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Mesoporous nanocrystalline anatase was prepared via EISA employing CTAB as structure directing agent. The drying rate was
used as a key synthesis parameter to increase the average pore diameter. The resultant mesoporous crystalline phases exhibited
specific surface areas between 55 and 150m2 g−1, average unimodal pore sizes of about 3.4 to 5.6 nm, and average crystallite size
of around 7 to 13 nm. These mesophases were used as photocatalysts for the degradation of 4-chlorophenol (4CP) with UV light.
Under the studied conditions, the mesoporous anatase degraded 100% 4CP.This was twice faster than Degussa P-25. 57% reduction
of chemical oxygen demand (COD) value was achieved.

1. Introduction

TiO
2
is well known as the photocatalyst by excellence. It has

been successfully applied to degrade and mineralize a vast
amount of hazardous compounds in both air and water [1–
5], under mild reaction conditions (low temperature and
atmospheric pressure). Within photocatalysis area, it has
been widely accepted that the catalyst feature determining
its activity is the crystalline structure. Although this is true,
other surface characteristics should not be completely left
aside. This work aims to report the effect of surface mor-
phological characteristics on mesoporous nanocrystalline
anatase activity. The synthesis of the material was conducted
by evaporation induced self-assembly approach (EISA). This
method was elected since it is a powerful synthesis method
to design technologically relevant and functional oxides in
the fiber, particle, and film form at the nanoscale [6–9].
The method relies on using very dilute surfactant initial
concentration from which a liquid crystalline mesophase

is gradually developed upon solvent evaporation. The slow
coassembly between the inorganic network and the liquid
crystalline phase leads to the formation of long-range order of
well-definedmesostructures.The preparation of mesoporous
titania particles by EISA has been studied by independent
research groups [10–13]. It is expected that a change in size,
shape, and dimensions of the mesopore TiO

2
modifies the

accessibility, adsorption, and diffusion of guest molecules
within the pore network, thereby achieving further degrada-
tion. The photocatalytic activity of the synthesized TiO

2
was

tested in the degradation of 4-chlorophenol (4CP).
Chlorinated aromatic compounds are a class of com-

pounds widely used and constitute a particular group of pri-
ority pollutants.This is mainly due to their numerous origins
(pesticide, paint, solvent, pharmaceutics, wood preserving
chemicals, coke oven, and pulp industries) [14, 15] and toxic
effects. They can be found in ground water, wastewater,
and soil. In particular, chlorophenols (CPs) pose serious
ecological problems as environmental pollutants due to their
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high toxicity, recalcitrance, bioaccumulation, strong odor
emission and persistence in environment, and suspected
carcinogen and mutagen effect on the living [16, 17]. The
photocatalytic degradation of chlorinated phenols in TiO

2

suspensions has been studied by many investigators [18–
24]. The results show that phenolic compounds are degraded
completely to CO

2
and H

2
O through a mechanism involv-

ing hydroxylation of the aromatic ring. In particular, 4-
chlorophenol (4CP) has been accepted as the standard pol-
lutant for heterogeneous photocatalysis. The photocatalytic
degradation of 4CP has been the topic of many investigations
[25–29], and the kinetics of the photocatalytic degradation
has been extensively studied [30–36]. Despite this vast liter-
ature, it still remains unclear whether there is an interaction
or not between 4CP degradation and surface morphological
characteristics of the employed photocatalyst. Therefore, it is
relevant to conduct this study not only in the context of 4CP
degradation but also in general within photocatalysis area.

2. Experimental

2.1. Materials and Synthesis. Titanium (IV) ethoxide
(C
8
H
20
O
4
Ti, 80% Aldrich) and titanium (IV) butoxide

(C
16
H
36
O
4
Ti, 97% Aldrich) were used as precursors. Hexa-

decyltrimethylammonium bromide, denoted as CTAB
(C
19
H
42
NBr, 99% Sigma), was used as the structure directing

agent (SDA). Ethanol (99.6%, Sigma-Aldrich) was used as
organic solvent. Nitric acid (65.2%, Sigma-Aldrich) was used
as catalyst.

The synthesis was performed as follows. An alcoholic
solution of the precursor was prepared. This solution was
added to the SDA under vigorous stirring, and then nitric
acid was added dropwise. The resultant solution was stirred
at room temperature for 3 h and then was dried at room
temperature. Samples with different drying rates were placed
in a rotary evaporator at 100 rpm (Heidolph G3 model) using
oil as a heating medium. The synthesized powders were
then calcined at 350∘C and 400∘C. It is worth clarifying that
samples calcined at 350∘C were first calcined at 300∘C for 1
hour and then at 350∘C for 4 hours with controlled heating
and cooling rate of 1∘C min−1 to remove the SDA. The same
heating rate was used for the samples calcined at 400∘C. The
molar ratio of the as prepared samples was 1 precursor : 3.55
HNO

3
: 0.018 CTAB : 18.71 ethanol.

2.2. Characterization. Mesoporous titania samples were ana-
lyzed by X-ray diffraction (XRD) in a Bruker D8 Advanced
diffractometer with CuK𝛼 radiation and a LynxEYE detector.
BET surface areas and N

2
adsorption-desorption isotherms

were obtained in an Autosorb-1 Quantachrome. Before mea-
surements, samples were degassed at 250∘C for 2 h. TEM
images were taken with a JEOL-2100 200 kV LaB6 filament.
The morphology and particle size of the mesophases were
inspected with a SEM JEOL JSM-6510LV.

2.3. Heterogeneous Photocatalytic Oxidation of 4CP. Photo-
catalytic degradation studies of 4CP were performed in a
batch photoreactor of cylindrical shape (see Figure 1). The
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Figure 1: Experimental set-up. (A) UV lamp, (B) thermometer, (C)
magnetic stirrer, (D) gas outlet and sampling, and (E) oxygen trap.

photoreactor was provided with ports in the lower and upper
section for the inlet and outlet of gases and for sampling.
Mesoporous titania samples were placed in the glass reactor
under continuous stirring (1000 rpm). The total reaction
volume was 30mL. Tests were performed using 0.8 g L−1
of mesoporous titania at an initial pH value of 2 and 4CP
initial concentration [4CP]

0
was 0.233mmol L−1. The pH

adjustment was made by using 0.003MHCl solution. The
temperature throughout the experiment was kept constant at
20∘C. The UV lamp was placed at the center of the reactor
as the source of UV radiation (254 nm at 0.786 watts cm−2).
Oxygen flow of 50mLmin−1 was constantly fed at the bottom
of the reactor and an oxygen trap was used to increase its
residence time. Aliquots samples (0.5mL) were withdrawn
from the system every 30 minutes during 3 hours. Catalyst
was removed before analysis.

At all experiments, the concentration of 4CP (C4CP)
was determined using UV/Vis spectroscopy in a Perkin-
Elmer Model Lambda 25UV/Vis spectrophotometer with a
wavelength range of 200–360 nm, where the characteristic
absorption peak for 4-chlorophenol is located at 280 nm. A
calibration curve was constructed from 0 to 0.311mmol L−1.
A determination coefficient of 𝑟2 = 0.9994 and a slope of
𝜀𝑏 = 0.0119 were obtained. The experiments were repeated
three times to verify results reliability.

The chemical oxygen demand (COD) value was analyzed
with a Hach UV/Vis Model DR-5000 spectrophotometer
in order to determine the degree of oxidation of the 4-
chlorophenol after the photocatalytic tests.

3. Results and Discussion

3.1. Catalysts Characterization. The textural properties of
the synthesized mesoporous titania with different type of
drying are summarized in Table 1. The mesoporous samples
that were dried at room temperature exhibited specific
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Table 1: Specific surface area, average pore size, and average crystallite size of mesoporous titania samples with different type of drying.

Drying Precursor Sample
ID

Calcination
(∘C)

Specific
surface area

(m2/g)

Average pore
size (nm)

Average
crystallite
size (nm)

Room temperature
Titanium ethoxide AE3 350 117 3.4 7

AE4 400 71 3.4 11

Titanium butoxide AB3 350 99 3.4 9
AB4 400 55 3.4 13

Rotary evaporator
Titanium ethoxide RE3 350 115 3.8 9

RE4 400 87 4.3 11

Titanium butoxide RB3 350 145 4.3 8
RB4 400 108 4.9 10

Table 2: Specific surface area, average pore size, and average crystallite size of mesoporous titania samples with different drying rate in rotary
evaporator.

Drying rate Calcination (∘C) Sample ID Specific surface area (m2/g) Average pore size (nm) Average crystallite size (nm)

Fast 350 FR3 150 3.8 8
400 FR4 103 4.3 10

Medium 350 MR3 (RB3) 145 4.3 8
400 MR4 (RB4) 108 4.9 10

Slow 350 SR3 147 4.9 8
400 SR4 108 5.6 10

surface areas of around 117m2 g−1 and average pore size of
approximately 3.4 nm. Furthermore, it was observed that
the pore diameter remains constant and independent of the
calcination temperature. However, the calcination conducted
at 400∘C decreases the specific surface area. Mesoporous
samples dried in rotary evaporator exhibited specific surface
areas of approximately 145m2 g−1 and average pore size of
around 4.9 nm. Furthermore, it was observed that the cal-
cination temperature modifies both the specific surface area
and average pore diameter. For this type of drying, the best
textural properties were obtained using titanium butoxide as
precursor.The reactivity of the precursor determines the rates
of hydrolysis and condensation to generate the final inorganic
oxide structure. Also, the time used in these processes must
be sufficient to allow proper interaction between the SDA
and the inorganic precursor and generate assembly and
organization in regular structures that finally will lead to an
ordered mesoporous structure. For this reason, the titanium
butoxide as precursor provides a more controlled reactivity
and easy handling, thus allowing control of the hydrolysis and
condensation reactions, as well as the dimensions of the pores
directly related to the size of the alkoxy groups [37, 38].

The textural properties of the mesoporous titania phases
synthesizedwith titaniumbutoxide as precursor and different
drying rate in a rotary evaporator are summarized in Table 2.
Specific surface areas and average pore size of samples were
around 150m2 g−1 and 5.6 nm, respectively. When the drying
rate became slower (at the same calcination temperature), the
average pore diameter is observed to increase. Furthermore,
the calcination temperature is found to be the only variable
thatmodifies the specific surface area for these samples.Thus,

the influence of the evaporation rate of volatile entities is a key
parameter that determines the final mesostructure. The slow
and gradual evaporation of the solvent promotes progressive
increase in the concentration of the SDA by obtaining the
critical micellar concentration (CMC), surfactant micelle
formation, and their self-assembly with inorganic species at
a specific time where the network is flexible enough leads to
greater micellar arrangement [39].

The average crystallite size for all samples was estimated
using the Scherrer equation and the FWHM of anatase
(1 0 1) reflection. Crystal growth increases with a calcina-
tion temperature of 400∘C for all samples. With increas-
ing calcination temperature, the peak intensity of anatase
increases (Figure 2), and the width of the (101) peak becomes
narrower due to the growth of anatase crystallites. The pore
diameter increase is caused by shrinkage of the mesoporous
framework at higher temperatures [40].

The XRD patterns of all the mesophases exhibited only
the characteristic reflections of anatase at approximately 2𝜃
of 25∘, 38∘, 48∘, 54∘, 55∘, and 63∘. These correspond to the
(1 0 1), (0 0 4), (2 0 0), (1 0 5), (2 1 1), and (2 0 4)
planes, respectively, of tetragonal titania [13, 41] as shown in
Figure 2.

Nitrogen adsorption-desorption isotherms and the
Barrett-Joyner-Halenda (BJH) pore size distribution of
synthesized samples are shown in Figure 3. All of these
samples show a IV type isotherm with H

2
hysteresis loop,

which is representative of mesoporous materials [42].
The TEM images of themesoporous anatase samples AB4

(dried at room temperature) and SR4 (slow drying rate in
rotary evaporator) are shown in Figure 4. For these samples,
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Figure 2: XRD patterns of the prepared mesoporous anatase
samples.

the anatase crystals were determined to be approximately 13
and 10 nm in size, respectively. The spacing of 0.35 nm, mea-
sured for these two sets of fringes, coincides with 0.352 nm,
that is, with the d-spacing of (1 0 1) type planes in the
anatase form of titania, and this was confirmed by XRD data
(Figure 2).

Figure 5 shows SEM images of the mesoporous anatase
samples SR4 and AB4. The synthesized mesophase SR4
exhibited clusters of approximately 5–10 𝜇m while the syn-
thesized mesophase AB4 resulted in the formation of larger
clusters of approximately 5–14 𝜇m with irregular shapes.

The reference material Degussa P-25 contains anatase
and rutile phases in a ratio of about 3 : 1. Anatase and rutile
particles separately form their agglomerates and the average
sizes of the anatase and rutile elementary particles are 85 and
25 nm, respectively [43]. Furthermore, their specific surface
area is 52m2 g−1 and the average crystallite size is 30 nm [44].

3.2. 4CP Degradation. The mesoporous anatase phases were
evaluated in the photodegradation of 4CP. The photoactivity
of these samples was compared to that of the reference
material Degussa P-25. Figure 6 shows the photocatalytic
degradation profiles of 4CP over the mesoporous titania
samples and Degussa P-25. All synthesized titania samples
showed a higher percentage of degradation than titania
Degussa P-25. This may be related to the smaller crystallite
size and relatively ordered pore structure of the obtained
mesophases. Also, the enhanced photocatalytic activity of
the mesoporous titania samples can be partially attributed
to the presence of pure anatase phase which is the primary
photoactive phase [45].

The mesoporous samples dried at room temperature
(Figure 6(a)) and the ones dried in a rotary evaporator
(Figure 6(b)) degraded approximately 60–69% and 75–93%
of 4CP, respectively, after 180min. Degussa P-25 degraded
only 57% of 4CP after the same time of exposure to UV

Table 3: Initial reaction rates and removal of 4CP with the titania
samples and Degussa P-25.

Sample ID
4CP degradation
rate −𝑟4CF0 × 10

8

(mol/g seg)
Removal of 4CP (%)

AE3 6.30 69
AE4 2.47 62
AB3 8.85 67
AB4 3.93 60
RE3 3.92 75
RE4 7.00 80
RB3 10.27 86
RB4 4.68 93
FR3 5.94 77
FR4 4.42 82
SR3 10.46 95
SR4 13.54 100
Degussa P-25 6.97 57

irradiation. Although mesoporous titania samples dried at
room temperature showed the same average pore diameter of
3.4 nm, in Figure 6(a) it is evident that there are differences in
the percentages of 4CP degradation due to different specific
surface areas. For mesoporous titania samples dried in a
rotary evaporator, the highest percentage of degradation
(approximately 93%) was obtained with the highest average
pore diameter of 4.9 nm (sample RB4), despite not having the
largest specific surface area.

The mesoporous titania samples synthesized with differ-
ent drying rate in a rotary evaporator (Figure 6(c)) degraded
approximately 77–100% of 4CP. In Figure 6(c) it is evident
that the increase in the percentage of degradation of 4CP
is related to the increase in average pore diameters of
synthesized samples, since the sample SR4 (average pore
diameter of 5.6 nm and specific surface area of 108m2 g−1)
achieves 100% of 4CP degradation in 180 minutes and the
sample SR3 achieved only 95% of degradation at the same
time, despite having higher specific surface area (147m2 g−1)
and smaller average pore diameter of 4.9 nm. The ordered
pore architecture of the mesoporous samples as compared
to Degussa P-25 may result in higher diffusion rates of the
guest molecules, and therefore the photocatalytic reaction
rate increases. The benefits of having an ordered mesopore
structure for photocatalytic applications have been demon-
strated by independent research groups [46–48].

Table 3 shows the initial rates of degradation of 4CP for
all samples synthesized and Degussa P-25. No effect of the
average pore diameter was observed on the initial rate of
degradation for the samples dried at room temperature. This
may be due to several factors such as crystal size, because,
when this decreases, the surface density of active sites
available for substrate adsorption increases, thus increasing
the photocatalytic reaction rate [49, 50].

Figure 7 shows the removal of 4CP by photocatalysis,
adsorption, and photolysis using mesoporous titania sample
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Figure 3: N
2
adsorption-desorption isotherms and pore size distribution of the mesoporous anatase phases dried (a) at room temperature

(b) in rotary evaporator (c) with different rate in rotary evaporator and calcined at 350∘C (d) with different rate in rotary evaporator calcined
at 400∘C.

Table 4: Apparent constant, half-life, and linearization coefficient for the Langmuir-Hinshelwood model for 4CP photodegradation.

Sample ID 𝑘ap 𝑡
1/2

(min) 𝑟
2

AE3 6.60 105.0 0.948
AE4 5.69 121.8 0.968
AB3 5.50 126.0 0.895
AB4 5.46 127.0 0.920
RE3 7.79 89.0 0.996
RE4 8.52 81.3 0.968
RB3 11.02 63.0 0.981
RB4 14.68 47.2 0.997
FR3 8.57 80.9 0.976
FR4 9.53 72.7 0.970
SR3 15.85 43.7 0.987
SR4 27.07 25.6 0.996
Degussa P-25 4.40 157.5 0.864

SR4 since 100% of 4CP degradation was achieved in 180
minutes. The effect of photolysis was studied by carrying
out the experiment only in the presence of oxygen and
UV light without mesoporous titania. The degradation of
4CP by direct photolysis is negligible, and the increase in
concentration is due to an electronic effect that modifies
the UV absorbance spectrum and appears as if it was an
increase in concentration (Figure 8). This phenomenon has
been described as a photoinduction period associated with

reactions involving the formation of free radicals [51–53].
Furthermore, the removal of 4CP by adsorption is considered
negligible (Figure 7).

The kinetics of photocatalytic reactions of organic com-
pounds are usually adequately described by the Langmuir-
Hinshelwood model [29, 51]. It relates the degradation rate
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Figure 5: SEM images of the mesoporous anatase phases (a) SR4 (b) AB4.

𝑟 and the concentration of organic compound C and is
expressed as follows:

𝑟 = −

𝑑𝐶

𝑑𝑡

=

𝑘
𝑟
𝐾ad𝐶

1 + 𝐾ad𝐶
, (1)

where 𝑘
𝑟
is the intrinsic rate constant and 𝐾ad is the adsorp-

tion equilibrium constant. If adsorption is weak and con-
centration of organic compounds is low, the factor 𝐾ad𝐶 is
negligible, and thus (1) can be simplified to the first-order
kinetics with an apparent rate constant (𝐾ap = 𝑘𝑟𝐾ad),
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Figure 6: Photocatalytic degradation profiles of 4CP over the mesoporous titania samples synthesized with (a) room temperature, (b) rotary
evaporator, (c) drying rate in rotary evaporator, and Degussa P-25.

which gives the following, after integration in the interval
[𝐶, 𝐶
0
]:

ln
𝐶
0

𝐶

= 𝐾ap𝑡. (2)

Plotting ln(𝐶
0
/𝐶) versus reaction time 𝑡 yields a straight

line, where the slope is the apparent rate constant. The half-
life of the degraded organic compound can then be easily

calculated. Figure 9 shows the lineal plot of 4CP photodegra-
dation, which adjusts well to a pseudo-first-order kinetic
behavior. Apparent constant 𝐾ap, 4CP half-life, and the
linearization coefficient 𝑟2 are summarized in Table 4. 4CP
half-life is as short as 25.6min, with mesoporous titania
sample SR4, and nearly 80% of initial 0.233mmol L−1 is de-
graded in 60 minutes.
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Table 5: COD values of the aqueous solution before and after
photocatalytic tests, adsorption, and photolysis.

Sample
COD value (mg/L)

Initial Final
(0 minutes) (180 minutes)

SR4 (photocatalysis) 47 20
SR4 (adsorption) 47 47
Degussa P-25 (photocatalysis) 47 36
Photolysis 47 47
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Figure 7: Effect of photocatalysis, adsorption, and photolysis on
the removal of 4CP as a function of time using mesoporous titania
sample SR4.

Table 5 shows the COD values to identify the presence of
organic matter in the aqueous solution after photocatalytic
tests. 4CP photodegradation using sample SR4 reduced
the initial value of COD by 57%, whereas Degussa P-25
reduced the initial value of COD by 23% after the same
time of exposure to UV irradiation. These results support
the removal of 4CP by adsorption and photolysis shown
in Figure 7, without reduction in initial values of COD.
Therefore, it is demonstrated that the organic compound is
mineralized. In specialized literature [34, 36], hydroquinone
(HQ), benzoquinone (BQ), and 4-chlorocatechol (4CC) have
been reported as the major aromatic intermediates, identi-
fied by HPLC, LC-MS, and GC-MS techniques. Although
interesting, such characterization is beyond the scope of this
paper.

4. Conclusions

Mesoporous nanocrystalline anatase was found to provide a
faster degradation rate than Degussa P-25 as consequence of
different surface morphological characteristics. Among the
studied variables, different drying rate in rotary evaporator
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Figure 9: Pseudo-first-order kinetics degradation of 4CP, by the
Langmuir-Hinshelwood model.

was determined to be the one that affects the increase in
average pore diameter, and this affects both the percentage of
photodegradation and the chemical oxygen demand (COD)
value. The diffusion towards the active sites and the acces-
sibility of the active sites for adsorption due to the presence
of large pores are key parameters for the photocatalytic
degradation of 4CP.The photodegradation process was found
to be controlled by the Langmuir-Hinshelwood model. The
mesoporous anatase degraded 100% 4CP, while Degussa P-
25 degraded 57%.The enhanced photocatalytic activity of the
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mesoporous titania samples when compared to Degussa P-25
was related to smaller crystallite size, presence of pure anatase
phase, higher average pore diameter, and surface area. The
reduction of 57% COD with mesoporous anatase compared
with 23% Degussa P-25 shows that 4CP is mineralized.
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