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This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local
statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating
reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially
varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the
proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and
subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient
implementation without an iterative computational structure.

1. Introduction

Restoration of motion blurred images is a fundamental prob-
lem of image processing especially under a poor illumination
condition, where a long exposure creates unwanted motion
blur. A number of blind image deconvolution methods
have been proposed to remove motion blur. In this context
practical blind image deconvolution can be categorized into
three main varieties: single image-based, multiple image-
based, and hardware-aided approaches.

Single image-based blind deconvolution estimates the
blur kernel in the form of a point-spread-function (PSF)
based on a simple parametric model using a single input
image [1, 2]. However, a simple parametric curve cannot
successfully represent the motion PSF made by various types
of real camera motions. Fergus et al. proposed a general
motion PSF estimation method which uses a sophisticated
variational Bayesian method based on the natural image
prior [3], which was followed up by related research in [4–
8]. Although these methods provide a generalized camera
motion model, a manual process of tuning parameters and
high computational load are their disadvantages.

The multiple image-based blind deconvolution removes
motion blur by appropriately combining long- and short-
exposure images under the assumption that both images are

captured from the same scene at the same time [9–11]. If
the simultaneous acquisition assumption does not hold, the
multiple image-based approach fails to remove motion blur.

The hardware-aided approach uses additional optical
devices or electronic systems to overcome the limitations
of the multiple image-based approach [12–16]. In spite of
acquiring more accurate, robust data to estimate the motion
PSF, the hardware-aided method needs a complicated optical
system such as a coded-exposure or an embedded inertial
sensor. An efficient implementation method of a built-in
inertial sensor was introduced by Šindelář and Šroubek for
mobile imaging devices [16]. But the performance of motion
deblurring is not good enough because of the sensor noise
and the use of a simple restoration filter.

For fast motion deblurring, both PSF estimation and the
corresponding image restoration should be fast and accurate.
In this paper, an adaptive image deblurring method is pre-
sented by generating the motion trajectory in the probabilis-
tic manner and performing image restoration based on the
local statistics to solve common issues in the deconvolution
process.The contribution of the proposed research is twofold:
(i) a novel motion PSF estimation method is proposed by
minimizing the motion trajectory error based on a priori
probability distribution, and (ii) a noniterative adaptive
image restoration algorithm is proposed based on the local
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Figure 1: Motion trajectory generation process.

statistics of image to reduce ringing artifacts and noise
amplification.The proposedmethod can quickly estimate the
motion PSF using an inertial sensor and a priori probability
distribution. The proposed adaptive image restoration algo-
rithm minimizes restoration artifacts resulting from inac-
curately estimated PSF. Both theoretical justification based
on the image degradation model incorporating the projected
camera motion and experimental results demonstrate that
the proposed method outperforms existing state-of-the-art
deconvolution methods.

2. Image Degradation Model Using Projected
Camera Motion

Long-exposure photography is generally degraded bymotion
blur. If an inertial sensor samples 𝐾 different poses of
the shaky camera during the exposure period, an object
point (𝑋, 𝑌, 𝑍) in the three-dimensional (3D) object space is
projected onto𝐾 different positions (𝑥𝑘, 𝑦𝑘), 𝑘 = 1, . . . , 𝐾, in
the two-dimensional (2D) image plane as shown in Figure 1.
More specifically, the image point is related with the object
point using the homogeneous vectors as

[𝑥𝑘, 𝑦𝑘, 1]
𝑇
= Π𝑘 [𝑋, 𝑌, 𝑍, 1]

𝑇
, (1)

where Π𝑘 represents the projection matrix of the 𝑘th camera
pose. If the motion trajectory is generated in the space-
invariant manner, 𝐾 points in the image plane generate the
point-spread-function (PSF) of the corresponding motion
blur as

ℎ (𝑚, 𝑛) =
1

𝐾

𝐾

∑

𝑘=1

𝛿 (𝑚 − 𝑥𝑘, 𝑛 − 𝑦𝑘) . (2)

Given the space-invariant PSF, the image degradation model
of motion blur is given in the vector-matrix form as

𝑔 = 𝐻𝑓 + 𝜂, (3)

where 𝑔 represents the motion blurred image, 𝐻 is the
degradationmatrix,𝑓 is the ideal image without motion blur,
and 𝜂 is additive noise. Assuming that the image size is𝑁×𝑁,
all 𝑔, 𝑓, and 𝜂 are expressed by 𝑁

2
× 1 lexicographically

ordered vectors, and 𝐻 is an 𝑁
2

× 𝑁
2 block circulant

matrix defined by the PSF. In this work, we analyze the
motion trajectory using inertial sensors and then compute

the projection matrices. To estimate the motion PSF, each of
scene points is projected into the image plane according to
the projection matrices.

3. PSF Estimation Using Camera
Motion Tracking

3.1. PSF Estimation of Motion Blur Based on the Projected
Trajectory. In estimating the size and shape of a motion PSF,
only the relative position of the camera is needed because the
PSF is the sum of reflected intensities from the first position
to the last one of the camera motion as described in (2). Each
camera position is projected onto the image plane and can be
expressed using a planar homography as

(𝑥𝑘, 𝑦𝑘, 1)
𝑇
= [C(R𝑘 +

1

𝑑
t𝑘nV
𝑇
)C−1] (𝑥0, 𝑦0, 1)

𝑇
, (4)

where C represents the camera intrinsic matrix, R is the
rotation matrix, 𝑑 is the scene depth, t is the translation
vector, and nV is the normal vector to the image plane.
The relationship between the motion trajectory and camera
translation is shown in Figure 2, where the motion trajectory
Δ𝑚𝑡 in the image plane is computed as

Δ𝑚𝑡 =

𝑙𝑓

𝑑
Δ𝑡𝑐,

(5)

where 𝑙𝑓 and Δ𝑡𝑐, respectively, denote a focal length and
translation of the camera. If the scene depth is assumed to be
much larger than the focal length, Δ𝑚𝑡 can be neglected. For
this reason, the camera translation does not affect the motion
PSF under the large scene depth, and (4) is simplified as

(𝑥𝑘, 𝑦𝑘, 1)
𝑇
= [CR𝑖C

−1
] (𝑥0, 𝑦0, 1)

𝑇
. (6)

The camera coordinate is assumed to be aligned to the world
coordinate whose origin lies on the optical axis of the camera.
In this case, cameramatrixC is determined by the focal length
𝑙𝑓 as

C = [

[

𝑙𝑓 0 0

0 𝑙𝑓 0

0 0 1

]

]

. (7)
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Figure 2: Motion trajectory according to the camera translation.

Using the small-angle approximation [17] and space-
invariant motion blur, the rotation matrix is computed
as

R = [

[

1 0 𝜔
𝑦

𝑖

0 1 −𝜔
𝑥

𝑖

−𝜔
𝑦

𝑖
𝜔
𝑥

𝑖
1

]

]

, (8)

where 𝜔
𝑥

𝑖
and 𝜔

𝑦

𝑖
represent the 𝑖th angular velocities around

𝑥 and 𝑦 axes, respectively. Since 𝑙𝑓 tan(𝜔) ≈ 𝑙𝑓𝜔 for a very
small 𝜔, the projection matrix in (6) can be expressed as

(𝑥𝑘, 𝑦𝑘, 1)
𝑇
= [

[

1 0 𝑙𝑓𝜔
𝑦

𝑖

0 1 𝑙𝑓𝜔
𝑥

𝑖

0 0 1

]

]

(𝑥0, 𝑦0, 1)
𝑇
. (9)

In this work, we use gyro data to estimate angular veloci-
ties according to the camera motion as shown in Figure 3
and compute correspondingly the projected positions in
the image plane. Under the ideal condition, the projected
trajectory is equal to the PSF of the camera motion. However,
the gyro data are noisy under real circumstances. More
specifically, noisy gyro data results in erroneous matching
between the projected position in the image plane and the real
PSF sample. For robust estimation of PSF using noisy gyro
data, we assume that a point on the projected trajectory has
Gaussian distribution, and as a result the projected trajectory
consists of sum of Gaussian distributions as

ℎ (𝑚, 𝑛) =
1

𝐾𝐺

𝐾

∑

𝑘=1

𝐺 (𝑚 − 𝑥𝑘, 𝑛 − 𝑦𝑘) , (10)

where 𝐺 represents a two-dimensional Gaussian distribution
and 𝐾𝐺 is the normalization constant. As a result, the
PSF of camera motion becomes the accumulation of the
reweighted trajectory using Gaussian distribution as shown
in Figure 4(a). Gaussian distribution is estimated by analyz-
ing the gyro data of a fixed camera as shown in Figure 4(b).

In this paper, we use “Sensor Data Logger” proposed in
[18] to acquire gyro data which are synchronizedwith blurred

frames. The gyro data and the corresponding blurred frame
are time stamped, and both opening and closing times of
the shutters are recorded to analyze the delay. In this paper,
the unknown delay is experimentally determined for the test
device.

3.2. SpatiallyAdaptive ImageRestorationUsing Local Statistics.
Given the estimated PSF, the motion deconvolution becomes
a simple image restoration problem. In recent years, many
image restoration methods have been proposed to remove
various types of image degradation factors. Since image
restoration is an ill-posed problem, the regularized solution
often requires computationally expensive iterative optimiza-
tion. To remove motion blur without undesired artifacts,
a novel image restoration method is presented using local
statistics of the image by minimizing the energy function
defined as

𝐸 (𝑓) =
1

2

󵄩󵄩󵄩󵄩𝐻𝑓 − 𝑔
󵄩󵄩󵄩󵄩

2

2
+

𝜆1

2

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐷𝑖𝑓
󵄩󵄩󵄩󵄩

2

2

+ 𝑊𝑚 ∘ (
𝜆2

2

2

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐷𝑖𝑓 − 𝐷𝑖𝐶𝑔
󵄩󵄩󵄩󵄩

2

2
) ,

(11)

where ‖⋅‖ denotes the Euclidean norm, “∘” is the element-wise
multiplication operator, 𝑊𝑚 is the spatially varying activity
map, 𝐶 is a highpass filter, 𝜆1 and 𝜆2, respectively, are the
horizontal and vertical regularization parameters, and𝐷1 and
𝐷2, respectively, are the horizontal and vertical derivative
operators. If the estimated 𝑓 has artifacts such as ringing or
noise amplification,𝐷𝑖𝑓 has sharp transitions, and as a result
󵄩󵄩󵄩󵄩𝐷𝑖𝑓 − 𝐷𝑖𝐶𝑔

󵄩󵄩󵄩󵄩 becomes large.
The solution of the minimization problem is obtained by

solving the equation that makes the derivative of (11) become
zero, such as

𝑇𝑓 − 𝑏 = 0, (12)

where

𝑇 = 𝐻
𝑇
𝐻 + 𝜆1(

2

∑

𝑖=1

𝐷
𝑇

𝑖
𝐷𝑖)

+ 𝜆2𝑊𝑚 ∘ (

2

∑

𝑖=1

𝐷
𝑇

𝑖
𝐷𝑖) ,

(13)

𝑏 = (𝐻
𝑇
+ 𝜆2𝑊𝑚 ∘ (

2

∑

𝑖=1

𝐷
𝑇

𝑖
𝐷𝑖)𝐶)𝑔. (14)

Since ringing artifacts appear near edges and boundaries,
a spatially adaptive activity map is used to reduce the ringing
artifacts while preserving edges.The proposed activity map is
computed as [19]

𝑊𝑚 (𝑥, 𝑦) =
1

𝑝𝑡𝜎
2

𝑙
(𝑥, 𝑦) + 1

, (15)

where 𝜎
2

𝑙
represents the local variance in the neighborhood

of (𝑥, 𝑦) in the input image and 𝑝𝑡 is a tuning parameter
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Figure 3: Gyro data and the projected trajectory.
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Figure 4: (a) The motion PSF estimation using the reweighted trajectory and (b) estimation of Gaussian distribution using the gyro data of
a fixed camera shown in the rectangular box.

that makes the activity map distribute as evenly as possible
in [0, 1]. In this work, 𝑝𝑡 = 1500 was used for the empirically
best result with 5 × 5 blocks for the local variance.

Since matrix 𝑇 is block-circulant for a space-invariant
motion PSF as shown in (13), the linear equation in (12) can
be solved using the two-dimensional (2D) discrete Fourier
transform (DFT). Let 𝑓, 𝑔, ℎ̃, 𝑑, 𝑤𝑚, and 𝑐 be the DFTs
of the estimated image, observed image, PSF, derivative
filters, activity map, and highpass filter, respectively; then the
solution of the restoration problem is given as

𝑓 (𝑘, 𝑙)

=

ℎ̃
∗
(𝑘, 𝑙) + 𝜆2𝑤𝑚 (𝑘, 𝑙) ∑

2

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑖 (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

𝑐 (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨
ℎ̃ (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆1∑
2

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑖 (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆2𝑤𝑚 (𝑘, 𝑙) ∑
2

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑑𝑖 (𝑘, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2
.

(16)

The finally restored image 𝑓 is obtained by the inverse DFT
of 𝑓.

4. Experimental Results

The proposed motion deblurring method is tested using
indoor and outdoor images of size 1280 × 960 acquired by
a smartphone with Android OS and a 2.26GHz application
processor (AP). The performance of restoration is evaluated
using the no-reference image quality assessment method
proposed in [20] and the CPU processing time in a personal
computer equippedwith 3.40GHzCPUand 16GBRAM.The
proposed method is also compared with two types of state-
of-the-art methods including the single image-based [3, 5, 7]
and hardware-aided approaches [16]. The gyro data in the
smartphone are measured during the exposure time.

Figure 5 shows restored results using different blind
deconvolution methods. Although Cho’s method [7] can
remove motion without ringing artifact, it has unnatural
discontinuities and intensity saturation due to the bilateral
filtering as shown in Figure 5(c). On the other hand, the
proposed method can successfully remove the motion blur
without unnatural discontinuities and preserve edge regions.
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Figure 5: Comparison of different image restoration methods: (a) input motion-blurred image, (b) Fergus’s method [3], (c) Cho’s method
[7], (d) Shan’s method [5], (e) Šindelář’s method [16], and (f) the proposed method.

The proposed method also outperforms Šindelář’s method
[16] due to Gaussian distribution-based trajectory estimation
and adaptive image restoration as shown in Figures 5(e) and
5(f).

Figure 6 shows results of quantitative analysis using five
1280× 960 test images. Since the proposed method needs the
gyro data, quantitative analysis uses a no-reference metric of
Liu’s method that estimates the quality of motion deblurring.
A large value of Liu’s measure implies the high-quality. The
result of the proposedmethod is comparable to or better than
other deblurring methods as shown in Figure 6.

Table 1 shows processing times of five different methods.
The proposed method is the fastest except Šindelář’s method
that uses simpleWiener filter. However the proposedmethod
produces 26% higher deblurring measure than Šindelář’s
method at the cost of approximately twice longer processing
time. Generally, accurate camera calibration and synchro-
nization of gyro data are not easy tasks.The proposedmotion

deblurring method provides the solution for both accurate
PSF estimation and image restoration using gyro data.

5. Conclusion

We have presented a novel motion trajectory estimation
method using an embedded inertial sensor and a spatially
adaptive image restoration algorithm for motion deblurring.
For robust estimation of the motion PSF in the presence
of sensor noise, the proposed method accumulated point-
spread-functions (PSFs) of all camera positions using the
projected trajectory based onGaussian distribution. Based on
the estimated motion PSF, the proposed motion deblurring
algorithm can restore the image without undesired artifacts
and noise amplification. The computational structure of the
proposed algorithm does not need iterativeminimization but
uses the discrete Fourier transform domain filtering includ-
ing local statistics-based spatially adaptive filtering. Since
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Table 1: Comparison of processing times of five different restoration
algorithms (sec.).

Methods Image 1 Image 2 Image 3 Image 4 Image 5
Fergus et al.
[3] 10023.9 7437.4 9624.3 13353.0 8282.1

Shan et al. [5] 261.0 275.0 287.0 289.0 298.0
Cho and Lee
[7] 20.1 20.4 20.7 20.3 20.4

Šindelář and
Šroubek [16] 0.7 0.7 0.8 0.8 0.8

Proposed
method 1.9 1.7 1.7 1.7 1.7

the proposed method estimates the motion trajectory using
the embedded gyro sensor and performs restoration in the
Fourier domain, it is much faster than existing state-of-the-
art methods. Experimental results proved the performance of
the proposed method in the sense of both image quality and
the processing time. The future work will include a motion
trajectory estimation using sensors according to scene depth
for further improving the restoration performance.
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