

)𝑇𝑊
6

(𝑒
7

− 𝑒
11

) ≥ Ψ̃ + Ψ
6

,
(60)

and hence the LMIs in (19) are feasible. The proof is com-
pleted.

Remark 11. In Theorem 10, it has been theoretically investi-
gated that Theorem 3 is certainly less conservative than [17,
Theorem 1].On the other hand, the numbers of LMI variables
to be solved inTheorem 3 and [17,Theorem 1] are 8𝑛2+9𝑛+1
and 25𝑛2+10𝑛+3, respectively, which implies thatTheorem 3
will require less computer time than [17, Theorem 1].

5. An Illustrative Example

In this section, a numerical example is given to illustrate
the effectiveness and less conservativeness of our theoretical
results.

We consider a delayed GRNwith stochastic disturbances,
with the parameters described as

𝐴 = diag (3, 3, 3) , 𝐶 = diag (2.5, 2.5, 2.5) ,

𝐷 = diag (0.8, 0.8, 0.8) ,

𝑊 = [

[

0 0 −2.5
−2.5 0 0
0 −2.5 0

]

]
.

(61)

Let 𝐺
1

= 𝐺
2

= 𝐺
3

= 𝐺
4

= 0.4𝐼 and 𝑓(𝑥) = 𝑥2/(1 + 𝑥2),
which means that 𝐿− = 0 and 𝐿+ = 𝐾 = 0.65𝐼. When 𝑠

1

=
𝑠
2

= 10, for 𝜏
1

= 𝜎
1

= 1, 𝜏
2

= 𝜎
2

= 10, 𝜏
𝑑

= 𝜎
𝑑

= 0.5,
and 𝛼 = 0.1, by using theMATLAB Toolbox, inequalities (18)
and (19) have feasible solutions. By the theorem, the system
is asymptotically stable in the mean square sense. Here, some
of the solution matrices are given as follows:

𝑈
1

= [

[

3.9297 0.0000 0.0000
0.0000 3.9297 0.0000
0.0000 0.0000 3.9297

]

]
,

𝑈
2

= [

[

7.8311 −0.0000 −0.0000
−0.0000 7.8311 −0.0000
−0.0000 −0.0000 7.8311

]

]
,

(62)

and show the trajectories of the 𝑥(𝑡) and 𝑦(𝑡) in Figure 1.
When 𝜏

1

= 𝜎
1

= 1 and 𝑠
1

= 𝑠
2

= 10, the maximal
allowable upper bounds of 𝜏

2

= 𝜎
2

for different values of
𝜏
𝑑

= 𝜎
𝑑

obtained by Theorem 3 and [17, Theorem 1] are
shown in Table 1. It can be seen from Table 1 that Theorem 3
is the less conservative than [17, Theorem 1].
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Figure 1: State trajectories of the GRN in the considered example.

Table 1:Themaximal allowable bounds of 𝜏
2

= 𝜎
2

for different 𝜏
𝑑

=
𝜎
𝑑

.

𝜏
𝑑

= 𝜎
𝑑

0.8 1 1.5
[17, Theorem 1] 1.5602 1.5500 1.5450
Theorem 3 2.095 2.053 2.047

6. Conclusions

In this paper, the stability problem for a class of GRNs
with time-varying delays and stochastic disturbances has
been investigated. By constructing an appropriate Lyapunov-
Krasovskii functional and proposing a DRP approach, a
mean square stability criterion is given in terms of LMIs,
which can be easily tested by the LMI Toolbox of MATLAB.
It is theoretically shown that the proposed result is less
conservative than [17, Theorem 1]. Moreover, the number
of LMI variables in this paper is more less than the one in
[17, Theorem 1]. A numerical example has been provided to
illustrate the theoretical results given in this paper.

Extending the idea of this paper to other system models,
including singular delayed systems [19, 22–24], stochastic
systems [25], Markovian jump systems [20, 26], and genetic
regulatory networks [5, 10, 27], is under consideration.
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