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The bivariate Nakagami-lognormal distribution used to model the composite fast fading and shadowing has been examined
exhaustively. In particular, we have derived the joint probability density function, the cross-moments, and the correlation
coefficient in power terms. Also, two procedures to generate two correlated Nakagami-lognormal random variables are described.
These procedures can be used to evaluate the robustness of the sample correlation coefficient distribution in both macro- and
microdiversity scenarios. It is shown that the bias and the standard deviation of this sample correlation coefficient are substantially
high for large shadowing standard deviations found in wireless communication measurements, even if the number of observations
is considerable.

1. Introduction

In wireless communications, the received signal is subjected
to fading due to two physical mechanisms. On one hand,
the multipath components cause rapid and deep fading in
displacements of few wavelengths (small-scale area). This is
the well-known short-term fading or fast fading, which has
been extensively analyzed in the literature [1, 2]. This fast
fading has beenmodeled statistically using theRice, Rayleigh,
Nakagami-𝑚, and Weibull distributions. The Nakagami-𝑚
distribution is frequently employed to model the fast fading
since it fits better than the other distributions in many mea-
surement campaigns [3, 4]. On the other hand, the received
signal fluctuates slowly around a mean in displacements of
hundreds of wavelengths (large-scale area). This variation is
known as long-term fading or shadowing. This shadowing
is due to the temporal blockage of the direct component
between the transmitter and receiver terminals. The shad-
owing is commonly modeled statistically by a lognormal
distribution. Values of standard deviations for shadowing
reported in the literature range from 5 to 12 dB in macrocells,
from 6 to 10 dB in microcells, and from 3 to 10 dB in indoor
environments [5].

In the analysis of wireless propagation channels, these
components are traditionally separated to model both the

fast fading and shadowing. Nevertheless, this separation is
troublesome in scenarios as in indoor and vehicular channels,
where the variation of the received signals is considerably
high, with few displacements in terms of the wavelength, and
thus these effects are severely overlapped.

Therefore, several distributions have been proposed to
describe the composite fast fading and shadowing. Initially,
the Rayleigh-lognormal distribution was used by Suzuki
to model this compound fading [6]. Also, the Nakagami-
lognormal distribution has been employed to model the
composite fading [7–9]. Recently, some other distributions as
the 𝛼-𝜇 [10], the generalized-𝐾 [11], or the mixture gamma
(MG) distribution [12] have been proposed in the litera-
ture. Nevertheless, the results derived from a measurement
campaign carried out in a macrocellular urban environment
[13] have shown that the Nakagami-lognormal is the best-
fit distribution compared with the Rayleigh-lognormal, 𝛼-𝜇,
and generalized-𝐾 distributions.

The effect of the correlated shadowing or correlated fast
fading on the performance parameters in wireless com-
munication diversity has attracted the attention of several
researches [14–19]. Nevertheless, all the above works have
assumed either correlated fast fading with independent shad-
owing or correlated shadowing with independent fast fading.
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Therefore, to the best of the authors’ knowledge an analysis of
the general bivariate distribution Nakagami-lognormal with
correlated both fading and shadowing and arbitrary fading
parameters is novel in the literature.

Thus, in this paper the joint probability density function
(PDF) and the cross-moments of the bivariate Nakagami-
lognormal distribution are derived. Also, we have focused our
attention on calculating the correlation coefficient between
the composite signals. This correlation coefficient is partic-
ularized for two wireless scenarios of interest: macro- and
microdiversity cases.

Two procedures to generate two correlated Nakagami-
lognormal random variables (RVs) are proposed and several
examples for the sample correlation coefficient are evaluated
in both macro- and microdiversity scenarios.

This paper is organized as follows. First, the joint PDF,
the central moments, and the correlation coefficient of the
Nakagami-lognormal distribution are derived in Section 2.
Second, in Section 3 we describe two procedures for gen-
erating Nakagami-lognormal RVs and several results are
analyzed. Finally, the conclusions are discussed in Section 4.

2. Bivariate Nakagami-Lognormal Distribution

2.1. Joint Probability Density Function. Let 𝑟𝑓
1

and 𝑟𝑓
2

be cor-
related Nakagami-𝑚 RVs, representing fast fading processes
with the same mean power equal to unity, whose marginal
PDFs are given by
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where var(⋅) denotes the variance.
We can define 𝑟𝑠

1

and 𝑟𝑠
2

as correlated lognormal RVs cor-
responding to shadowing processes, whose marginal PDFs
can be written as
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𝜇𝑑𝑗 being the mean of the associated Gaussian process of the
shadowing, expressed in dBV/m, 𝜎𝑑𝑗 the standard deviation
of the associated normal distribution corresponding to the
lognormal shadowing, expressed in dB. The power correla-
tion coefficient between the associated Gaussian processes,
𝑥1 = 20 log 𝑟𝑠

1

and 𝑥2 = 20 log 𝑟𝑠
2

, is denoted by 𝜌𝑠 and it
is defined in the same way as (2), by substituting 𝑥1 and 𝑥2
for 𝑟𝑓

1

and 𝑟𝑓
2

, respectively.
If we calculate 𝑟𝑗 = 𝑟𝑓
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, 𝑗 = 1, 2, then 𝑟𝑗 is Nakagami-
lognormal distributed, with PDF given by
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whereΩ𝑗 is a lognormal RV which represents the shadowing
process. Note that the PDF given by (6) corresponds to the
Nakagami-lognormal PDF in power terms given by [8, (8)].

The 𝑛th moment of 𝑟𝑗, 𝑗 = 1, 2, is calculated as
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where 𝐸(⋅) denotes expectation. Note that (7) is equivalent
to [21, (2.59)] by substituting 2𝑛 instead of 𝑛 in (7), which
corresponds to the 𝑛th moment of the Gamma-lognormal
distribution.

Combining [22, (2.1)] and [23, (12)], the joint PDF of 𝑟1
and 𝑟2 can be obtained as
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where (𝑎)𝑏 = Γ(𝑎 + 𝑏)/Γ(𝑎) is the Pochhammer symbol [20,
(6.1.22)], 1𝐹1(⋅, ⋅; ⋅) is the confluent hypergeometric function
[20, (13.1.2)], and 𝛿𝑓 = 𝜌𝑓√𝑚2/𝑚1. The Nakagami-𝑚
variables in (8) are ordered to fulfill the condition 𝑚2 ≥ 𝑚1
[23].Thus, the correlation coefficient between the Nakagami-
𝑚 processes in power terms is limited to 𝜌𝑓 < √𝑚1/𝑚2.

The joint bivariate Nakagami-lognormal PDF can be
simplified for𝑚 = 𝑚1 = 𝑚2 using [24, (1)], [3, (126)] as
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where 𝐼](⋅) is the modified Bessel function of the first kind
[20, (9.6.3)], and 𝑞 is given by (9).

Assuming 𝜌𝑠 = 1 in (8) and (10), the infinite summation is
not convergent. In order to overcome it, we can alternatively
express the joint PDF for 𝜌𝑠 = 1,𝑚 = 𝑚1 = 𝑚2, 𝜇 = 𝜇1 = 𝜇2,
and 𝜎 = 𝜎1 = 𝜎2 as

𝑝𝑟
1
,𝑟
2

(𝑟1, 𝑟2) = ∫

∞

0

4𝑚(𝑚𝑟1𝑟2)
𝑚

Γ (𝑚) (1 − 𝜌𝑓) 𝜌
(𝑚−1)/2
𝑓

Ω
𝑚+1

× exp[− 𝑚

Ω(1 − 𝜌𝑓)

(𝑟
2
1 + 𝑟
2
2)]

× 𝐼𝑚−1(

2𝑚√𝜌𝑓𝑟1𝑟2

Ω(1 − 𝜌𝑓)

)

1

√2𝜋𝜎Ω

× exp(−
(ln (Ω) − 𝜇)2

2𝜎
2

)𝑑Ω.

(11)

2.2. Correlation Coefficient. Using [23, (16)] and [25, (2.1)],
the cross-moments of the bivariate Nakagami-lognormal
distribution can be calculated as
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where 2𝐹1(⋅, ⋅; ⋅; ⋅) is the Gauss hypergeometric function [20,
(15.1.1)].

From (7) and (12), the correlation coefficient in power
terms between two Nakagami-lognormal variables can be
derived as
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Note that this power correlation coefficient is not affected
by the means of the associated Gaussian processes, 𝜇𝑗, 𝑗 =
1, 2, corresponding to the shadowing.

Next, we analyze the correlation coefficient between the
composite fast fading shadowing of the received powers in
two wireless communication scenarios.

Case 1 (macrodiversity). Themacrodiversity is the technique
used to combat the effects of the shadowing, by combining the
signals received in several antennas separated by hundreds
of wavelengths. For instance, in the macrodiversity scenario
depicted in Figure 1, the mobile terminal is connected
simultaneously to two base stations (BSs), BS1 and BS2. The
gain obtained with macrodiversity in this scenario depends
strongly on the cross-correlation coefficient of the received
field strengths at BS1 and BS2.

The behavior of the site-to-site shadowing correlation
coefficient has been extensively analyzed in the literature
[5, 26, 27]. In [5], a model of the shadowing correlation has
been proposedwhere the cross-correlation coefficient is given
by
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where 𝑑1 is the smallest of the two path lengths 𝑑1 and 𝑑2; 𝛾
is a parameter of adjustment which depends on the size and
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BS: base station
MS: mobile station

d1 d2
𝜙

BS1 MS
BS2

Figure 1: Cross-correlation shadowing scenario.

height of terrain and clutter, and according to the height of
the BS antenna relative to them; and

𝜙𝑇 = 2sin
−1 𝑑𝑐

2𝑑1

, (15)

𝑑𝑐 being the shadowing correlation distance.
In this situation, it is reasonable to assume that the

short-term variations of the signal envelopes at BS1 and
BS2 are independent, and consequently 𝜌𝑓 = 0. Hence,
the correlation coefficient between the instantaneous powers
received at BS1 and BS2 can be easily simplified from (13) as
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where 𝜌𝑠 is given by (14).

Case 2 (microdiversity). The microdiversity has been exten-
sively used to reduce the harmful effects of the fast fading.
The most common methods employed in microdiversity are
spatial, polarization, frequency, angular, and temporal [2].
In order to obtain a high degree of improvement using
microdiversity, two conditions should be fulfilled: (i) low
cross-correlation coefficients between individual diversity
branches and (ii) similar mean power available from each
branch of the combiner [5]. For instance, the correlation
coefficient using spatial microdiversity at the BS depends
basically on the antenna separation, the direction of arrival
of the main contribution arriving from the mobile station
(MS), and the angular spread corresponding to the scatterers
surrounding the MS [28].

It is reasonable to assume the following hypotheses in
a microdiversity scenario: (i) total shadowing correlation,
that is, 𝜌𝑠 = 1; (ii) identical distributions for shadowing
processes, that is, 𝜎 = 𝜎1 = 𝜎2; and (iii) identical fading
parameters for the short-term distributions, that is, 𝑚 =

𝑚1 = 𝑚2. Accordingly, the correlation coefficient between

the composite distributions, whose joint PDF is given by (11),
is simplified from (13) to
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2
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In this case, the correlation coefficient in power terms is
limited to

𝑚(exp (𝜎2) − 1)
𝑚 (exp (𝜎2) − 1) + exp (𝜎2)

≤ 𝜌 ≤ 1. (18)

3. Numerical Results

In this section, we compare the values of the correlation
coefficient given by (13) to those obtained by generating two
correlated Nakagami-lognormal RVs using two methods.

3.1. Nakagami-Lognormal RV Generation. First, two corre-
lated Gaussian variables will be generated following the
next method. Let 𝑥1 be a Gaussian RV with mean 𝜇𝑑1
and standard deviation 𝜎𝑑1, denoted as 𝑥1 ∼ N(𝜇𝑑1, 𝜎𝑑1).
If we generate a Gaussian RV, symbolized as 𝑦 ∼
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𝜌𝑠(𝜎𝑑2/𝜎𝑑1)𝑥1 + 𝑦 is a Gaussian RV represented as 𝑥2 ∼
N(𝜇𝑑2, 𝜎𝑑2), correlated 𝜌𝑠 with 𝑥1. The pair of Gaussian
correlated RVs, 𝑥1 and 𝑥2, are denoted as {𝑥1, 𝑥2} ∼

N(𝜇𝑑1, 𝜎𝑑1; 𝜇𝑑2, 𝜎𝑑2; 𝜌𝑠).
Second, we generate two correlated lognormal variables

using the following transformations:
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1
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/10
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Hence, Ω1 and Ω2 are lognormal distributed, denoted
as {Ω1, Ω2} ∼ L(𝜇1, 𝜎1; 𝜇2, 𝜎2; 𝜌𝑠). Note that the mean, the
variance, and the correlation coefficient between Ω1 and Ω2
are given by Mostafa and Mahmoud [22]
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where 𝜇𝑗 and 𝜎𝑗 are related to the logarithmic parameters, 𝜇𝑑𝑗
and 𝜎𝑑𝑗, in (4) and (5), respectively.

Finally, we generate two correlatedNakagami-𝑚 variables
with arbitrary fading parameters, whose mean powers are
correlated lognormal RVs. These RVs, denoted as {𝑟1, 𝑟2} ∼
M(𝑚1, Ω1; 𝑚2, Ω2; 𝜌𝑓), can be generated by following the
method described in [29]. Each RV, 𝑟𝑗, 𝑗 = 1, 2, follows a
Nakagami-𝑚 distribution, whose PDF is given by
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where 𝑚𝑗 is the fading parameter; Ω𝑗 is the mean power
calculated in this case from (19); and 𝜌𝑓 is the power
correlation coefficient. Note that𝑚2 ≥ 𝑚1 and 𝜌𝑓 < √𝑚1/𝑚2.
Estimated values of the fading parameter typically range from
1 to 3. For example, a mean of 1.56 and a standard deviation
of 0.34 for the estimated fading parameters were reported in
[4].

To improve in computation efficiency, we can alterna-
tively generate the two correlated Nakagami-lognormal RVs
by using a logarithmic procedure, since a log Nakagami-log-
normal RV can be calculated as the sum of a log Nakagami-
𝑚 and a Gaussian RVs [13]. Therefore, first two correlated
Gaussian RVs, that is, {𝑥1, 𝑥2} ∼N(𝜇𝑑1, 𝜎𝑑1; 𝜇𝑑2, 𝜎𝑑2; 𝜌𝑠), are
calculated as previously. Second, we generate two correlated
Nakagami-𝑚 RVs with average powers equal to 1, that is,
(V1, V2) ∼ M(𝑚1, 1; 𝑚2, 1; 𝜌𝑓). Next, two log Nakagami-𝑚
RVs are generated by calculating 𝜖1 = 20 log V1 and 𝜖2 =
20 log V2. Finally, the two correlated Nakagami-lognormal
RVs are obtained as 𝑟1 = 10

(𝑥
1
+𝜖
1
)/20 and 𝑟2 = 10

(𝑥
2
+𝜖
2
)/20.

3.2. Sample Correlation Coefficient. We have generated 𝑁
observations of correlated Nakagami-lognormal RVs follow-
ing the methods described above. Hence, the sample coeffi-
cient correlation, 𝑅, is calculated. 𝐾 samples of the sample
correlation coefficient are obtained in order to estimate the
bias and the variance of𝑅.The variance of𝑅 depends strongly
on the skewness of the marginal Nakagami-lognormal dis-
tributions as it was shown for different examples of the
lognormal distribution in [30]. The skewness of the marginal
Nakagami-lognormal distributions can be evaluated from (7)
as

𝑠𝑗 =

𝐸 [(𝑟𝑗 − 𝑟𝑗)
3
]

𝐸[(𝑟𝑗 − 𝑟𝑗)
2
]

3/2

= (

2Γ(𝑚𝑗 + 1/2)
3

𝑚
3/2
𝑗 Γ(𝑚𝑗)

3
+

Γ (𝑚𝑗 + 3/2) 𝑒
3𝜎2
𝑗
/4

𝑚
3/2
𝑗 Γ (𝑚𝑗)

−

3Γ (𝑚𝑗 + 1/2) 𝑒
𝜎2
𝑗
/4

√𝑚𝑗Γ (𝑚𝑗)

)

×((𝑒
𝜎2
𝑗
/4
−

Γ(𝑚𝑗 + 1/2)
2

𝑚𝑗Γ(𝑚)
2
)

3/2

)

−1

,

𝑗 = 1, 2,

(22)

where 𝑟𝑗 is themean of 𝑟𝑗, 𝑗 = 1, 2.The skewness, 𝑠𝑗, increases
with𝜎𝑗. For instance, the skewness oscillates from 3.55 to 12.11
with 𝑚𝑗 = 1 for shadowing standard deviations from 6 to 10
dB, respectively. Nevertheless, the skewness decreases slightly
with the fading parameter, 𝑚𝑗. For instance, 𝑠𝑗 = 3.55 for
𝜎𝑑𝑗 = 6 dB and 𝑚𝑗 = 1 and 𝑠𝑗 = 3.15 for 𝜎𝑑𝑗 = 6 dB and
𝑚𝑗 = 3.

Figures 2, 3, and 4 show the bias and the standard devia-
tion of𝑅 as a function of the fast fading correlation coefficient,
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Figure 2: Standard deviation of the sample correlation coefficient
as a function of the fast fading correlation coefficient for a number
of observations 𝑁 = 1000, 100000 and number of samples 𝐾 =

25, 50, 100. The distribution parameters are 𝑚1 = 1.2, 𝑚2 = 1.2;
𝜎𝑑1 = 𝜎𝑑2 = 8 dB.

𝜌𝑓.The results correspond to spatial microdiversity, with 𝜌𝑠 =
1, 𝑚 = 𝑚1 = 𝑚2, and 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2. In particular, the
effect of the sample size, 𝑁, and the number of samples, 𝐾,
on the variation of the standard deviation is illustrated in
Figure 2. In this figure, the parameters of the distribution
are 𝑚 = 𝑚1 = 𝑚2 = 1.2 and 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 =

8 dB. The sample size, which corresponds to the number of
observations used in simulations, is 𝑁 = 1000 and 100000,
and the number of samples is𝐾 = 25, 50, and 100. Obviously,
the higher the number of observations, 𝑁, the smaller the
standard deviation. Also, the standard deviation reduces as
the fast fading correlation coefficient,𝜌𝑓, grows.Nevertheless,
the standard deviation of 𝑅 is scarcely affected by the number
of samples calculated; that is,𝐾 equals 25, 50, and 100.

In Figure 3, the effect of both the fading parameter, 𝑚,
and the shadowing standard deviation, 𝜎𝑑𝑗, on the standard
deviation of the sample correlation coefficient is analyzed
for 𝑁 = 100000 and 𝐾 = 50. The standard deviation of
the sample correlation coefficient depends strongly on the
shadowing standard deviation. Also, it can be observed that
the standard deviation of 𝑅 for 𝜎𝑑 = 10 dB decreases as 𝑚
grows. In general, the standard deviation of 𝑅 tends to reduce
for high correlation coefficient values.

Figure 4 shows the mean of the sample correlation
coefficient and the correlation coefficient 𝜌 given by (17),
that is, the analytical prediction, as a function of the fast
fading correlation coefficient. The simulations are performed
for 𝑚 = 𝑚1 = 𝑚2 = 1.2, 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 10 dB and
𝑚 = 𝑚1 = 𝑚2 = 3.2, 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 8 dB. The number of
observations is𝑁 = 100000 and the number of samples is𝐾 =
25, 50, and 100. Generally speaking, the sample correlation
coefficient is slightly positive biased for these values.This bias
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Figure 3: Standard deviation of the sample correlation coefficient
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parameters of the marginal distributions. The number of obser-
vations and number of samples are 𝑁 = 100000 and 𝐾 = 50,
respectively.
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Figure 4:Correlation coefficient andmeanof the sample correlation
coefficient as a function of the fast fading correlation coefficient for
𝑚1 = 𝑚2 = 1.2, 𝜎𝑑1 = 𝜎𝑑2 = 10 dB and 𝑚1 = 𝑚2 = 3.2,
𝜎𝑑1 = 𝜎𝑑2 = 8 dB. The correlation coefficient (analytical prediction)
is in solid lines and the mean of the sample correlation coefficient
in dashed lines. The number of observations is𝑁 = 100000 and the
number of samples is 𝐾 = 25, 50, 100.

is higher for small fast fading correlation coefficients and for
𝑚 = 𝑚1 = 𝑚2 = 3.2; 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 8 dB.

In Figure 5, the correlation coefficient given by (16) and
the mean of the sample correlation coefficient are plotted as
a function of the angle between the MS and the base stations,
𝜙, for 𝑑1 = 1000m, 𝑑2 = 2000m, 𝑑𝑐 = 300m, and 𝛾 =
0.3. Curves have been drawn for 𝑁 = 10000, 100000, and
1000000, and𝐾 = 50. The marginal distributions parameters
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Figure 5: Correlation coefficient andmean of the sample correlation
coefficient as a function of the angle between the mobile station
and the two base stations. The parameters of the shadowing cross-
correlation scenario are 𝑑1 = 1000m, 𝑑2 = 2000m, 𝑑𝑐 = 300m, and
𝛾 = 0.3. The marginal distributions parameters are 𝑚1 = 𝑚2 = 1.2,
𝜎𝑑1 = 𝜎𝑑2 = 10 dB; 𝑚1 = 1.4, 𝑚2 = 3.2, 𝜎𝑑1 = 𝜎𝑑2 = 8 dB; and
𝑚1 = 1.8, 𝑚2 = 2.3, 𝜎𝑑1 = 𝜎𝑑2 = 6 dB. The correlation coefficient
(analytical prediction) is in solid lines and the mean of the sample
correlation coefficient in dashed lines.Thenumber of observations is
𝑁 = 10000, 100000, 1000000 and the number of samples is 𝐾 = 50.

are 𝑚 = 𝑚1 = 𝑚2 = 1.2, 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 10 dB; 𝑚1 =
1.4, 𝑚2 = 3.5, 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 8 dB; and 𝑚1 = 1.8,𝑚2 =
2.3, 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 6 dB. It is observed that the sample
correlation coefficient is positive biased for such parameter
values. This bias is considerably high for a small number of
observations, that is, 𝑁 = 10000 and 𝑁 = 100000, specially
for 𝜙 close to 0∘. Also, from the results shown in Figure 5,
the higher the shadowing standard deviation is, the larger the
values of the bias are using the same number of observations
and 𝜙. This bias is large for 𝜎𝑑 = 𝜎𝑑1 = 𝜎𝑑2 = 10 dB and
low values of 𝜙 even for a high number of observations; for
example, the bias is around 0.035 for 𝑚 = 𝑚1 = 𝑚2 = 1.2,
𝜙 ≤ 10

∘, and𝑁 = 1000000.

4. Conclusions

In this paper, we have analytically derived the PDFof bivariate
Nakagami-lognormal distribution with arbitrary distribu-
tion parameters of the marginal distributions and arbitrary
correlation. Also, the correlation coefficient between the
compound signals has been obtained as a function of the
distribution parameters and both the fast fading and shad-
owing correlation coefficients.This correlation coefficient has
been particularized for specific scenarios of wireless com-
munications: micro- and macrodiversity. In microdiversity,
the correlation coefficient between the composite signals is
substantially higher than the fast fading correlation coeffi-
cient. Otherwise, the composite correlation coefficients are
small (in the examples lower than 0.32) in the macrodiversity
scenario.
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Two procedures to generate two correlated Nakagami-
lognormal variables have been described. In examples of
both microdiversity and macrodiversity scenarios, we have
evaluated the sample correlation coefficient between the
composite Nakagami-lognormal signals, comparing it to
the analytical correlation coefficient derived previously. In
general, this sample correlation coefficient is positive biased.
From those examples, it can be observed that the bias and
the standard deviation of the sample correlation coefficient
depend substantially on the shadowing standard deviation.

The results reported in this work can be of interest in
the assessment of performances (outage probabilities, bit
error rates, etc.) in diversity receivers with highly dynamical
environments, such as vehicular or indoor wireless channels.
In these scenarios, the separation of the fast fading and
shadowing processes is cumbersome, and the received signals
at each branch of the diversity combiner can be accurately
modeled as Nakagami-lognormal composite distributions.
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