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A novel nonlinear four-dimensional hyperchaotic system and its fractional-order form are presented. Some dynamical behaviors
of this system are further investigated, including Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations,
and calculated Lyapunov exponents. A simple fourth-channel block circuit diagram is designed for generating strange attractors of
this dynamical system. Specifically, a novel network module fractance is introduced to achieve fractional-order circuit diagram for
hardware implementation of the fractional attractors of this nonlinear hyperchaotic system with order as low as 0.9. Observation
results have been observed by using oscilloscope which demonstrate that the fractional-order nonlinear hyperchaotic attractors
exist indeed in this new system.

1. Introduction

As a very attractive theoretical subject, chaotification which
involves some complicated but well-organized dynamical
behaviors is a quite challenging topic and has been intensively
studied in the last four decades bymany pioneer contributors
[1–7]. Due to the great effort from these researchers, many
classical common chaotic systems and high-dimensional
autonomous chaotic systems have been investigated through
theoretical analysis and numerical simulation [8–10]. Mean-
while, it is noticed that observation of chaotic dynamical
behaviors in the experiments has begun to attract much
attention in recent years. In particular, generating chaotic
attractors by using hardware implementation has been a
subject of interest because of their potential applications
in various chaos-based technologies, such as encryption
and secure communications. In secure communication, for
example, a signal typically from a common chaotic system
was suited to mask a message to be transmitted [11, 12].

More recently, with rapid advances in nonlinear circuit
theory, many sophisticated electronic circuits have been

designed to exhibit complexity behaviors of chaos. To begin
with, it is necessary to briefly review some main advances
in three-dimensional chaotic attractor and high-dimensional
(hyperchaos) attractor generation by using hardware circuit
design. In [13], the authors proposed that the hyperchaos
can be generated by coupled Colpitts oscillators. In [14],
a new hyperchaotic Lorenz system is illustrated not only
by computer simulation but also by the realization of an
electronic circuit. Furthermore, the design and circuit imple-
mentation of some new hyperchaotic and four-dimensional
chaotic oscillators have been introduced in detail [15–20]. In
particular, many investigations are devoted to research the
dynamical properties of fractional-order chaotic systems very
recently.

Although fractional derivatives as a pure mathematical
topic have a long history, the applications of this topic to
physics and engineering are just a recent focus of inter-
est. According to the classical point of Poincare-Bendixson
theorem, it is well known that chaos phenomenon cannot
occur in dimensions less than three of autonomous equa-
tions. Therefore, by using fractional derivatives of orders

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 682408, 14 pages
http://dx.doi.org/10.1155/2014/682408



2 Mathematical Problems in Engineering

0 < 𝛼
𝑖
< 1, it is possible to obtain chaotic attractors with

an effective dimension ∑ < 3. Historically, Hartley et al. first
discovered chaotic motion of the famous Chua circuit system
of a fractional-order form with order as low as 2.7 [21]. I.
Grigorenko and E. Grigorenko introduced a generalization
of the Lorenz dynamical system using fractional derivatives
[22]. In [23], some chaotic behaviors in a fractional-order
modified Duffing system have been studied by numerical
analysis. Hyperchaos in fractional-order Rossler system is
being investigated in detail in [24]. In [25], the chaotic
behavior of the fractional unified system has been studied
with lowest order from 2.97 to 2.07. However, it is rather
rare to observe a common chaos or high-dimensional chaos
in their fractional-order form. As a result, there are very
few reports on generating common chaos especially high-
dimensional chaotic attractors in the literature.

Moreover, generating a nonlinear chaotic attractor from
fractional-order dynamical system by using physical circuit is
quite difficult. Up to now, there are two modules of fractional
circuit for designing the chaotic oscillation circuit. The first
example of an electrical circuit related to fractional calculus
is called a tree fractance circuit element, where an infinite
self-similar circuit consists of 𝑁 resistor 𝑅 and capacitors
𝐶 [26]. The second example is called chain fractance circuit
which also consists of𝑁 resistor-capacitor pairs connected in
an infinite chain [27]. In [28], the authors presented a novel
three-channel circuit for creating common chaotic attractors
with chain fractance. In [29], a remarkable fractional-order
circuit is designed for physically verifying a new hyperchaotic
system. In particular, the modified four-dimensional Chua’s
system with its fractional-order attractors has been proofed
by circuit realization [30]. As far as we know, previous works
on circuit generating fractional attractors only focused on
using tree and chain fractance module [31]. Therefore, it is
very interesting to ask whether there exists some different
topological fractance for circuit design which can generate
fractional chaos and hyperchaos [32, 33].

In this letter, a new smooth four-dimensional nonlinear
autonomous hyperchaotic system has been introduced by
adding a controller into the classical Chua’s chaotic system
with an appropriate cubic nonlinearity. Some basic dynamical
properties of this nonlinear dynamical system have been
investigated in detail. Furthermore, a fourth-channel circuit
diagram is constructed for generating a chaotic attractor.
In particular, utilizing the fractional derivatives, a novel
network module fractance has been introduced by designing
a fractional-order circuit for physically realizing the strange
attractors of the fractional-order form of this new hyper-
chaotic system.

2. Dynamical Behaviors of
the Nonlinear Hyperchaotic System

For comparison convenience, the mathematical model of the
generalized Chua’s circuit system should be reviewed by the
following expression:
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Based on the above classical system (1), a four-

dimensional hyperchaotic should be considered as follows:
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where 𝑥 = [𝑥
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𝑇
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is the state feedback controller; 𝛽

1
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3
, and 𝛽

4
are

positive constant parameters; and smooth nonlinear function
𝐹(⋅) can be denoted as 𝐹(⋅) = 0.2(𝑥

1
− 2𝑥
3

1
).

2.1. Dynamical Properties Analysis. In order to reveal dynam-
ical properties of this nonlinear hyperchaotic system, the
equilibria of system (2) should be considered at first:
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The only one equilibrium of system (2) has been obtained,
which is expressed as 𝐸

0
(0, 0, 0, 0). It can be found out that

the number of equilibria points of system (2) is significantly
less than the classical three- or four-dimensional nonlinear
system. For system (2), the corresponding Jacobian matrices
can be written in the form

𝐽
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whenwe choose𝛽
1
= 8.25,𝛽

2
= 0.8,𝛽

3
= 12.25, and𝛽

4
= 0.2,

the Jacobian system, evaluated at 𝐸
0
(0, 0, 0, 0), is given by

𝐽
0
= (

1.65 8.25 0 0

0.8 −1 1 1

0 −12.25 0 1

−0.2 0 0 0

) . (5)
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The way to solve for eigenvalues as roots of the charac-
teristic equation is |𝜆𝐼 − 𝐽

0
| = 0. Eigenvalues at 𝐸

0
(0, 0, 0, 0)

are obtained as 𝜆
1
= 2.5262, 𝜆

2
= 0.0899, 𝜆
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𝑖2.51, and 𝜆
4
= −0.983 − 𝑖2.51. It is easy to see that 𝜆

1
and

𝜆
2
are two positive real roots and 𝜆

3
and 𝜆

4
are a pair of

complex conjugate eigenvalues with negative real parts. In
this case, the equilibrium of system (2) is an unstable saddle-
focus point. According to nonlinear dynamical theory, the
Jacobian should have at least one unstable eigenvalue that the
nonlinear system can display chaotic behaviors.

Remark 1. Assume that Ω denotes a region in 𝑅
4 with a

smooth boundary 𝜕Ω. Let Ω(𝑡) be the region formed by
flowing along for time 𝑡 and then let Ω(𝑡) = {Φ(𝑡; 𝑥

0
) :
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∈ Ω}. For system (2), the phase space is determined by the

divergence of the flow 𝑉̇(𝑡) = ∫
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∇𝐹𝑑𝑉 which gives 𝑉̇ < 0.

The general condition of dissipative can be gained as
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with 𝑥 > √13/198, since 𝑉(𝑡) = 𝑉(0)𝑒
(0.2𝑎−1.2𝑎𝑥

2
−1)𝑡 is the

volume element of Ω(𝑡). Apparently, the volume of 𝑉(𝑡) will
be decreased exponentially fast. Therefore, this means that
each volume containing the system trajectory shrinks to zero
as 𝑡 → ∞ at an exponential rate 𝑉(0)𝑒−𝛿𝑡. Ultimately, all
trajectories of system (2) are confined to a subset of zero
volume and the asymptotic motion settles onto a strange
attractor.

According to the nonlinear dynamical theory, a quan-
titative measure approach of the sensitive dependence on
the initial conditions is calculating the Lyapunov exponent.
It is the average rate of divergence (or convergence) of
two neighboring trajectories. Moreover, the corresponding
Lyapunov exponents of the nonlinear dynamical system (2)
with parameters 𝛽

1
= 10, 𝛽

2
= 1, 𝛽

3
= 12.5, and 𝛽

4
= 5 are

obtained as follows:
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= −3.2881.

(7)

It is easy to see that there are two positive exponents 𝜆
𝐿
1

and 𝜆
𝐿
2

. According to Wolf method if one nonlinear system
has more than one positive Lyapunov exponent, then that
indicates that the system may be hyperchaotic with complex
dynamical behaviors.

Furthermore, the Lyapunov dimension of system (2) can
be calculated as follows:
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Figure 1: Bifurcation diagram of state variable 𝑥
1
with increasing 𝛽

1

of system (2).

The bifurcation diagram of state variable 𝑥
1
with increas-

ing 𝛽
1
can be obtained which is given in Figure 1. It can be

observed that the bifurcation diagramwell coincides with the
complexity behaviors of system (2).

When the initial conditions (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0), 𝑥
4
(0))

of system (2) are selected as (0.2, 0.05) and (0.08, 0), the
simulation results are obtained by using MATLAB program.
The fourth-order Runge-Kutta integration algorithm was
performed for solving the system equations with the same
parameters as solving Lyapunov exponents. Strange attrac-
tors of phase projections in three dimensions are shown
in Figure 2. In more detail, from Figures 3(a)–3(f) two-
dimension projections of system (2) onto 𝑥

1
− 𝑥
2
, 𝑥
1
− 𝑥
3
,

𝑥
1
− 𝑥
4
, 𝑥
2
− 𝑥
3
, 𝑥
2
− 𝑥
4
, and 𝑥

3
− 𝑥
4
planes can be clearly

observed. It is noted that the system (2) displays sophisticated
hyperchaotic dynamical behaviors.

The waveform of 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
in time domain is

shown in Figure 4. It is noted that all waveforms of vectors
are nonperiodic which indicated that the chaotic system can
display pseudorandom sequences.

The Poincaré map can reflect bifurcation and folding
properties of chaotic system. Poincaré mapping of system
(2) on several sections can be clearly seen in Figure 5, which
illustrates several sheets of attractors folded in space set.

Comparing the numerical analysis of dynamical prop-
erties of system (2), the circuit implementation results are
further investigated in the following subsection.

2.2. Nonlinear Circuit Verification for Hyperchaotic System
(2). In this subsection, a nonlinear fourth-order oscillation
circuit diagram has been designed for physically verifying the
four-dimensional hyperchaotic system (2). In order to obtain
the circuit diagram we should transform the dimensionless
equations of system (2)into the following suitable 𝑅 − 𝐶
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Figure 2: Phase portraits of the hyperchaotic attractors in three quadrants.

equations form:
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where state variables 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
can be generated from

V
𝐶
1

, V
𝐶
2

, V
𝐶
3

, and V
𝐶
4

, which are the voltage outputs over
the capacitors. The circuit diagram includes ten operational
amplifiers LM741 chip (the power supply is set to be 15±), two
analog multiplier AD633 chips, four capacitors (𝐶

1
∼ 𝐶
4
),

and some linear resistors (𝑅
1

∼ 𝑅
22
). Figure 6 shows the

circuit diagram. All resistors are exactly adjustable resistors
with high precision. Resistance is as follows: 𝑅

1
= 5 kΩ; 𝑅
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,

𝑅
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Figures 7(a) to 7(f) show the experimental observation of
these hyperchaotic strange attractors on 𝑥
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phase plane, respectively.

Comparing the simulation results and experimental results,
it can be declared that a very good qualitative agreement has
been confirmed.

3. Fractional-Order Form of
Hyperchaotic System (2)

3.1. Fractional Numerical Algorithm. In this section, the
dynamical equations of noninteger (fractional-order) form of
system (2) have been constructed at first.
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of the system (2).

Although the theory of fractional derivatives developed
as a pure mathematical topic that has three centuries, its
applications did not attract much attention until the recent
decades.There are several definitions of fractional derivatives
that are well known. Three commonly used definitions for
the general fractional differintegral nonlinear systems are
the Riemann-Liouville (RL), Grünwald-Letnikov (GL), and
Caputo’s definition.

The uniform formula of a fractional derivative with 𝛼 ∈

(0, 1) can be defined as follows:
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∞

1

𝑒
−𝑡
𝑡
𝑧−1

𝑑𝑡

=

∞

∑

𝑘=0

(−1)
𝑛

𝑛! (𝑛 + 𝑧)
+ ∫

∞

1

𝑒
(𝑧−1) log(𝑡)−𝑡

𝑑𝑡.

(11)
There are several famous definitions of fractional deriva-

tives. Three commonly used definitions for the general
fractional differintegral nonlinear systems are the Grünwald-
Letnikov (GL), Riemann-Liouville (RL), and Caputo’s defini-
tion.

TheGrünwald-Letnikov (GL) definition can be written as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
= lim
ℎ→0

ℎ
−𝛼

[(𝑡−𝛼)/ℎ]

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ)

= lim
ℎ→0

𝑓
𝛼

ℎ
(𝑡) ,

(12)
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Figure 5: Poincaré map of the hyperchaotic in different phase plane.
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Figure 6: Circuit diagram for implementing the hyperchaotic attractors.

where 𝑓(𝛼)
ℎ

(𝑡) = lim
ℎ→0

ℎ
−𝛼

∑
[(𝑡−𝛼)/ℎ]

𝑗=0
(−1)
𝑗
(
𝛼

𝑗 ) 𝑓(𝑡 − 𝑗ℎ) and
(⋅)means the integer part.

The elegant Riemann-Liouville (RL) fractional derivative
is expressed as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏,

(13)

where 𝑛 is an integer larger than 𝛼, that is, 𝑛 − 1 < 𝛼 < 𝑛, and
Γ(⋅) is the gamma function.

Caputo’s definition can be written as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
=

1

Γ (𝑚 − 𝛼)
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑𝜏, (14)

where 𝑚 is an integer larger than 𝛼, that is, 𝑚 − 1 < 𝛼 < 𝑚,
and Γ(⋅) also is the gamma function.

From (13), the fractional-order form of hyperchaotic
system (2) can be obtained as

𝑑
𝛼
𝑥
1

𝑑𝑡𝛼
= 𝛽
1
(𝑥
2
+ 0.2 (𝑥

1
− 2𝑥
3

1
)) ,

𝑑
𝛼
𝑥
2

𝑑𝑡𝛼
= 𝛽
2
𝑥
1
− 𝑥
2
+ 𝑥
3
+ 𝑥
4
,

𝑑
𝛼
𝑥
3

𝑑𝑡𝛼
= − 𝛽

3
𝑥
2
+ 𝑥
4
,

𝑑
𝛼
𝑥
4

𝑑𝑡𝛼
= − 𝛽

4
𝑥
1
,

(15)

where 𝛼 is the fractional-order satisfying 0 < 𝛼 < 1.

As is well known, the fractional differintegral does not
allow the direct implementation of the fractional operators.
Therefore, two approximation methods have been developed
for numerical solution and physic realized fractional differen-
tial system in the literature. One is the time-domain method
which is a generalization of the Adams-Bashforth-Moulton
(ABM) predictor-corrector algorithm. The other is by utiliz-
ing frequency-domain techniques based on Bode diagrams.
One can obtain a linear approximation of a fractional-order
integrator with any desired accuracy over any frequency
band. In this work, we use the predictor-corrector scheme for
numerical simulation and the frequency-based method for
fractional circuit implementation.

The (ABM) predictor-corrector scheme for (12) is derived
here for numerical simulation analysis. Consider the initial
value form of general fractional dynamical system as follows:

𝐷
𝛼
𝑖

∗
𝑥
𝑖 (𝑡) =

𝑑
𝛼
𝑖𝑥
𝑖 (𝑡)

𝑑𝑡𝛼𝑖
= 𝑓 (𝑡, 𝑥

𝑖 (𝑡)) ,

𝑥
𝑘
(0) = 𝑥

(𝑘)

0
, 𝑘 = 0, 1, . . . , [𝛼] − 1.

(16)

Note that the differential equation (13) is equivalent to the
Volterra integral equation:

𝑥 (𝑡) =

[𝛼]−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑥
(𝑘)

0
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏. (17)
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(a) 𝑥1 − 𝑥2 (b) 𝑥1 − 𝑥3

(c) 𝑥1 − 𝑥4 (d) 𝑥2 − 𝑥3

(e) 𝑥2 − 𝑥4 (f) 𝑥3 − 𝑥4

Figure 7: Experimental observations of the hyperchaotic attractors.

Set ℎ = 𝑇/𝑁 and 𝑡
𝑗
= 𝑗ℎ, (𝑗 = 0, 1, . . . , 𝑁 ∈ 𝑍

+
); the

corresponding discretization equation for (21) is defined by

𝑥
ℎ
(𝑡
𝑛+1

) =

[𝛼]−1

∑

𝑘=0

𝑥
(𝑘)

0

𝑡
𝑘

𝑛+1

𝑘!
+

ℎ
𝛼

Γ (𝛼 + 2)
𝑓 (𝑡
𝑛+1

, 𝑥
𝑝

ℎ
(𝑡
𝑛+1

))

+
ℎ
𝛼

Γ (𝛼 + 2)

𝑛

∑

𝑗=0

𝑎
𝑗,𝑛+1

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) ,

(18)

where

𝑎
(𝑗,𝑛+1)

{{

{{

{

𝑛
𝛼+1

− (𝑛 − 𝛼) (𝑛 + 1)
𝛼
, 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝛼+1

+ (𝑛 − 𝑗)
𝛼+1

− 2(𝑛 − 𝑗 + 1)
𝛼+1

, 1 ≤ 𝑗 ≤ 𝑛,

1, 𝑗 = 𝑛 + 1.

(19)

The predictor 𝑥𝑝
(𝑡
𝑛+1
)
is given by

𝑥
𝑝

ℎ
(𝑡
𝑛+1

) =

𝑛+1

∑

𝑘=0

𝑡
𝑘

𝑛+1

𝑘!
𝑥
𝑘

0
+

1

𝛾 (𝛼)

𝑛

∑

𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
ℎ
(𝑡
𝑗
)) , (20)

where

𝑏
(𝑗,𝑛+1)

=
ℎ
𝛼

𝛼
((𝑛 + 1 − 𝑗)

𝛼
− (𝑛 − 𝑗)

𝛼
) , 0 ≤ 𝑗 ≤ 𝑛. (21)

Comparing (15) and (17), estimation error of the approx-
imation is

𝑒
∗
= max
𝑗=0,1,...,𝑁

󵄨󵄨󵄨󵄨󵄨
𝑥 (𝑡
𝑗
) − 𝑥
ℎ
(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
= 𝑂 (ℎ

𝑝
) ,

𝑝 = min (2, 1 + 𝛼) .

(22)
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Figure 9: Network-type fractance module in three pairs.

Therefore, the numerical solution of a general fractional-
order system can be obtained by using the aforementioned
algorithm.

When assuming the fractional-order 𝛼 = 0.9, the
fractional-order chaotic attractors have been obtained for
determining that the system (2) is fractal. Figure 8 illustrates
the phase diagram of fractional chaotic attractors in different
plane.

3.2. Nonlinear Circuit Verification for Fractional-Order Hyper-
chaotic System. As is well known, the standard definition of
fractional differintegral does not allow direct implementation
of the fractional operators in time-domain simulations.
In order to design the circuit of fractional-order form of
dynamical system, one can obtain a linear approximation
of a fractional-order integrator with any desired accuracy
over any frequency band based on Bode diagrams. Gener-
ally, a fractional dynamical power function dependence on
frequency can be obtained by approximations as𝐻(𝑠) = 1/𝑆

𝛼

with 𝛼 = 0.1 ∼ 0.9 in step size 0.1. Hence a typical multiple
fractional power pole model can be described as

𝐻(𝑠) =
1

∏
𝑃

𝑖=1
(1 + (𝑠/𝑝

𝑖
𝑇
𝑖
))
𝑚
𝑖

, 0 < 𝑚
𝑖
< 1; 𝑖 = 1, 2, . . . , 𝑝,

(23)

where 1/𝑝
𝑖
𝑇
𝑖
is the relaxation time constants. The approxi-

mated transfer function can be written as follows:

𝐻(𝑠) =
1

∏
𝑃

𝑖=1
(1 + (𝑠/𝑝

𝑖
𝑇
𝑖
))
𝑚
𝑖

≈
∏
𝑁−1

𝑖=0
(1 + (𝑠/𝑧

𝑖
))

∏
𝑁

𝑖=0
(1 + (𝑠/𝑝

𝑖
))

, (24)

where𝑁 is a finite number and 𝑝
𝑖
and 𝑧
𝑖
are pole and zero in

the geometrical progression, respectively.
From the above derivations, according to Table 1 provided

in [34], the approximation transfer function of 1/𝑠0.9 with an
error of 2 dB is given as follows:

1

𝑆0.9
≈

2.2675 (𝑠 + 1.292) (𝑠 + 215.4)

(𝑠 + 0.01292) (𝑠 + 2.154) (𝑠 + 359.4)
. (25)

There are two types of electrical circuit modules which
are related to the fractional calculus. The first model is the
tree-type fractance element where an infinite self-similar
circuit consisting of resistors of resistance 𝑅 and capacitors of
capacitance𝐶 is depicted.The secondmodel is the chain-type
fractance which consists of resistor-capacitor pairs connected

in a chain. To generate fractional-order attractors from
system (12), we introduce a new network-type fractance
module which is different from traditional tree and chain-
type fractional fractance. The new fractance consists of 𝑁
resistor-capacitor pairs connected in a network. As for tree
and chain fractance, the network fractance can also be used
for analogue fractional differentiation and integration and as
a circuit module of a new type. In practical applications, the
circuit network (Figure 9) has been chosen as three 𝑅𝐶 pairs
by using resistors 𝑅

𝑎
, 𝑅
𝑏
, and 𝑅

𝑐
and linear capacitors 𝐶

𝑎
, 𝐶
𝑏
,

and 𝐶
𝑐
.

The corresponding transfer function 𝐻(𝑠) of this circuit
module can be written into

𝐻(𝑠)

= [𝑅
𝑎
+ (𝑅
𝑏
//

1

𝑠𝐶
𝑏

)] // [
1

𝑠𝐶
𝑎

+ (𝑅
𝑐
//

1

𝑠𝐶
𝑐

)]

= ((
𝐶
0

𝐶
𝑎

+
𝐶
0

𝐶
𝑐

)(𝑠 +
𝑅
𝑎
+ 𝑅
𝑏

𝑅
𝑎
𝐶
𝑏
𝑅
𝑏

)(𝑠 +
1

𝐶
𝑎
𝑅
𝑐
+ 𝐶
𝑐
𝑅
𝑐

))

× (𝐶
0
𝑠
3
+ [

𝐶
0
(𝑅
𝑎
+ 𝑅
𝑏
)

𝑅
𝑎
𝐶
𝑏
𝑅
𝑏

+
𝐶
0

𝐶
𝑐
𝑅
𝑐

+
𝐶
0
(𝐶
𝑎
+ 𝐶
𝑐
)

𝐶
𝑎
𝑅
𝑎
𝐶
𝑐

] 𝑠
2

+[
𝐶
0
(𝑅
𝑎
+ 𝑅
𝑏
)

𝑅
𝑎
𝐶
𝑏
𝑅
𝑏
𝐶
𝑐
𝑅
𝑐

+
𝐶
0

𝐶
𝑎
𝑅
𝑎
𝐶
𝑐
𝑅
𝑐

+
𝐶
0
(𝐶
𝑎
+ 𝐶
𝑐
)

𝐶
𝑎
𝑅
𝑎
𝐶
𝑏
𝑅
𝑏
𝐶
𝑐

] 𝑠)

−1

+ ((
𝐶
0

𝐶
𝑎

+
𝐶
0

𝐶
𝑐

)(𝑠 +
𝑅
𝑎
+ 𝑅
𝑏

𝑅
𝑎
𝐶
𝑏
𝑅
𝑏

)(𝑠 +
1

𝐶
𝑎
𝑅
𝑐
+ 𝐶
𝑐
𝑅
𝑐

))

× (
𝐶
0

𝐶
𝑎
𝑅
𝑎
𝐶
𝑏
𝑅
𝑏
𝐶
𝑐
𝑅
𝑐

)

−1

,

(26)

where 𝐶
0
is a fixed-value parameter. In practice, one can

obtain the transfer function as 𝐹(𝑠) = 𝐻(𝑠)𝐶
0
= 1/𝑠

0.9 by
adjusting a value of 𝐶

0
as 𝐶
0
= 1 𝜇F. In addition, comparing

𝐹(𝑠) with 𝐸
𝑞
.(26), some adjustable resistances can be tuned

as 𝑅
𝑎
= 1.55MΩ, 𝑅

𝑏
= 61.54MΩ, 𝑅

𝑐
= 2.526 kΩ, 𝐶

𝑎
=

0.734 𝜇F, 𝐶
𝑏
= 0.522 𝜇F, and 𝐶

𝑐
= 1.103 𝜇F.

Furthermore, to verify the observed strange attractors
from the fractional-order form of hyperchaotic system, an
experimental nonlinear fourth-channel fractional circuit has
been designed which included two main parts; that is,
the first part shows the network-type fractance module
in Figure 9 and the second part shows the integer-order
circuit in Figure 6. The full schematic diagram with detailed
specifications is depicted in Figure 10.

In addition, the corresponding exact state 𝑅-𝐶 equations
can be derived as follows:

𝑑
0.9
𝑢
𝐶
1

𝑑𝑡0.9
=

𝑅
2

𝑅
3
𝑅
7
𝐶
1
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𝐶
2
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𝑅
2

𝑅
3
𝐶
1

(
1

𝑅
6

𝑢
𝐶
1

−
𝑅
5

100𝑅
1
𝑅
4

𝑢
3

𝐶
1

) ,

𝑑
0.9
𝑢
𝐶
2

𝑑𝑡0.9
=

𝑅
9

𝑅
8
𝑅
10
𝐶
2

𝑢
𝐶
1

−
𝑅
9
𝑅
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𝑅
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𝑅
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𝑢
𝐶
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+
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Figure 10: Circuit diagram for implementing fractional-order hyperchaotic attractors.

𝑑
0.9
𝑢
𝐶
3

𝑑𝑡0.9
= −

𝑅
12
𝑅
16

𝑅
11
𝑅
15
𝑅
17
𝐶
3

𝑢
𝐶
2

−
𝑅
16

𝑅
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𝑅
22
𝐶
3

𝑢
𝐶
4

,

𝑑
0.9
𝑢
𝐶
4

𝑑𝑡0.9
= −

𝑅
5
𝑅
20

𝑅
4
𝑅
19
𝑅
21
𝐶
4

𝑢
𝐶
1

,

(27)

where 𝐶
1

∼ 𝐶
4
should be replaced by the network-type

fractance.
In experiment, assume that the supply voltages are chosen

as 𝑉 = ±15V. Operational amplifiers and analog multipliers
are chosen as in integer-order circuit. Digital oscilloscope
TEK TPS2014 is used to detect the phase plane and wave-
forms. Figures 11(a)–11(f) show the oscilloscope-observed
results for fractional-order of chaotic attractors. Moreover,
comparing Figure 8 with Figure 11, very good qualitative
agreement between the integer attractors and fractional-
order attractors can be observed.

4. Conclusions

In this paper, a new four-dimensional nonlinear smooth
autonomous hyperchaotic system derived from the famous

Chua circuit has been investigated in detail. Some dynamical
behaviors of this system are analysis by means of equilib-
rium point, bifurcations, Poincaré mapping, parameter phase
portraits, and calculated Lyapunov exponents. Meanwhile,
a simple fourth-channel circuit diagram has been designed
for verifying these new chaotic attractors. In particular,
based on the fractional-order theorem, we have presented
a novel network element fractance which can be used by
designing a novel nonlinear fractional-order circuit. Our
physical experiment results demonstrate the effectiveness of
this fractional-order circuit design.

It is assumed that there still are some abundant and com-
plex dynamical properties unknown in this modified four-
dimensional Chua’s system. This will greatly enhance our
understanding of chaotic systems in general and implement
fractional-order chaotic attractors using hardware devices in
the near future.
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(a) 𝑥1 − 𝑥2 (b) 𝑥1 − 𝑥3
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(e) 𝑥2 − 𝑥4 (f) 𝑥3 − 𝑥4

Figure 11: Experimental observations of the fractional-order hyperchaotic attractors with 𝛼 = 0.9.
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