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This paper is concerned with sampled-data controller design for singular systems with time delay. It is assumed that the sampling
periods are arbitrarily varying but bounded. A time-dependent Lyapunov function is proposed, which is positive definite at
sampling times but not necessarily positive definite inside the sampling intervals. Combining input delay approach with Lyapunov
method, sufficient conditions are derived which guarante that the singular system is regular, impulse free, and exponentially stable.
Then, the existence conditions of desired sampled-data controller can be obtained, which are formulated in terms of strict linear
matrix inequality. Finally, numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.

1. Introduction

In the last decade, considerable attention has been devoted to
sampled-data control systems, because modern control sys-
tems usually employ digital technology for controller imple-
mentation [1–8].The systems can adopt a digital computer to
sample and quantize a continuous-time measurement signal
to produce a discrete-time control input signal, which will be
converted back into a continuous-time control input signal
using a zero-order hold (ZOH) [9]. Recently, three main
approaches have been adopted to analyze the sampled-data
systems. The first one is based on discrete-time models [9].
The second one is based on the representation of the sampled-
data system in the form of impulsive model. The impulsive
model approach was applied to sampled-data stabilization of
linear uncertain systems in the case of constant sampling,
where a piecewise linear in time Lyapunov function was
suggested [10]. The third one is the input delay approach
[11], where the system is modeled as a continuous-time
system with the delayed control input, and it is popular and
has been widely adopted in sampled-data systems [11–15].
In [16], a novel time dependent Lyapunov functional-based
technique for sampled-data control has been introduced
in the framework of the input delay approach. The most
significant advantage of the method is that the sawtooth
evolution of the time-varying delay induced by sample and

hold is used. Thus, Recently, the time-dependent Lyapunov
functional method has been applied to all sorts of sampled-
data systems, and someuseful results have been obtained (see,
e.g., [17–24] and the references therein).

On the other hand, singular systems, also referred
to as descriptor systems, generalized state-space systems,
differential-algebraic systems, or semistate systems, provide
convenient and natural representations in the description of
economic systems, power systems, and circuits systems [25–
30], and it have been extensively studied in the past few years
due to the fact that singular systems better describe physical
systems than state-space ones. Apparently, in nowadays
digitalized world, it is of both theoretical significance and
practical importance to analyze how a digitalized control
signal would influence the singular systems. In other words,
there is a vital need to investigate the sampled-data control
for singular systems. Unfortunately, although sampled-data
control technologies have been developed relatively well in
control theory, the particular sampled-data control for sin-
gular systems has so far received very little attention mainly
due to the mathematical complexity. Indeed, the essential
difficulties would be (1) how to deal with the obtained results
to guarantee the considered singular systems not only to be
stable but also to be regular and impulse free in order to
ensure the existence, uniqueness, and absence of impulses of a
solution to a given system, (2) how to fully adopt the available
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information about the actual sampling pattern, and (3) how
to actually design a set of easy-to-implement sampled-data
controllers in order to guarantee that the singular systems
are exponentially stable. It is, therefore, the main aim of
this paper to challenge the sampled-data control for singular
systems by overcoming the aforementioned three major
difficulties.

This paper is concerned with the sampled-data control
of singular systems with time delays which are important
sources of oscillation, divergence, and instability in sys-
tems, and thus time-delay systems have been widely studied
recently [31, 32]. In terms of LMI approach, stability condi-
tions are proposed to guarantee the considered system to be
regular, impulse free, and exponentially stable. In order to
make full use of the available information about the actual
sampling pattern, a time-dependent Lyapunov functional is
proposed. The positive definitiveness of the given Lyapunov
functional is required only at sampling times but not neces-
sarily inside the sampling intervals. Two numerical examples
are given to illustrate the effectiveness of the methods given
in the paper.
Notation. Throughout this paper, the superscripts “𝑇” and
“−1” stand for the transpose of a matrix and the inverse of
a matrix. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space, and
𝑅𝑛×𝑚 is the set of 𝑛×𝑚 realmatrices.Thenotation𝑋 > 𝑌 (𝑋 ≥

𝑌), where𝑋 and 𝑌 are symmetric matrices, means that𝑋−𝑌

is positive definite (positive semidefinite). 𝐼 is the identity
matrix of appropriate dimensions. ‖ ⋅ ‖ denotes the Euclidean
norm of a vector and its induced norm of a matrix. 𝜆max(𝑃)

and 𝜆min(𝑃) refer to the maximal and minimal eigenvalues
of the matrix 𝑃, respectively. For a symmetric matrix, “∗”
denotes the matrix entries implied by symmetry.

2. Problem Formulation

Consider the following sampled-data control of singular
system:

𝐸�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑) + 𝑢 (𝑡) , 𝑡 > 0

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,
(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑡) ∈ 𝑅𝑛 is the control
input, and the initial condition, 𝜙(𝑡), is a continuous vector
valued initial function of 𝑡 ∈ [−𝑑, 0]. 𝐸,𝐴, and𝐴

𝑑
are known

matrices of appropriate dimensions, where 𝐸 ∈ 𝑅𝑛×𝑛 may be
singular, and we assume that rank 𝐸 = 𝑟 ≤ 𝑛. 𝑑 is a given time
delay.

In this paper, it is assumed that we only have the mea-
surement 𝑥(𝑡

𝑘
) at the sampling instant 𝑡

𝑘
; that is, only discrete

measurements of 𝑥(𝑡) are available for control purposes, and
the control signal is assumed to be generated by using a zero-
order-hold (ZOH) function with a sequence of hold times:

0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ < lim

𝑘→∞

𝑡
𝑘
= +∞. (2)

Also, the sampling is not required to be periodic, and
the only assumption is that the distance between any two

consecutive sampling instants is less than a given bound. It
is assumed that

𝑡
𝑘+1

− 𝑡
𝑘
= ℎ
𝑘
≤ ℎ (3)

for all 𝑘 ≥ 0, where ℎ > 0 represents the upper bound of the
sampling periods. Then, for system (1), we consider a state-
feedback control law of the form

𝑢 (𝑡) = 𝐾𝑥 (𝑡
𝑘
) , 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, (4)

where 𝐾 is the local gain matrix of the state feedback
controller to be determined.

By substituting (4) into (1), we obtain

𝐸�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑) + 𝐾𝑥 (𝑡

𝑘
) , 𝑡 > 0

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑, 0] .
(5)

Throughout this paper, we will use the following concepts.

Definition 1.

(1) The pair (𝐸, 𝐴) is said to be regular if det(𝑠𝐸 − 𝐴) is
not identically zero.

(2) The pair (𝐸, 𝐴) is said to be impulse free if
deg(det(𝑠𝐸 − 𝐴)) = rank𝐸.

Definition 2 (see [33]).

(1) The sampled-data control of singular system (5) is
said to be regular and impulse free if the pair (𝐸,𝐴) is
regular and impulse free.

(2) The sampled-data control of singular system (5) is
said to be exponentially stable, if there exist scalars
𝛼 > 0 and 𝛽 > 0 such that

‖𝐸𝑥 (𝑡)‖ ≤ 𝛽𝑒
−𝛼𝑡𝑥0

𝑐, ∀𝑡 ≥ 0, (6)

where ‖𝑥
0
‖
𝑐
= sup

−𝑑≤𝜃≤0
{‖𝑥(𝜃)‖, ‖𝐸�̇�(𝜃)‖}.

(3) The sampled-data control of singular system (5) is
said to be exponentially admissible, if it is regular,
impulse free, and exponentially stable.

Lemma 3. Given singular system (5), the following inequality
holds:

‖𝐸𝑥 (𝑡)‖
2

≤ 𝜃
1

𝑥 (𝑡
𝑘
)

2

+ 𝜃
2
∫
𝑡𝑘

𝑡𝑘−𝑑

‖𝑥 (𝛼)‖
2

𝑑𝛼, 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
,

(7)

where 𝜃
1

= 4(‖𝐸‖
2

+ ‖𝐾‖
2

ℎ)𝑒4(‖𝐴‖
2
+‖𝐴𝑑‖

2
), 𝜃
2

=

4‖𝐴
𝑑
‖
2

𝑒4(‖𝐴‖
2
+‖𝐴𝑑‖

2
).

Proof. For any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), it follows from (5) that

‖𝐸𝑥 (𝑡)‖ ≤
𝐸𝑥 (𝑡

𝑘
)


+


∫
𝑡

𝑡𝑘

𝐴𝑥 (𝛼) 𝑑𝛼


+


∫
𝑡

𝑡𝑘

𝐴
𝑑
𝑥 (𝛼 − 𝑑) 𝑑𝛼



+


∫
𝑡

𝑡𝑘

𝐾𝑥 (𝑡
𝑘
) 𝑑𝛼


.

(8)
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Applying the Cauchy-Schwarz inequality, we find from
(8) that

‖𝐸𝑥 (𝑡)‖
2

≤ 4
𝐸𝑥 (𝑡

𝑘
)

2

+ 4


∫
𝑡

𝑡𝑘

𝐴𝑥 (𝛼) 𝑑𝛼



2

+ 4


∫
𝑡

𝑡𝑘

𝐴
𝑑
𝑥 (𝛼 − 𝑑) 𝑑𝛼



2

+ 4


∫
𝑡

𝑡𝑘

𝐾𝑥 (𝑡
𝑘
) 𝑑𝛼



2

.

(9)

Using the Cauchy-Schwarz inequality again, we obtain from
(9) that

‖𝐸𝑥 (𝑡)‖
2

≤ 4
𝐸𝑥 (𝑡

𝑘
)

2

+ 4∫
𝑡

𝑡𝑘

‖𝐴𝑥 (𝛼)‖
2

𝑑𝛼 + 4∫
𝑡

𝑡𝑘

𝐴𝑑𝑥 (𝛼 − 𝑑)

2

𝑑𝛼

+ 4∫
𝑡

𝑡𝑘

𝐾𝑥 (𝑡
𝑘
)

2

𝑑𝛼

≤ 4‖𝐸‖
2𝑥 (𝑡

𝑘
)

2

+ 4‖𝐴‖
2

∫
𝑡

𝑡𝑘

‖𝑥 (𝛼)‖
2

𝑑𝛼

+ 4‖𝐾‖
2

∫
𝑡

𝑡𝑘

𝑥 (𝑡
𝑘
)

2

𝑑𝛼

+ 4
𝐴𝑑


2

∫
𝑡

𝑡𝑘

‖𝑥 (𝛼 − 𝑑)‖
2

𝑑𝛼

≤ 4 (‖𝐸‖
2

+ ‖𝐾‖
2

ℎ)
𝑥 (𝑡
𝑘
)

2

+ 4
𝐴𝑑


2

∫
𝑡𝑘

𝑡𝑘−𝑑

‖𝑥 (𝛼)‖
2

𝑑𝛼

+ 4 (‖𝐴‖
2

+
𝐴𝑑


2

)∫
𝑡

𝑡𝑘

‖𝑥 (𝛼)‖
2

𝑑𝛼.

(10)

Applying the Gronwall-Bellman Lemma to (10), we can
obtain (7) immediately. This completes the proof.

3. Main Results

In this section, the exponential stability of sampled-data
control for singular system (5) is first investigated based on
the time-dependent Lyapunov functional approach, and suf-
ficient condition is derived to guarantee the system stability
and synthesize the sampled-data controllers in the form of
(4).

Theorem 4. Given scale 𝛼 > 0, the sampled-data control
for singular system (5) is exponentially stable if there exist
symmetric positive-definitematrices𝑃,𝐹,𝑄,𝑍,𝑈, [ 𝑅1 𝑅2

∗ 𝑅3
] > 0,

𝑋
𝑗
, 𝑗 = 1, 2, 3, 4, 5, 𝐹

1
, 𝐿, 𝐻 = [𝐻

1
𝐻
2

𝐻
3

𝐻
4
], such that

𝐸
𝑇

𝐹 = 𝐹
𝑇

𝐸 ≥ 0, (11)

Ξ
1
(ℎ) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

+ Θ
11

(ℎ) Ξ
12

+ Θ
12

(ℎ) Ξ
13

+ Θ
13

(ℎ) Ξ
14

+ Θ
14

(ℎ) Ξ
15

∗ Ξ
22

+ ℎ𝑈 Ξ
23

+ Θ
23

(ℎ) ℎ𝐸𝑇𝑋
3
𝐸 𝐹

1
𝐴
𝑑

∗ ∗ Ξ
33

+ Θ
33

(ℎ) Ξ
34

+ 2𝛼ℎ𝑋
4

0

∗ ∗ ∗ Ξ
44

+ Θ
44

(ℎ) 0

∗ ∗ ∗ ∗ Ξ
55

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, ℎ ∈ [0, ℎ] , (12)

Ξ
2
(ℎ) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
14

Ξ
15

√ℎ𝐸𝑇𝐻𝑇
1
𝐸

∗ Ξ
22

Ξ
23

0 𝐹
1
𝐴
𝑑

√ℎ𝐸𝑇𝐻𝑇
2
𝐸

∗ ∗ Ξ
33

− 𝑒−2𝛼ℎℎ𝑅
3

Ξ
34

0 √ℎ𝐸𝑇𝐻𝑇
3
𝐸

∗ ∗ ∗ Ξ
44

0 √ℎ𝐸𝑇𝐻𝑇
4
𝐸

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ −𝑒−2𝛼ℎ𝐸𝑇𝑈𝐸

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (13)
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where

Ξ
11

= 2𝛼𝐸
𝑇

𝑃𝐸 + 𝑄 − 𝐸
𝑇
𝑋
1
+ 𝑋𝑇
1

2
𝐸 −

𝑒
−2𝛼𝑑

𝑑
𝐸
𝑇

𝑍𝐸

+ 𝐸
𝑇

(𝐻
1
+ 𝐻
𝑇

1
) 𝐸 + 𝐹

𝑇

𝐴 + 𝐴
𝑇

𝐹,

Ξ
12

= 𝐸
𝑇

𝑃 + 𝐸
𝑇

𝐻
2
𝐸 − 𝐹

𝑇

+ 𝐴
𝑇

𝐹
𝑇

1
,

Ξ
13

= 𝐸
𝑇

(𝑋
1
− 𝑋
2
) 𝐸 + 𝐸

𝑇

(𝐻
3
− 𝐻
𝑇

1
) 𝐸 + 𝐹

𝑇

𝐾,

Ξ
14

= −𝐸
𝑇

𝑋
3
𝐸 + 𝐸

𝑇

𝐻
4
𝐸,

Ξ
15

=
𝑒−2𝛼𝑑

𝑑
𝐸
𝑇

𝑍𝐸 + 𝐹
𝑇

𝐴
𝑑
,

Ξ
22

= 𝑑𝑍 − 𝐹
1
− 𝐹
𝑇

1
,

Ξ
23

= −𝐸
𝑇

𝐻
𝑇

2
𝐸 − 𝐹

𝑇

1
𝐾,

Ξ
33

= 𝐸
𝑇

(𝑋
2
+ 𝑋
𝑇

2
−

𝑋
1
+ 𝑋𝑇
1

2
)𝐸 − 𝐸

𝑇

(𝐻
3
+ 𝐻
𝑇

3
) 𝐸,

Ξ
34

= −𝐸
𝑇

𝑋
4
𝐸 − 𝑒
−2𝛼ℎ

𝑅
𝑇

2
− 𝐸
𝑇

𝐻
4
𝐸
𝑇

,

Ξ
44

= −𝐸
𝑇
𝑋
5
+ 𝑋𝑇
5

2
𝐸 −

𝑒
−2𝛼ℎ

ℎ
𝑅
1
,

Ξ
55

= −𝑒
−2𝛼𝑑

𝑄 −
𝑒−2𝛼𝑑

𝑑
𝐸
𝑇

𝑍𝐸,

Θ
11

(ℎ) = 𝑎ℎ𝐸
𝑇

(𝑋
1
+ 𝑋
𝑇

1
) 𝐸 + ℎ𝐸

𝑇

(𝑋
3
+ 𝑋
𝑇

3
) 𝐸 + ℎ𝑅

1
,

Θ
12

(ℎ) = ℎ𝐸
𝑇
𝑋
1
+ 𝑋𝑇
1

2
𝐸,

Θ
13

(ℎ) = 2𝛼ℎ𝐸
𝑇

(−𝑋
1
+ 𝑋
2
) 𝐸 + ℎ𝐸

𝑇

𝑋
𝑇

4
𝐸 + ℎ𝑅

2
,

Θ
14

(ℎ) = 2𝛼ℎ𝐸
𝑇

𝑋
3
𝐸 + ℎ𝐸

𝑇
𝑋
5
+ 𝑋𝑇
5

2
𝐸,

Θ
23

(ℎ) = ℎ𝐸
𝑇

(−𝑋
1
+ 𝑋
2
) 𝐸,

Θ
33

(ℎ) = 2𝛼ℎ𝐸
𝑇

(−𝑋
2
− 𝑋
𝑇

2
+

𝑋
1
+ 𝑋𝑇
1

2
)𝐸 + ℎ𝑅

3
,

Θ
44

(ℎ) = 𝛼ℎ𝐸
𝑇

(𝑋
5
+ 𝑋
𝑇

5
) 𝐸.

(14)

Proof. Since rank 𝐸 = 𝑟 ≤ 𝑛, there exist nonsingular matrices
𝐺 and �̂� such that

𝐸 = 𝐺𝐸�̂� = [
𝐼
𝑟

0

0 0
] . (15)

Similar to (15), we define

𝐴 = 𝐺𝐴�̂� = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐹 = 𝐺
−𝑇

𝐹�̂� = [
𝐹
11

𝐹
12

𝐹
21

𝐹
22

] .

(16)

From (11), we have 𝐹 = [
𝐹11 0

𝐹21 𝐹22
], and 𝐹

11
= 𝐹𝑇
11

> 0.

Premultiplying and postmultiplying Ξ
11

< 0 by �̂�𝑇 and
�̂�, respectively, we have 𝐴𝑇

22
𝐹
22

+ 𝐹𝑇
22
𝐴
22

< 0, which implies
that 𝐴

22
is nonsingular and the pair (𝐸, 𝐴) is regular and

impulse free.Then, by Definition 2, the sampled-data control
for singular system (5) is regular and impulse free.

Next, we will show the exponential stability of system (5).
Consider the following Lyapunov functional of sampled-data
control for singular system (5):

𝑉 (𝑡) =

6

∑
𝑖=1

𝑉
𝑖
(𝑡) , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

) , (17)

𝑉
1
(𝑡) = 𝑒

2𝛼𝑡

𝑥(𝑡)
𝑇

𝐸
𝑇

𝑃𝐸𝑥 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑒
2𝛼𝑠

𝑥(𝑠)
𝑇

𝑄𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

0

−𝑑

∫
𝑡

𝑡+𝜃

𝑒
2𝛼𝑠

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑡) = (𝑡

𝑘+1
− 𝑡) ∫

𝑡

𝑡𝑘

𝑒
2𝛼𝑠

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = (𝑡

𝑘+1
− 𝑡) ∫

𝑡

𝑡𝑘

𝑒
2𝛼𝑠

[
𝑥(𝑠)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑠)

𝑥 (𝑡
𝑘
)
] 𝑑𝑠,

𝑉
6
(𝑡) = (𝑡

𝑘+1
− 𝑡) 𝑒
2𝛼𝑡

[
[
[

[

𝑥 (𝑠)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

𝑇

𝐸
𝑇

Γ𝐸
[
[
[

[

𝑥 (𝑠)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

,

Γ =

[
[
[
[
[
[
[

[

𝑋
1
+ 𝑋𝑇
1

2
𝑋
3

−𝑋
1
+ 𝑋
2

∗
𝑋
5
+ 𝑋𝑇
5

2
𝑋
4

∗ ∗ −𝑋
2
− 𝑋
𝑇

2
+

𝑋
1
+ 𝑋
𝑇

1

2

]
]
]
]
]
]
]

]

.

(18)

It is noted that, similar to [16], we have

lim
𝑡→ 𝑡
+

𝑘

𝑉
𝑗
(𝑡) = lim
𝑡→ 𝑡
−

𝑘

𝑉
𝑗
(𝑡) = 𝑉

𝑗
(𝑡
𝑘
) = 0, 𝑗 = 4, 5, 6. (19)

Therefore,𝑉(𝑡) is continuous in time since lim
𝑡→ 𝑡𝑘

𝑉(𝑡) =

𝑉(𝑡
𝑘
). Calculating the time derivative of 𝑉(𝑡) along the

trajectories of (5) gives the following result:

�̇�
1
(𝑡) = 2𝑒

2𝛼𝑡

𝑥(𝑡)
𝑇

𝐸
𝑇

𝑃𝐸�̇� (𝑡)

+ 2𝛼𝑒
2𝛼𝑡

𝑥(𝑡)
𝑇

𝐸
𝑇

𝑃𝐸𝑥 (𝑡) ,

(20)

�̇�
2
(𝑡) = 𝑒

2𝛼𝑡

𝑥(𝑡)
𝑇

𝑄𝑥 (𝑡) − 𝑒
2𝛼𝑡

𝑒
−2𝛼𝑑

× 𝑥(𝑡 − 𝑑)
𝑇

𝑄𝑥 (𝑡 − 𝑑) ,

(21)
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�̇�
3
(𝑡) = 𝑑𝑒

2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑡)

− ∫
𝑡

𝑡−𝑑

𝑒
2𝛼𝑠

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠

≤ 𝑑𝑒
2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑡)

− 𝑒
2𝛼𝑡

∫
𝑡

𝑡−𝑑

𝑒
−2𝛼𝑑

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠,

(22)

�̇�
4
(𝑡) = (𝑡

𝑘+1
− 𝑡) 𝑒
2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑡)

− ∫
𝑡

𝑡𝑘

𝑒
2𝛼𝑠

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑠) 𝑑𝑠

≤ (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑡)

− ∫
𝑡

𝑡𝑘

𝑒
2𝛼𝑡𝑘 �̇�(𝑠)

𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑠) 𝑑𝑠

≤ (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑡)

− 𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑒
−2𝛼ℎ

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑠) 𝑑𝑠,

(23)

�̇�
5
(𝑡) = −∫

𝑡

𝑡𝑘

𝑒
2𝛼𝑠

[
𝑥(𝑠)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑠)

𝑥 (𝑡
𝑘
)
] 𝑑𝑠

+ (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
]

≤ −∫
𝑡

𝑡𝑘

𝑒
2𝛼𝑡𝑘[

𝑥(𝑠)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑠)

𝑥 (𝑡
𝑘
)
] 𝑑𝑠

+ (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
]

≤ −𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑒
−2𝛼ℎ

[
𝑥(𝑠)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑠)

𝑥 (𝑡
𝑘
)
] 𝑑𝑠

+ (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
]

= (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
]

− 𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑒
−2𝛼ℎ

𝑥(𝑠)
𝑇

𝑅
1
𝑥 (𝑠) 𝑑𝑠

− 2𝑒
2𝛼𝑡

𝑥(𝑡
𝑘
)
𝑇

𝑒
−2𝛼ℎ

𝑅
𝑇

2
∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

− 𝑒
2𝛼𝑡

(𝑡 − 𝑡
𝑘
) 𝑥(𝑡
𝑘
)
𝑇

𝑒
−2𝛼ℎ

𝑅
3
𝑥 (𝑡
𝑘
) ,

(24)

�̇�
6
(𝑡) = −𝑒

2𝛼𝑡
[
[
[

[

𝑥(𝑡)

∫
𝑡

𝑡𝑘

𝑥(𝑠)𝑑𝑠

𝑥(𝑡
𝑘
)

]
]
]

]

𝑇

𝐸
𝑇

Γ𝐸
[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

+ 2𝛼 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

𝑇

× 𝐸
𝑇

Γ𝐸
[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

+ 2 (𝑡
𝑘+1

− 𝑡)

× 𝑒
2𝛼𝑡

[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

𝑇

𝐸
𝑇

Γ𝐸[

[

�̇� (𝑡)

𝑥 (𝑡)

0

]

]

≤ −𝑒
2𝛼𝑡

[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

𝑇

𝐸
𝑇

Γ𝐸
[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

+ 2𝛼 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

𝑇

× 𝐸
𝑇

Γ𝐸
[
[
[

[

𝑥 (𝑡)

∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡
𝑘
)

]
]
]

]

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

𝑥(𝑡)
𝑇

𝐸
𝑇
𝑋
1
+ 𝑋
2

2
𝐸�̇� (𝑡)

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

𝑥(𝑡
𝑘
)
𝑇

𝐸
𝑇

(−𝑋
𝑇

1
+ 𝑋
𝑇

2
) 𝐸�̇� (𝑡)

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠𝐸
𝑇

𝑋
𝑇

3
𝐸�̇� (𝑡)

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

𝑥(𝑡)
𝑇

𝐸
𝑇

𝑋
3
𝐸𝑥 (𝑡)

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

𝑥(𝑡
𝑘
)
𝑇

𝐸
𝑇

𝑋
𝑇

4
𝐸𝑥 (𝑡)

+ 2 (𝑡
𝑘+1

− 𝑡) 𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠𝐸
𝑇
𝑋
5
+ 𝑋𝑇
5

2
𝐸𝑥 (𝑡) .

(25)

According to Jensen integral inequality [34], we have

− ∫
𝑡

𝑡−𝑑

𝑒
−2𝛼𝑑

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠

≤ −∫
𝑡

𝑡−𝑑

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑑𝑠
𝑒−2𝛼𝑑

𝑑
𝑍∫
𝑡

𝑡−𝑑

𝐸�̇� (𝑠) 𝑑𝑠

= [
𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)
]

𝑇[
[
[

[

−
𝑒
−2𝛼𝑑

𝑑
𝐸𝑇𝑍𝐸

𝑒
−2𝛼𝑑

𝑑
𝐸𝑇𝑍𝐸

∗ −
𝑒−2𝛼𝑑

𝑑
𝐸
𝑇

𝑍𝐸

]
]
]

]

× [
𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)
] ,

(26)
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− ∫
𝑡

𝑡𝑘

𝑒
−2𝛼ℎ

𝑥(𝑠)
𝑇

𝑅
1
𝑥 (𝑠) 𝑑𝑠

≤ −∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠
𝑒−2𝛼ℎ

ℎ
𝑅
1
∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠.

(27)

Applying (26) and (27) to (22) and (24), respectively, we can
get

�̇�
3
(𝑡) ≤ 𝑑𝑒

2𝛼𝑡

�̇�(𝑡)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑡)

+ 𝑒
2𝛼𝑡

[
𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)
]

𝑇

×

[
[
[
[

[

−
𝑒
−2𝛼𝑑

𝑑
𝐸𝑇𝑍𝐸

𝑒−2𝛼𝑑

𝑑
𝐸𝑇𝑍𝐸

∗ −
𝑒
−2𝛼𝑑

𝑑
𝐸𝑇𝑍𝐸

]
]
]
]

]

[
𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)
] ,

(28)

�̇�
5
(𝑡) ≤ (𝑡

𝑘+1
− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

[
𝑅
1

𝑅
2

∗ 𝑅
3

] [
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
]

− 𝑒
2𝛼𝑡

∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠
𝑒−2𝛼ℎ

ℎ
𝑅
1
∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

− 2𝑒
2𝛼𝑡

𝑥(𝑡
𝑘
)
𝑇

𝑒
−2𝛼ℎ

𝑅
𝑇

2
∫
𝑡

𝑡𝑘

𝑥 (𝑠) 𝑑𝑠

− 𝑒
2𝛼𝑡

(𝑡 − 𝑡
𝑘
) 𝑥(𝑡
𝑘
)
𝑇

𝑒
−2𝛼ℎ

𝑅
3
𝑥 (𝑡
𝑘
) .

(29)

Furthermore, based on Schur complement, it can be found
that for any appropriately dimensioned matrix 𝐻

[
𝐻𝑇𝑒2𝛼ℎ𝑈−1𝐻 𝐻𝑇

∗ 𝑒−2𝛼ℎ𝑈
] ≥ 0 (30)

which implies

∫
𝑡

𝑡𝑘

[
𝜙(𝑡)

𝐸�̇�(𝑠)
]

𝑇

[
𝐻𝑇𝑒2𝛼ℎ𝑈−1𝐻 𝐻𝑇

∗ 𝑒−2𝛼ℎ𝑈
][

𝜙 (𝑡)

𝐸�̇� (𝑠)
] 𝑑𝑠 ≥ 0,

(31)

where

𝜙 (𝑡) = [𝑥(𝑡)
𝑇

[𝐸�̇� (𝑡)]
𝑇

𝑥(𝑡
𝑘
)
𝑇

∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠]

𝑇

. (32)

From (31), we can get

− ∫
𝑡

𝑡𝑘

𝑒
−2𝛼ℎ

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑠) 𝑑𝑠

≤ (𝑡 − 𝑡
𝑘
) 𝜙(𝑡)
𝑇

𝐻
𝑇

𝑒
2𝛼ℎ

𝑈
−1

𝐻𝜙 (𝑡)

+ 2𝜙(𝑡)
𝑇

𝐻
𝑇

𝐸𝑥 (𝑡) − 2𝜙(𝑡)
𝑇

𝐻
𝑇

𝐸𝑥 (𝑡
𝑘
) .

(33)

Applying the above inequality to (23), we obtain

�̇�
4
(𝑡) ≤ 𝑒

2𝛼𝑡

(𝑡 − 𝑡
𝑘
) 𝜙(𝑡)
𝑇

𝐸
𝑇

𝐻
𝑇

𝑒
2𝛼ℎ

𝑈
−1

𝐻𝐸𝜙 (𝑡)

+ 2𝑒
2𝛼𝑡

𝜙(𝑡)
𝑇

𝐸
𝑇

𝐻
𝑇

𝐸𝑥 (𝑡)

− 2𝑒
2𝛼𝑡

𝜙(𝑡)
𝑇

𝐸
𝑇

𝐻
𝑇

𝐸𝑥 (𝑡
𝑘
)

+ 𝑒
2𝛼𝑡

(𝑡
𝑘+1

− 𝑡) �̇�(𝑡)
𝑇

𝐸
𝑇

𝑈𝐸�̇� (𝑡) .

(34)

On the other hand, according to (5), for any appropriately
dimensioned matrix 𝐹, 𝐹

1
, the following equation holds:

0 = 2𝑒
2𝛼𝑡

[𝑥(𝑡)
𝑇

𝐹
𝑇

+ �̇�(𝑡)
𝑇

𝐸
𝑇

𝐹
𝑇

1
]

× [−𝐸�̇� (𝑡) + 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑) + 𝐾𝑥 (𝑡

𝑘
)] .

(35)

Then, adding the right-hand side of (35) to �̇�(𝑡), we
obtain from (20), (21), (25), (28), (29), and (34) that for 𝑡 ∈

[𝑡
𝑘
, 𝑡
𝑘+1

)

�̇� (𝑡) ≤ 𝑒
2𝛼𝑡

𝜒(𝑡)
𝑇

[
𝑡
𝑘+1

− 𝑡

ℎ
𝑘

Ξ
1
(ℎ
𝑘
) +

𝑡 − 𝑡
𝑘

ℎ
𝑘

Ξ
2
(ℎ
𝑘
)] 𝜒 (𝑡) ,

(36)

where Ξ
2
(ℎ
𝑘
) is given in (38), and

𝜒 (𝑡) = [𝑥(𝑡)
𝑇

[𝐸�̇� (𝑡)]
𝑇

𝑥(𝑡
𝑘
)
𝑇

∫
𝑡

𝑡𝑘

𝑥(𝑠)
𝑇

𝑑𝑠 𝑥(𝑡 − 𝑑)
𝑇

]

𝑇

(37)

Ξ
2
(ℎ
𝑘
) =

[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
14

Ξ
15

∗ Ξ
22

Ξ
23

0 𝐹
1
𝐴
𝑑

∗ ∗ Ξ
33

− 𝑒−2𝛼ℎℎ𝑅
3

Ξ
34

0

∗ ∗ ∗ Ξ
44

0

∗ ∗ ∗ ∗ Ξ
55

]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

𝐸
𝑇𝐻𝑇
1
𝐸

𝐸𝑇𝐻𝑇
2
𝐸

𝐸𝑇𝐻𝑇
3
𝐸

𝐸𝑇𝐻𝑇
4
𝐸

0

]
]
]
]
]
]
]
]
]
]
]

]

𝑒
2𝛼ℎ

𝐸
𝑇

𝑈𝐸

[
[
[
[
[
[
[
[
[
[
[

[

𝐸
𝑇𝐻𝑇
1
𝐸

𝐸𝑇𝐻𝑇
2
𝐸

𝐸𝑇𝐻𝑇
3
𝐸

𝐸𝑇𝐻𝑇
4
𝐸

0

]
]
]
]
]
]
]
]
]
]
]

]

𝑇

.

(38)

It is noted that

Ξ
1
(ℎ
𝑘
) =

ℎ
𝑘

ℎ
Ξ
1
(ℎ) +

ℎ − ℎ
𝑘

ℎ
Ξ
1
(0) , (39)

Ξ
2
(ℎ
𝑘
) =

ℎ
𝑘

ℎ
Ξ
2
(ℎ) +

ℎ − ℎ
𝑘

ℎ
Ξ
2
(0) . (40)

From (12) and (13), we can find that

Ξ
1
(ℎ
𝑘
) < 0, Ξ

2
(0) < 0. (41)
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Based on Schur complement, we have from (13)

Ξ
2
(ℎ) < 0. (42)

From (40), (41), we can get that

Ξ
2
(ℎ
𝑘
) < 0. (43)

Thus, we obtain from (36), (41), and (43) that

�̇� (𝑡) < 0, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) . (44)

Thus, it follows that, for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

),

𝑉 (𝑡) ≤ 𝑉 (𝑡
𝑘
) ≤ 𝑉 (𝑡

𝑘−1
) ≤ ⋅ ⋅ ⋅ ≤ 𝑉 (0) . (45)

Based on Lemma 3 and (45) and letting �̂� = 𝐸𝑇𝑃𝐸, we can
conclude that for 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1

‖𝐸𝑥(𝑡)‖
2

≤ 𝜃
1

𝑥 (𝑡
𝑘
)

2

+ 𝜃
2
∫
𝑡𝑘

𝑡𝑘−𝑑

‖𝑥 (𝛼)‖
2

𝑑𝛼

=
𝜃
1

𝜆min (�̂�) 𝑒2𝛼𝑡𝑘
𝑒
2𝛼𝑡𝑘𝜆min (�̂�)

𝑥 (𝑡
𝑘
)

2

+
𝜃
2

𝜆min (𝑄) 𝑒2𝛼𝑡𝑘
𝑒
2𝛼𝑡𝑘𝜆min (𝑄) ∫

𝑡𝑘

𝑡𝑘−𝑑

‖𝑥 (𝛼)‖
2

𝑑𝛼

≤
𝜃
1

𝜆min (�̂�) 𝑒2𝛼𝑡𝑘
𝑒
2𝛼𝑡𝑘𝑥(𝑡

𝑘
)
𝑇

�̂�𝑥 (𝑡
𝑘
)

+
𝜃
2
𝑒2𝛼𝑑

𝜆min (𝑄) 𝑒2𝛼𝑡𝑘
∫
𝑡𝑘

𝑡𝑘−𝑑

𝑒
2𝛼𝑠

𝑥(𝑠)
𝑇

𝑄𝑥 (𝑠) 𝑑𝑠

≤
max {𝜃

1
/𝜆min (�̂�) , 𝜃

2
𝑒2𝛼𝑑/𝜆min (𝑄)}

𝑒2𝛼𝑡𝑘
(𝑉
1
(𝑡
𝑘
) + 𝑉
2
(𝑡
𝑘
))

≤
max {𝜃

1
/𝜆min (�̂�) , 𝜃

2
𝑒2𝛼𝑑/𝜆min (𝑄)}

𝑒2𝛼𝑡𝑘
𝑉 (𝑡
𝑘
)

≤ max{
𝜃
1

𝜆min (�̂�)
,

𝜃
2
𝑒2𝛼𝑑

𝜆min (𝑄)
} 𝑒
−2𝛼𝑡

𝑒
2𝛼(𝑡−𝑡𝑘)𝑉 (0)

≤ 𝑒
2𝛼ℎmax{

𝜃
1

𝜆min (�̂�)
,

𝜃
2
𝑒2𝛼𝑑

𝜆min (𝑄)
} 𝑒
−2𝛼𝑡

𝑉 (0) .

(46)

It can be calculated that

𝑉 (0) = 𝑥(0)
𝑇

𝐸
𝑇

𝑃𝐸𝑥 (0) + ∫
0

−𝑑

𝑒
2𝛼𝑠

𝑥(𝑠)
𝑇

𝑄𝑥 (𝑠) 𝑑𝑠

+ ∫
0

−𝑑

∫
0

𝜃

𝑒
2𝛼𝑠

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ 𝑥(0)
𝑇

𝐸
𝑇

𝑃𝐸𝑥 (0)

+ ∫
0

−𝑑

𝑥(𝑠)
𝑇

𝑄𝑥 (𝑠) 𝑑𝑠 + 𝑑∫
0

−𝑑

�̇�(𝑠)
𝑇

𝐸
𝑇

𝑍𝐸�̇� (𝑠) 𝑑𝑠

≤ 𝜆max (�̂�) ‖𝑥 (0)‖
2

+ 𝑑𝜆max (𝑄) sup
−𝑑≤𝜃≤0

‖𝑥 (𝜃)‖
2

+ 𝑑
2

𝜆max (𝑍) sup
−𝑑≤𝜃≤0

‖𝐸�̇� (𝜃)‖
2

≤ 𝜃
3
( sup
−𝑑≤𝜃≤0

{‖𝑥 (𝜃)‖ , ‖𝐸�̇� (𝜃)‖})

2

,

(47)

where

𝜃
3
= 𝜆max (�̂�) + 𝑑𝜆max (𝑄) + 𝑑

2

𝜆max (𝑍) . (48)

Based on (46) and (47), we can conclude that

‖𝐸𝑥 (𝑡)‖ ≤ 𝑒
𝛼ℎ

√max{
𝜃
1

𝜆min (�̂�)
,

𝜃
2
𝑒2𝛼𝑑

𝜆min (𝑄)
} 𝜃
3
𝑒
−𝛼𝑡𝑥0

𝑐.

(49)

Thus, according to Definition 2, the sampled-data control
for singular system (5) is exponentially admissible. This
completes the proof.

Remark 5. It is noted that based on the time-dependent Lya-
punov functional method, three (𝑡

𝑘
, 𝑡
𝑘+1

)-dependent terms
𝑉
4
(𝑡), 𝑉

5
(𝑡), and 𝑉

6
(𝑡) are introduced in the Lyapunov

functional, whichmake good use of the available information
about the actual sampling pattern. As a consequence, the
proposed result has less conservatism.

Remark 6. It should be pointed out that if 𝑅
1
= 𝑅
3
= 𝜀𝐼 (𝜀 is

a sufficiently small positive scalar) and 𝑅
2
= 𝑋
3
= 𝑋
4
= 𝑋
5
=

0, then 𝑉
4
(𝑡) + 𝑉

5
(𝑡) + 𝑉

6
(𝑡) reduces to

𝑉
4
(𝑡) + (𝑡

𝑘+1
− 𝑡) 𝑒
2𝛼𝑡

[
𝑥(𝑡)

𝑥(𝑡
𝑘
)
]

𝑇

𝐸
𝑇

Ψ𝐸[
𝑥 (𝑡)

𝑥 (𝑡
𝑘
)
] , (50)

where

Ψ =
[
[
[

[

𝑋
1
+ 𝑋𝑇
1

2
−𝑋
1
+ 𝑋
2

∗ −𝑋
2
− 𝑋𝑇
2
+

𝑋
1
+ 𝑋𝑇
1

2

]
]
]

]

, (51)

which was first proposed for linear sampled-data systems
in [16]. On the other hand, in [16] the Lyapunov functional
should be positive definite at the whole sampling intervals.
While the Lyapunov functional (17) is positive definite only
at sampling times but not necessarily positive definite inside
the sampling intervals.Thus, the Lyapunov functional used in
this paper is more general and desirable than the one adopted
in [16].

Based on Theorem 4, we can obtain the following corol-
lary.

Corollary 7. If (12) and (13) are feasible for 𝛼 = 0, then the
system (5) is exponentially stable with a small enough decay
rate.

Now, we will design the sampled-data controller (4) such
that system (5) is exponentially stable. Based on Theorem 4,
the sampled-data controller design method for system (5) is
provided in the following theorem.
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Theorem 8. Given scalars 𝛼 > 0 and 𝜆 > 0, the sampled-
data control for singular system (5) is exponentially stabile if

there exist symmetric positive-definite matrices 𝑃, 𝐹, 𝑄, 𝑍, 𝑈,
[
𝑅1 𝑅2

∗ 𝑅3
] > 0, 𝑋

𝑗
, 𝑗 = 1, 2, 3, 4, 5, 𝐿, 𝐻 = [𝐻

1
𝐻
2

𝐻
3

𝐻
4
],

such that

Ξ̃
1
(ℎ) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

+ Θ
11

(ℎ) Ξ̃
12

+ Θ
12

(ℎ) Ξ̃
13

+ Θ
13

(ℎ) Ξ
14

+ Θ
14

(ℎ) Ξ
15

∗ Ξ̃
22

+ ℎ𝑈 Ξ̃
23

+ Θ
23

(ℎ) ℎ𝐸𝑇𝑋
3
𝐸 𝜆𝐹𝐴

𝑑

∗ ∗ Ξ
33

+ Θ
33

(ℎ) Ξ
34

+ 2𝛼ℎ𝑋
4

0

∗ ∗ ∗ Ξ
44

+ Θ
44

(ℎ) 0

∗ ∗ ∗ ∗ Ξ
55

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (52)

Ξ̃
2
(ℎ) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

Ξ̃
12

Ξ̃
13

Ξ
14

Ξ
15

√ℎ𝐸𝑇𝐻𝑇
1
𝐸

∗ Ξ̃
22

Ξ̃
23

0 𝜆𝐹𝐴
𝑑

√ℎ𝐸𝑇𝐻𝑇
2
𝐸

∗ ∗ Ξ
33

− 𝑒−2𝛼ℎℎ𝑅
3

Ξ
34

0 √ℎ𝐸𝑇𝐻𝑇
3
𝐸

∗ ∗ ∗ Ξ
44

0 √ℎ𝐸𝑇𝐻𝑇
4
𝐸

∗ ∗ ∗ ∗ Ξ
55

0

∗ ∗ ∗ ∗ ∗ −𝑒−2𝛼ℎ𝐸𝑇𝑈𝐸

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (53)

where Ξ
11
, Ξ
14
, Ξ
15
, Ξ
33
, Ξ
34
, Ξ
44
, Ξ
55
,Θ
11
(h),Θ

12
(h),Θ

13
(h),

Θ
14
(h), Θ

23
(h), Θ

33
(h), Θ

44
(h) are as those inTheorem 4, and

Ξ̃
12

= 𝐸
𝑇

𝑃 + 𝐸
𝑇

𝐻
2
𝐸 − 𝐹

𝑇

+ 𝐴
𝑇

𝜆𝐹
𝑇

,

Ξ̃
13

= 𝐸
𝑇

(𝑋
1
− 𝑋
2
) 𝐸 + 𝐸

𝑇

(𝐻
3
− 𝐻
𝑇

1
) 𝐸 + 𝐿,

Ξ̃
22

= 𝑑𝑍 − 𝜆𝐹 − 𝜆𝐹
𝑇

,

Ξ̃
23

= − 𝐸
𝑇

𝐻
𝑇

2
𝐸 − 𝜆𝐿.

(54)

Then singular system (5) is exponentially stable. Further-
more, the sampled-data controller gain matrix in (5) is given
by

𝐾 = 𝐹
−𝑇

𝐿. (55)

Proof. Letting 𝐹
1
= 𝜆𝐹, and 𝐹𝑇𝐾 = 𝐿, we can get from (12)-

(13) that (52)-(53) hold. This completes the proof.

Remark 9. It should be mentioned that the problem of
sampled-data exponential stability of singular systems with
time constant delays and uncertain sampling is solved in
Theorem 8, and sufficient conditions of the existence of the
desired sampled-data controllers are also given, which are
formulated by LMIs and can readily be solved by standard
numerical software.

Based on Theorem 8, we can obtain the following corol-
lary.

Table 1: Maximum values of the upper bound ℎ for different 𝛼.

𝛼 0.1 0.2 0.3 0.4 0.5
ℎ 0.3450 0.3150 0.2760 0.2390 0.2080

Corollary 10. If (12), (13) and (52), (53) are feasible for 𝛼 =

0, then system (5) is exponentially stable with a small enough
decay rate, and the desired state feedback controller gains are
given in (55).

4. Numerical Examples

In this section, two illustrative examples will be provided to
demonstrate the validity and reduced conservatism of the
proposed approaches.

Example 1. Consider the singular system with sampled-data
control in (5).The systemparameters are described as follows:

𝐴 = [

[

−2.5714 9 0

1 −1 1

0 13.95 0

]

]

,

𝐴
𝑑
= [

[

−0.1 0 0

−0.1 0 0

0.2 0 −0.1

]

]

, 𝐸 = [

[

1 0 0

0 1 0

0 0 0

]

]

.

(56)

In this example, we choose 𝑑 = 1, 𝜆 = 0.2.

Applying Theorem 4, as shown in Table 1, we can obtain
the different maximum values of the upper bound ℎ for
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1

0.8
0.6
0.4
0.2
0

𝛼

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

h

d = 1.1

d = 1.2

d = 1.3

Figure 1: The upper bound ℎ for different 𝛼.

different 𝛼. From Table 1, we can find the influence of the
choice of 𝛼 on the value of the upper bound ℎ. To be specific,
a larger value of 𝛼 corresponds to a smaller value of the upper
bound ℎ.

Next, we will design the sampled-data controller (4) such
that system (5) is exponentially stable. Choosing 𝛼 = 0.4 and
ℎ = 0.2390, and using theMATLAB LMI Toolbox to solve the
LMIs (12) and (13), we can get the following gain matrix in

𝐾 = [

[

−0.1937 −0.2703 −0.1003

−3.4469 −4.8445 −0.0004

1.6194 2.2752 0.0011

]

]

. (57)

That is, there exists a sampled-data controller such that
system (5) is exponentially stable for any sampling period
ℎ
𝑘
≤ 0.2390.
For the case of constant sampling period, based on

Theorem 1 of [35], the maximum sampling period ℎ is 0.0158.
While based on Corollary 10 with 𝛼 = 0, the largest sampling
period ℎ ensuring the stability of system (9) is 0.0389, which is
146.2% larger than that of [35]. Thus, our proposed approach
is able to achieve less conservative results and essentially
improves the existing one.

Example 2. Consider the singular system with sampled-data
control in (5) with the following parameters:

𝐴 = [
−0.6 0.54

−0.6 0.12
] ,

𝐴
𝑑
= [

−0.5 0.4

0.5 −0.1
] , 𝐸 = [

1 0

0 0
] .

(58)

In this example, we choose 𝜆 = 0.3.

For different time-delay 𝑑, the influence of the choice of
the upper bound ℎ on the value of 𝛼 can be seen in Figure 1.
From Figure 1, it is clear that when time-delay 𝑑 is fixed, for
a larger upper bound ℎ, the value of 𝛼 is usually smaller, and
when ℎ is fixed, for a larger 𝑑, the value of 𝛼 is usually larger.

Using Theorem 8 with 𝛼 = 0.06 given in this paper,
the maximum value of the upper bound ℎ that system (5)
is exponentially stable is 0.3029, and the corresponding gain
matrix is

𝐾 = [
−3.9755 0.0646

2.1741 −0.0142
] . (59)

4

3

2

1

0

−1

−2
0 2 4 6 8 10 12 14 16 18 20

Time t

x(1)

x(2)

x(3)

Figure 2: State response of system (5).

Under the above gain matrix, the response curves of
system (5) are exhibited in Figure 2, which shows that the
states are tending to zero; that is, singular system (5) can be
stabilized by the proposed sampled-data controller.

5. Conclusion

In this paper, a sampled-data control approach was proposed
for the singular systems with time delays. A time-dependent
Lyapunov functional was introduced for the systems, which
was positive definite at sampling times but not necessarily
positive definite inside the sampling intervals. By the usage of
the Lyapunov approach, sufficient condition was proposed to
ensure the exponential stability of the singular systems, which
can significantly reduce the conservatism. The available
information about the actual sampling pattern was fully used.
Based on the stability criterion, the desired sampled-data
controller has also been designed. Finally, two illustrative
examples have been presented to show the effectiveness and
potential of the proposed new design techniques.
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