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We define and calculate sensitivity for several actual and simulated probes. Probe sensitivity can have a significant impact on the
measurement uncertainty associated with probe deconvolution in near-field spherical-scanning, antenna measurements.

1. Introduction

In near-field planar scanning, we know that if the receiving
pattern of the probe has a null in a given direction, then the
far-field pattern of the test antenna cannot be determined
reliably in that direction [1]. That is, the probe must be
sensitive to plane-wave modes of interest. On the other
hand, in near-field spherical scanning, there is no direct
relationship between the probe and the test antenna patterns
in a given direction. Nevertheless, we argue that the probe
must be sensitive to all spherical-wave modes needed to
represent the radiated fields.

This paper presents a small selection of results from
a larger study of probe-sensitivity issues in external and
internal spherical-scanning measurements. We calculate and
discuss probe (modal) sensitivity as an aid in the choice of
probes and measurement parameters (this is an expanded
version of a paper presented at the 2012 Antenna Measure-
ments Techniques Association Symposium [2]).

2. External Scanning

In external spherical scanning, we determine the radi-
ated fields outside of the measurement sphere that are
due to sources confined within the measurement sphere
(see Figure 1). This is commonly called spherical scanning
without the qualifier “external.” The theory presented here is

a synopsis with little detail beyond that needed for under-
standing this paper. A complete discussion may be found in
[3].

The far-field radiation of an antenna can be characterized
by

E (r) ∼
𝑟→∞

t (r̂) exp (𝑖𝑘𝑟)
𝑖𝑘𝑟

𝑎
0
. (1)

This formula embodies the linear relationship between the
radiated electric field E(r) and the excitation 𝑎

0
. The trans-

mission function t(r̂)may be expanded as

t (r̂) =
𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛

[𝑡
1

𝑛𝑚
X1
𝑛𝑚

(r̂) + 𝑡
2

𝑛𝑚
X2
𝑛𝑚

(r̂)] , (2)

whereX1
𝑛𝑚

andX2
𝑛𝑚

= 𝑖r̂×X1
𝑛𝑚

are vector spherical harmonics
[4, Chapter 16], which depend only on the direction r̂, and the
𝑡ℓ
𝑛𝑚

are (unknown) modal coefficients.
The antenna under test (AUT) is characterized by mea-

surement with a probe that moves over a spherical surface
of radius 𝑟, enclosing the AUT. To account for polarization,
two measurements are made for each probe location r. These
measurements correspond to probe orientations differing by
a rotation of 90∘ about the probe axis. We follow common
practice and use a “special symmetric” or “𝜇 = ±1”
probe. For such probes, the polarization measurements are
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Figure 1: External spherical scanning.

the components of a transverse “measurement vector” w(r)
that also may be expanded in spherical harmonics:

w (r)
𝑎
0

=

𝑁

∑
𝑛=1

𝑛

∑
𝑚=−𝑛
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(r̂) + 𝑇
2

𝑛𝑚
(𝑟)X2
𝑛𝑚

(r̂)] . (3)

The relationship between the (known) 𝑇ℓ
𝑛𝑚

and the 𝑡ℓ
𝑛𝑚

is
given by the probe-correction equations

(
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) , (4)

where
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(5)

The translated probe coefficients 𝜎ℓ
𝑛𝑚

are basically the
responses of the probe, located at 𝑟ẑ, to each of themultipoles
that compose the basis of vector spherical waves. Symboli-
cally,

𝜎
1

𝑛𝑚
(𝑟) = [P ⋅m

𝑛𝑚
] (𝑟ẑ) ,

𝜎
2

𝑛𝑚
(𝑟) = [P ⋅ n

𝑛𝑚
] (𝑟ẑ) ,

(6)

where the operator P denotes the probe and m
𝑛𝑚
(r) and

n
𝑛𝑚
(r) represent magnetic and electric multipoles, respec-

tively, that generate outgoing waves at infinity. For a special
symmetric probe, 𝜎ℓ

𝑛𝜇
= 0 unless 𝜇 = ±1.

We consider linearly polarized probes with symmetries

𝜎
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that are actually satisfied by many practical probes. In this
caseM

𝑛
is diagonal and
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(8)

where the probe sensitivity is defined as

𝛼
ℓ

𝑛
= √

16𝜋

2𝑛 + 1

󵄨󵄨󵄨󵄨󵄨
𝜎
ℓ

𝑛1

󵄨󵄨󵄨󵄨󵄨
. (9)

In the general case, appropriate sensitivities may be defined
as the singular values of M

𝑛
[5]. Of course, quantities

corresponding to our definition of probe sensitivity are
calculated, directly or indirectly, in any standard version of
probe-corrected, near- to far-field transformation software.

When 𝛼
ℓ

𝑛
is small, 𝑡ℓ

𝑛𝑚
is generally the ratio of two

small numbers. As the signal falls towards the noise floor,
the relative uncertainty in 𝑇ℓ

𝑛𝑚
and thus 𝑡ℓ

𝑛𝑚
can become

extremely large. On the other hand, enhanced sensitivity
to some modes is not necessarily beneficial. When the full
dynamic range of the receiver is available, it is generally better
to have uniform sensitivity over the modes of interest. The
condition number

𝑐
𝑎
(𝑟) =

max
𝑛,ℓ

[𝛼ℓ
𝑛
(𝑟)]

min
𝑛,ℓ

[𝛼ℓ
𝑛
(𝑟)]

(10)

is a good measure of merit; the optimum value is 𝑐
𝛼
= 1.

3. Internal Scanning

In internal spherical scanning, we determine the radiated
fields within the measurement sphere that are due to sources
located outside of the measurement sphere (see Figure 2). In
the neighborhood of the coordinate origin (centered in the
measurement sphere),

E (r) =
𝑎
0

4𝜋
∫ t (k̂) exp (𝑖k ⋅ r) 𝑑k̂, (11)
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Figure 2: Internal spherical scanning.

where t(k̂) is the “transmitting function” of the sources. In
principle, knowledge of t(k̂) allows compensation, say, of
compact range measurements, for the effects of nonuniform
illumination [6–8].

Equations (2)–(10) also apply to internal scanning, with
the exception that (6) becomes

𝜎
1

𝑛𝑚
(𝑟) = [P ⋅m(1)

𝑛𝑚
] (𝑟ẑ) ,

𝜎
2

𝑛𝑚
(𝑟) = [P ⋅ n(1)

𝑛𝑚
] (𝑟ẑ) ,

(12)

where m(1)
𝑛𝑚
(r) and n(1)

𝑛𝑚
(r) represent magnetic and electric

multipoles, respectively, that remain finite at the origin. This
“small” change has a profound effect on the nature of probe
correction in the interior versus exterior case.

4. Processing and Uncertainty

Data typically are collected on a uniform grid in 𝜃 and 𝜑with
sample increments chosen to satisfy the Nyquist sampling
theorem

Δ𝜃, Δ𝜑 ≤
2𝜋

2𝑁 + 1
. (13)

In the NIST algorithm, the angular measurements are trans-
formed to a Fourier representation by use of the fast Fourier
transform (FFT). Orthogonality integral relations are then
employed to project the Fourier representation onto the basis
of spherical harmonics, producing the representation (3).
Finally, probe effects are removed through deconvolution to
yield the far-field pattern (2).

The FFT is unitary so that the root mean square (RMS)
error in the Fourier representation is the same as the RMS
error in themeasured data.The projection operation also will
not increase the RMS error; in fact, there will be a reduction if
some of the error signal lies in the null space of the projection.
For the probe deconvolution, assuming that the uncertainty
in sensitivity Δ𝛼

𝑛
is 0, we have

‖Δt‖
‖t‖

≤ 𝑐
𝛼

‖ΔT‖
‖T‖

(14)

(see (A.3)), where, for example,

‖t‖2 =
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2

) . (15)

Thus, the use of a poor probe can lead to significantly
expanded uncertainties.

We can also account for the fact that the sensitivities are
not known precisely. With Δ𝑇

𝑛
= 0

‖Δt‖
‖t‖

≤ 𝛽. (16)

(See (A.5)) Here

𝛽 ≈ max
𝑛,ℓ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝛼ℓ
𝑛

𝛼ℓ
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (17)

Equations (14) and (16) may be combined in quadrature to
give an overall view of the effect of probe deconvolution on
measurement uncertainty:

(
‖Δt‖
‖t‖

)

2

≲ (𝑐
𝛼

‖ΔT‖
‖T‖

)

2

+ 𝛽
2

. (18)

Although illustrative and easy to derive, (18) gives a conser-
vative estimate of uncertainty that can be refined.

NIST software calculates with double-precision accuracy
to ensure that computational errors are negligible compared
to measurement errors.

5. Examples

We consider a mode cut-off of 𝑁 = 100. This is sufficient
for the representation of radiated fields when 𝑘𝑟

0
≲ 100. In

the external case, 𝑟
0
is the radius of the minimum sphere of

the test antenna. In the internal case, 𝑟
0
is the radius of the

test zone. For practical reasons, the measurement radius 𝑟m
is usually chosen to be 3 or more wavelengths greater than
𝑟
0
. The radius 𝑟m with 𝑘𝑟m = 105 is just outside the sphere

𝑟
0
= 100/𝑘. The radius 𝑟m with 𝑘𝑟m = 200 is greater than or

equal to twice 𝑟
0
.
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Figure 3: (a) SN 330. (b) SN 401. (c) SN 1057. (d) SN 331.

Actual probes used in this study are shown in Figure 3.
These all operate at Ku band, 12.4–18GHz.

The plots are normalized so that the peak sensitivity in
any figure has the value 1.

5.1. External Case. Ideal dipole probes provide a direct mea-
surement of components of the electric and magnetic field.
Although practical probes only approximate ideal probes
at best, ideal probes are effectively assumed in instances
when “no probe correction” is applied. Also, practical probes
become increasingly ideal as 𝑟m is increased. Figures 4–
6 show sensitivities for a “Huygens probe,” which is an
ideal probe that consists of a crossed electric and magnetic
dipole. This is a maximum-directivity probe of order 1 with
a directivity 𝐷 = 4.77 dB [9, Section 2.3.4]. Figure 4 plots
𝛼
ℓ

𝑛
as a function of 𝑘𝑟m for several values of 𝑛. At any given

radius, there is very little variation in sensitivity with 𝑛.
Otherwise, we observe the expected decrease in sensitivity
as 𝑟m increases. Figures 5 and 6 show 𝛼ℓ

𝑛
as a function of 𝑛

for 𝑘𝑟m = 105 and 200. When 𝑘𝑟m = 105, 𝑐
𝛼
= 1.2 and at

𝑘𝑟m = 200, 𝑐
𝛼
= 1.0. The trend for conditioning to improve

as 𝑟m increases is consistent with an asymptotic analysis of the
sensitivity of linearly polarized probes [3, Appendix C].

Figures 7–9 feature the NIST SN 330 𝜇 = ±1 probe with
gain 𝐺 = 10.5 dB [3, Appendix B]. Figure 7 plots 𝛼ℓ

𝑛
as a

function of 𝑘𝑟m for several values of 𝑛. Compared to the

Huygens probe, there is considerable variation in sensitivity
with 𝑛 for smaller values of 𝑘𝑟m. Figures 8 and 9 show 𝛼ℓ

𝑛
as

a function of 𝑛 for 𝑘𝑟m = 105 and 200. When 𝑘𝑟m = 105,
𝑐
𝛼
= 4.6, and at 𝑘𝑟m = 200, 𝑐

𝛼
= 1.4.

Figures 10–12 show the NIST SN 1057 dual-port 𝜇 = ±1

probe with gain 𝐺 = 15 dB. Figure 10 plots 𝛼ℓ
𝑛
as a function

of 𝑘𝑟m for several values of 𝑛. Figures 11 and 12 give 𝛼ℓ
𝑛
as a

function of 𝑛 for 𝑘𝑟m = 105 and 200. When 𝑘𝑟m = 105, 𝑐
𝛼
=

19, and at 𝑘𝑟m = 200, 𝑐
𝛼
= 3.1.

Figures 13–15 feature the NIST SN 401 𝜇 = ±1 probe with
gain 𝐺 = 22.7 dB. This probe resembles SN 330, except that
a flare has been added to increase the directivity. Figure 13
plots 𝛼ℓ

𝑛
as a function of 𝑘𝑟m for several values of 𝑛. Variation

in sensitivity with 𝑛 for smaller values of 𝑘𝑟m is problematic.
Figures 14 and 15 show 𝛼ℓ

𝑛
as a function of 𝑛 for 𝑘𝑟m = 120 and

500.When 𝑘𝑟m = 120, 𝑐
𝛼
= 200 and at 𝑘𝑟m = 500, 𝑐

𝛼
= 2.8. In

order to obtain similar conditioning, this probe must be used
at considerably larger values of 𝑟m than those for the lower
directivity probes discussed here.

5.2. Internal Case. In the internal case, conditioning is sig-
nificantly affected by the fact that radial functions (spherical
Bessel functions) have zeros. Figure 16 plots 𝛼ℓ

𝑛
as a function

of 𝑘𝑟m for several values of 𝑛, when the probe is an ideal
electric dipole (𝐷 = 1.76 dB). The variation in sensitivity
with 𝑛 is extreme and it seems unlikely that any choice of



International Journal of Antennas and Propagation 5

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Re
la

tiv
e s

en
sit

iv
ity

Huygens probe
krm

n = 10, magnetic, electric
n = 50, magnetic, electric
n = 90, magnetic, electric

Figure 4: Huygens probe, external case.
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Figure 5: Huygens probe, external case, 𝑘𝑟m = 105.

one or several values of 𝑟m would allow reliable determination
of all of the modes. Figure 17 plots 𝛼ℓ

𝑛
as a function of 𝑛 for

𝑘𝑟m = 104.6. At this radius, 𝑐
𝛼
= 830.

Fortunately, the Huygens probe (𝐷 = 4.77 dB) is much
better behaved, as illustrated in Figures 18 and 19. Figure 18
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Figure 6: Huygens probe, external case, 𝑘𝑟m = 200.
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Figure 7: SN 330, external case.

plots 𝛼
ℓ

𝑛
as a function of 𝑘𝑟m for several values of 𝑛 and

indicates a tendency for conditioning to improve as 𝑟m
increases. Figure 19 shows 𝛼ℓ

𝑛
as a function of 𝑛 for 𝑘𝑟m = 106.

At this radius, 𝑐
𝛼
= 2.8.

Figures 20 and 21 feature the NIST SN 330 probe (𝐺 =

10.5 dB). Figure 20 plots 𝛼ℓ
𝑛
as a function of 𝑘𝑟m for several
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Figure 9: SN 330, external case, 𝑘𝑟m = 200.

values of 𝑛. Again, conditioning appears to improve as
measurement radius is increased. Figure 21 shows 𝛼ℓ

𝑛
as a

function of 𝑛 for 𝑘𝑟m = 110, for which 𝑐
𝛼
= 4.2.

Figures 22 and 23 show theNIST SN 1057 dual-port probe
(𝐺 = 15 dB). Figure 22 plots 𝛼ℓ

𝑛
as a function of 𝑘𝑟m for

several values of 𝑛. Again, conditioning appears to improve
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Figure 10: SN 1057, external case.
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Figure 11: SN 1057, external case, 𝑘𝑟m = 105.

as measurement radius is increased. Figure 23 shows 𝛼ℓ
𝑛
as a

function of 𝑛 for 𝑘𝑟m = 110, for which 𝑐
𝛼
= 20.

Figures 24 and 25 feature the NIST SN 401 probe (𝐺 =

22.7 dB). Figure 24 plots 𝛼ℓ
𝑛
as a function of 𝑘𝑟m for several

values of 𝑛 and indicates a significant range of sensitivity with
𝑛. Figure 25 shows 𝛼ℓ

𝑛
as a function of 𝑛 for 𝑘𝑟m = 110, for
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Figure 12: SN 1057, external case, 𝑘𝑟m = 200.
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Figure 13: SN 401, external case.

which 𝑐
𝛼

= 2200. This is certainly unacceptable for many
applications.

Figure 26 compares NIST SN 330 (𝐺 = 10.5 dB), SN 331
(𝐺 = 7.9 dB), and SN 401 (𝐺 = 22.7 dB) at 𝑘𝑟m = 110. SN 331
is a version of SN 330 with a smaller aperture. With all things
equal, SN 401 has better sensitivity for multipole indexes less
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Figure 14: SN 401, external case, 𝑘𝑟m = 120.
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Figure 15: SN 401, external case, 𝑘𝑟m = 500.

than 𝑛 ≈ 20 but is significantly less sensitive for larger values
of 𝑛. Because of its higher gain, however, the SN 401 must be
used at lower transmitted power levels. Improving the signal-
to-noise ratio by increasing the transmitted power will tend
to compensate for the reduced sensitivity of the lower-gain
probes when 𝑛 < 20.
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Figure 17: Ideal electric dipole, 𝑘𝑟m = 104.6.

6. Conclusions

For any given probe, sensitivities generally become more
uniform as the measurement radius is increased. More
directive probes must be used at larger measurement radii

Huygens probe
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Figure 18: Huygens probe, internal case.
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Figure 19: Huygens probe, internal case, 𝑘𝑟m = 106.

than less directive probes if the same condition number is
desired.

The topic of probe sensitivity in spherical scanning seems
not to have received much attention to date; yet, sensitivity
can have a very significant impact on measurement accuracy.
Our results are based on a limited number of examples;
however, sensitivity information is readily available to anyone
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Figure 20: SN 330, internal case.
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Figure 21: SN 330, internal case, 𝑘𝑟m = 110.

who processes spherical-scanning data. We strongly encour-
age metrologists to explore probe-sensitivity issues before
making near-field antenna measurements. Optimization of
sensitivity should be a consideration in the design of new
probes.
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Figure 22: SN 1057, internal case.
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Figure 23: SN 1057, internal case, 𝑘𝑟m = 110.

Appendix

Partial Analysis of Uncertainty

From (8)
𝑇
𝑛
= 𝛼
𝑛
𝑡
𝑛
, (A.1)

where we are using a compact notation.
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Figure 24: SN 401, internal case.
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Figure 25: SN 401, internal case, 𝑘𝑟m = 110.
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Figure 26: Comparison, internal case, 𝑘𝑟m = 110.
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Therefore,
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Therefore,
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≤ 𝛽 (A.5)
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