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The mathematical model for airline network seat inventory control problem is usually investigated to maximize the total revenue
under some constraints such as capacities and demands. This paper presents a chance-constrained programming model based on
the uncertainty theory for network revenue management, in which the fares and the demands are both uncertain variables rather
than random variables. The uncertain programming model can be transformed into a deterministic form by taking expected value
on objective function and confidence level on the constraint functions. Based on the strategy of nested booking limits, a solution
method of booking control is developed to solve the problem. Finally, this paper gives a numerical example to show that themethod
is practical and efficient.

1. Introduction

After the deregulations in the airline industry, the revenue
management techniques have become indispensable for air-
line seat inventory control. A central problem in airline
revenue management is determining optimal decision rules
for sequentially accepting or denying itinerary requests. So
it is necessary to develop mathematical models to determine
complex booking control strategies.

The optimization methods on seat inventory control
problem with multiple-fare classes can be separated into
the single-leg optimization method and the network opti-
mization method. Based on the optimized frequency, each
optimization method can be sorted out the static method
and the dynamic method. In brief, the dynamic nature of the
arrivals of the requests over time is not explicitly considered
in the static method, whereas the mutability in the demand
is taken into account in the dynamic method as the end
of the reservation period approaches and the seat capacity
diminishes.

The single-leg optimization method firstly appeared in
the research of Littlewood [1]. He studied a seat inventory
control problem with two-fare classes on a single leg and
proposed a marginal seat revenue rule applied into a two-
price, single-leg model. Belobaba [2, 3] extended this idea to
a multiclass problem and introduced the expected marginal

seat revenue heuristic for the general approach. Wollmer
[4], Brumelle and McGill [5], and Robinson [6] further
studied the single-leg problem with multiple-fare classes.
They developed algorithms to find the optimal booking
control policy under the assumption that the probability
distributions of the demands for different fare classes were
known. Lee andHersh [7] developed a discrete-time dynamic
programming model to find an optimal booking control
policy without requiring any assumptions about the arrival
mode for the manifold booking classes. Liang [8] proposed
a continuous-time, stochastic, dynamic programming model
and showed that a threshold control policy was optimal.
Feng and Xiao [9] presented a stochastic control model to
dynamically tackle with seat inventory control problem.

For the network optimization method, Glover et al. [10]
initially described aminimum cost network flow formulation
with deterministic demand without focusing on the stochas-
tic elements. After that, a solution method for the sequen-
tial allocation of seats under the assumption of stochastic
demand was provided by Wang [11]. Wollmer [12] proposed
a linear programming model that considered stochastic
demand. Dror et al. [13] proposed a similar deterministic
network minimum cost flow formulation that allowed for
cancellations as deterministic losses on arcs in the network.
Curry [14] developed a combined mathematical model for
a multiclass seat inventory control problem. Williamson
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[15] studied two network-based mathematical programming
models. The first model incorporated probabilistic demand
and the second model simplified the problem by substituting
stochastic demand by its expectation.Wong et al. [16] applied
nesting techniques into a multiclass seat inventory control
problem. de Boer et al. [17] proposed stochastic linear pro-
gramming for network revenue management and developed
the nesting technique ofWilliamsion. Bertsimas andDe Boer
[18] and van Ryzin and Vulcano [19] used simulation-based
optimization methods that also investigated nesting over the
network. Cooper and Homem-De-Mello [20] proposed a
decomposition method combining mathematical program-
ming methods and Markov decision process. Recently, İlker
Birbil et al. [21] proposed a framework for solving airline
revenue management problems on large networks.

With the fast development of civil aviation industry,many
airlines often create new routes. Due to lacking reliable data
and accurate information, themethods in the literature above
become invalid for these new routes. On the other hand,
when unconventional sudden events such as war, atrocious
weather, and earthquake, happen, the cumulative data of
computer reservation system is no longer trustworthy. There
are some limitations when the traditional stochastic models
above deal with such problems at this situation. In the two
cases, we have to invite some experts to evaluate their degree
of belief that each event will occur. However, humans tend
to overweigh unlikely events (Kahnema and Tversky [22]);
thus, the degree of belief may have a much larger range
than the real frequency. In this situation, if we insist on
dealing with the degree of belief using the probability theory,
some counterintuitive results will be obtained (Liu [23]). In
revenue management of the above two cases, as we stated
before, the domain experts invited are likely to overrate the
market demand on the new routes and underestimate the
market demand under the circumstances of unconventional
sudden events. If the belief degree of the market demand is
treated as probability, we have no choice but to increase the
capacity on the new routes and reduce the capacity under
the circumstances of unconventional sudden events.This will
cause great losses in revenue for airlines. This conclusion
seems unacceptable and then the belief degree cannot be
treated as probability.

In order to deal with the experts’ degree of belief, the
uncertainty theory was founded by Liu [24] and refined
by Liu [25] in 2013. Many researchers have contributed
to this area. The uncertainty theory has been applied to
uncertain programming, uncertain risk analysis, uncertain
game, uncertain inference, uncertain logic, uncertain finance,
and uncertain optimal control (Liu [25]). Nowadays, the
uncertainty theory has become a branch of axiomatic math-
ematics to model human uncertainty (Liu [26]).

Depending on the analysis as mentioned above, we think
that it is necessary to apply the uncertainty theory as a
basic approach to model the uncertainty in the revenue
management of the two cases above. In this paper, we propose
the chance-constrained programming model based on the
uncertainty theory to deal with the uncertain factors. The
rest of this paper is structured as follows. In Section 2,
some basic concepts and properties in uncertainty theory

used throughout this paper are introduced. In Section 3, an
uncertain programming model is constructed. According to
inverse uncertainty distribution, the model can be trans-
formed to its deterministic form. In Section 4, we present
a solution method of booking control on the basis of the
strategy of nested booking limits. After that, a numerical
example is given in Section 5. At last, a brief summary is
presented in Section 6.

2. Preliminaries

In this section, some basic definitions and arithmetic opera-
tions of uncertainty theory needed throughout this paper are
presented.

Definition 1 (Liu [24]). Let Γ be a nonempty set and L a 𝜎-
algebra over Γ. Each element Λ ∈ L is called an event. The
set functionM is called an uncertainmeasure if it satisfies the
following four axioms:

Axiom 1 (Normality).M{Γ} = 1;

Axiom 2 (Monotonicity). M{Λ
1
} ≤ M{Λ

2
} whenever Λ

1
⊂

Λ
2
;

Axiom 3 (Self-Duality).M{Λ} +M{Λ
𝑐
} = 1 for any event Λ;

Axiom 4 (Countable Subadditivity). For every countable
sequence of events {Λ

𝑖
}, we have

M
{{

{{

{

∞

⋃

𝑖=1

Λ
𝑖

}}

}}

}

≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

Definition 2 (Liu [24]). Let Γ be a nonempty set, L a 𝜎-
algebra over Γ, andM an uncertain measure. Then the triple
(Γ,L,M) is called on uncertainty space.

Definition 3 (Liu [24]). An uncertain variable 𝜉 is a measur-
able function from an uncertainty space (Γ,L,M) to the set
of real numbers; that is, for any Borel set 𝐵 of real numbers,
the set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ 𝐵} (2)

is an event.

For a sequence of uncertainty variables 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛

and a measurable function 𝑓, Liu [24] proved that
𝜉 = 𝑓(𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
) defined as 𝜉(𝛾) = 𝑓(𝜉

1
(𝛾), 𝜉
2
(𝛾),

. . . , 𝜉
𝑛
(𝛾)), ∀𝛾 ∈ Γ is also an uncertain variable. In order

to describe an uncertain variable, a concept of uncertainty
distribution is introduced as follows.

Definition 4 (Liu [24]). The uncertainty distribution Φ of an
uncertain variable 𝜉 is defined by

Φ (𝑥) =M {𝜉 ≤ 𝑥} , (3)

for any real number 𝑥.

Peng and Iwamura [27] proved that a function Φ:𝑅 →

[0, 1] is an uncertainty distribution if and only if it is



Mathematical Problems in Engineering 3

a monotone increasing function except for Φ(𝑥) ≡ 0 or
Φ(𝑥) ≡ 1. The inverse function Φ−1 is called the inverse
uncertainty distribution of 𝜉. Inverse uncertainty distribution
is an important tool in the operation of uncertain variables.

Theorem 5 (Liu [24]). Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be independent

uncertain variables with regular uncertainty distributions
Φ
1
, Φ
2
, . . . , Φ

𝑛
, respectively. If 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is strictly

increasing with respect to 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
and strictly decreasing

with respect to 𝑥
𝑚+1
, 𝑥
𝑚+2
, . . . , 𝑥

𝑛
, then

𝜉 = 𝑓 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) (4)

is an uncertain variable with inverse uncertainty distribution

Ψ
−1
(𝛼) = 𝑓 (Φ

−1

1
(𝛼) , . . . , Φ

−1

𝑚
(𝛼) , Φ

−1

𝑚+1
(1 − 𝛼) , . . . ,

Φ
−1

𝑛
(1 − 𝛼)) .

(5)

Expected value is the average of an uncertain variable in
the sense of uncertain measure. It is an important index to
rank uncertain variables.

Definition 6 (Liu [24]). Let 𝜉 be an uncertain variable. Then
the expected value of 𝜉 is defined by

𝐸 [𝜉] = ∫

∞

0

M {𝜉 ≥ 𝑟} 𝑑𝑟 − ∫

0

−∞

M {𝜉 ≤ 𝑟} 𝑑𝑟, (6)

provided that at least one of the two integrals is finite.

In order to calculate the expected value via inverse
uncertainty distribution, Liu and Ha [28] proved that

𝐸 [𝜉] = ∫

1

0

𝑓 (Φ
−1

1
(𝛼)) , . . . , Φ

−1

𝑚
(𝛼) , Φ

−1

𝑚+1
(1 − 𝛼) , . . . ,

Φ
−1

𝑛
(1 − 𝛼) 𝑑𝛼

(7)

under the condition described in Theorem 5. Generally, the
expected value operator 𝐸 has no linearity property for
arbitrary uncertain variables. But, for independent uncertain
variables 𝜉 and 𝜂 with finite expected values, we have

𝐸 [𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸 [𝜉] + 𝑏𝐸 [𝜂] , (8)

for any real numbers 𝑎 and 𝑏.

3. Uncertain Programming
Model for Multiple-Leg Network
Seat Inventory Control

3.1. Problem Description. Because an airline wants to max-
imize revenue from the whole network, the researchers on
this field focus on the network-based models now. Airlines
usually provide thousands of such combinations of origin,
destination and fare class (ODF). Therefore determining
a comprehensive booking control strategy for the entire
network is crucially important.

The objective of network seat inventory control is to
maximize the airline’s expected revenue from its supply of

ODF combinations. Each ODF in the network is constitutive
of one or more flight legs. The limited capacity on each flight
leg has to be made full use of in the most profitable way. This
can be achieved by limiting the number of seats available to
the less lucrative classes. So the problem is to allocate all seats
of each flight leg to the relatedODF in themost profitableway.
Due to its economic importance in the airline, the problem
has been extensively studied.

In this paper, the network seat inventory control problem
will be modeled by the chance-constrained programming
based on the uncertainty theory in which the fare and the
demand of each ODF are assumed to be uncertain variables
with given uncertainty distributions.

3.2. Model Development. At first, we introduce the follow-
ing notations to represent the mathematical formulation
throughout the remainder of this paper:

𝑥ODF : the number of seats reserved for each separate ODF;

𝑁 : the total number of flight legs in the ODF network;

𝑆
𝑙
: the set of ODF combinations available on flight leg;

𝐶
𝑙
: the seat capacity on leg 𝑙;

𝐷ODF : the deterministic aggregated demand for each ODF;

𝑓ODF : the fare required for an ODF.

In order to facilitate the analysis, we make some reason-
able assumptions as follows.

(a) The flight market demand exceeds its capacity supply.

(b) Overbooking is not considered by the model dis-
cussed here.

Next, based on the analysis of the decision making
process, the general problem is formulated as follows [15]:

max ∑

ODF
𝑓ODF𝑥ODF

s.t.

∑

ODF∈𝑆𝑙

𝑥ODF ≤ 𝐶𝑙 ∀flight legs 𝑙 = 1, . . . , 𝑁,

𝑥ODF ≤ 𝐷ODF ∀ODF,

𝑥ODF ≥ 0 integer ∀ODF.

(9)

In the above model, the quantities 𝑓ODF and 𝐷ODF are
all assumed to be crisp numbers. However, when there are
new routes created by the airlines or the emergency takes
place sometimes, the quantities generally are not fixed but
obtained from experience evaluation or expert knowledge.
In this case, we may assume the quantities are uncertain
variables. Then the model (9) is only a conceptual model
rather than a mathematical model because there does not
exist a natural ordership in an uncertain world. Here we
take expected value criterion on the objective function and
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confidence level on the constraint functions (Liu [25]). Then
the model (9) turns into the following mathematical model:

max 𝐸[∑

ODF
𝑓ODF𝑥ODF]

s.t.

∑

ODF∈𝑆𝑙

𝑥ODF ≤ 𝐶𝑙 ∀flight legs 𝑙 = 1, . . . , 𝑁,

𝑀 {𝑥ODF ≤ 𝐷ODF} ≥ 𝛽ODF ∀ODF,

𝑥ODF ≥ 0 integer ∀ODF,

(10)

where 𝛽ODF are some predetermined confidence levels for all
ODF.

In practical applications, the uncertainty distributions
of uncertain variables 𝑓ODF and 𝐷ODF and the confidence
levels 𝛽ODF are determined by linear interpolation method,
the principle of least squares, the method of moments, and
the Delphi method from expert’s experimental data (Liu
[25]). How do we obtain expert’s experimental data? Liu [25]
proposed a questionnaire survey for collecting expert’s exper-
imental data. In this paper, we assume that the uncertainty
distributions of uncertain variables 𝑓ODF and 𝐷ODF and the
confidence levels 𝛽ODF have been determined.

In order to solve model (10), firstly, we introduce
two corollaries which were from the uncertainty theory
(Liu [25]).

Corollary 7. Assume the objective function𝑓(𝑥, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
)

is strictly increasing with respect to 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
and strictly

decreasing with respect to 𝜉
𝑚+1
, 𝜉
𝑚+2
, . . . , 𝜉

𝑛
. If 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are

independent uncertain variables with uncertainty distributions
Φ
1
, Φ
2
, . . . , Φ

𝑛
, respectively, then the expected objective func-

tion 𝐸[𝑓(𝑥, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
)] is equal to

∫

1

0

𝑓 (𝑥,Φ
−1

1
, . . . , Φ

−1

𝑚
, Φ
−1

𝑚+1
, . . . , Φ

−1

𝑛
) 𝑑𝛼. (11)

Corollary 8. Assume the constraint function 𝑔(𝑥, 𝜉
1
, 𝜉
2
,

. . . , 𝜉
𝑛
) is strictly increasing with respect to 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑘

and strictly decreasing with respect to 𝜉
𝑘+1
, 𝜉
𝑚𝑘2
, . . . , 𝜉

𝑛
. If

𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are independent uncertain variables with uncer-

tainty distributions Φ
1
, Φ
2
, . . . , Φ

𝑛
, respectively, then the

chance constrain

M {𝑔 (𝑥, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) ≤ 0} ≥ 𝛼 (12)

holds if and only if

𝑔 (𝑥,Φ
−1

1
(𝛼) , . . . , Φ

−1

𝑘
(𝛼) , Φ

−1

𝑘+1
(1 − 𝛼) , . . . ,

Φ
−1

𝑛
(1 − 𝛼)) ≤ 0.

(13)

Secondly, the next theorem shows that the model (10) is
equivalent to a deterministic model, for which many efficient
algorithms have been designed.

Theorem 9. Assume that 𝑓ODF and 𝐷ODF are independent
uncertain variables with uncertainty distributions 𝜙ODF and
𝜓ODF.Then the model (10) is equivalent to the following model:

max ∑

ODF
𝑥ODF ∫

1

0

𝜙
−1

ODF (𝛼) 𝑑𝛼

s.t.

∑

ODF∈𝑆𝑙

𝑥ODF ≤ 𝐶𝑙 ∀flight legs 𝑙 = 1, . . . , 𝑁,

𝑥ODF ≤ 𝜓
−1

ODF (1 − 𝛽ODF) ∀ODF,

𝑥ODF ≥ 0 integer ∀ODF.

(14)

Proof. The function ∑ODF 𝑓ODF𝑥ODF is strictly increasing
with respect to 𝑓ODF and 𝑓ODF are independent uncertain
variables with uncertainty distributions𝜙ODF, respectively. By
using Corollary 7, we obtain

𝐸[∑

ODF
𝑓ODF𝑥ODF] = ∑

ODF
𝑥ODF ∫

1

0

𝜙
−1

ODF (𝛼) 𝑑𝛼. (15)

Since that

𝑀{𝑥ODF ≤ 𝐷ODF} ≥ 𝛽ODF (16)

is equivalent to

𝑀{−𝐷ODF + 𝑥ODF ≤ 0} ≥ 𝛽ODF (17)

and the function −𝐷ODF + 𝑥ODF is strictly decreasing with
respect to𝐷ODF with uncertainty distribution𝜓ODF, it follows
from Corollary 8 that we have

−𝜓
−1

ODF (1 − 𝛽ODF) + 𝑥ODF ≤ 0, (18)

that is,

𝑥ODF ≤ 𝜓
−1

ODF (1 − 𝛽ODF) . (19)

The theorem is thus verified.

4. Solution Method of Booking Control

4.1. The Strategy of Nested Booking Limits. In the model (14),
we use 𝑓ODF to denote ∫1

0
𝜙
−1

ODF(𝛼)𝑑𝛼 and 𝐷ODF to denote
𝜓
−1

ODF(1 − 𝛽ODF). Then the relaxation of the model (14) is

max ∑

ODF
𝑓ODF𝑥ODF

s.t.

∑

ODF∈𝑆𝑙

𝑥ODF ≤ 𝐶𝑙 ∀flight legs 𝑙 = 1, . . . , 𝑁,

𝑥ODF ≤ 𝐷ODF ∀ODF,

𝑥ODF ≥ 0 ∀ODF.

(20)
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Table 1: Simulated reservation data.

ODF t = 10 t = 9 t = 8 t = 7 t = 6 t = 5 t = 4 t = 3 t = 2 t = 1 t = 0
ABY 3 3 3 5 4 1 3 7 8 11 8
ABT 13 5 8 7 1 2 6 2 5 5 2
BCY 0 2 1 5 4 8 6 4 7 7 4
BCT 15 5 11 9 9 8 2 3 4 2 0
ACY 2 0 0 1 2 9 1 7 5 3 5
ACT 10 2 5 6 2 4 7 4 3 1 1

Table 2: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(42, 2) (66, 2) (41, 3) (71, 4) (35, 1) (50, 3)

The whole booking time should be partitioned into a
few time periods of reservation; for example, a day is a time
period of reservation. In order to facilitate the analysis, we
describe the model (20) in the form of the matrix and the
vector considering the time period of reservation. For this,
we introduce the following notations:

𝐼: the total number of flight legs in the ODF network;
𝑖: index for set of flight legs;
𝐽: the total number of the ODF;
𝑗: index for set of the ODF;
𝑡: index for the time period of reservation;

𝐶
𝑡
= [𝐶
𝑡

1
, 𝐶
𝑡

2
, . . . , 𝐶

𝑡

𝑖
, . . . , 𝐶

𝑡

𝐼
]
𝑇: the seat capacity on

each flight leg in the reservation time period 𝑡;

𝐹
𝑡
= [𝑓

𝑡

1
, 𝑓
𝑡

2
, . . . , 𝑓

𝑡

𝑗
, . . . 𝑓
𝑡

𝐽
]

𝑇

: the corresponding
𝑓ODF for each separate ODF in the reservation time
period 𝑡;

𝐷
𝑡
= [𝐷

𝑡

1
, 𝐷
𝑡

2
, . . . , 𝐷

𝑡

𝑗
, . . . , 𝐷

𝑡

𝐽
]

𝑇

: the corresponding
𝐷ODF for each separate ODF in the reservation time
period 𝑡;

𝑋
𝑡
= [𝑥
𝑡

1
, 𝑥
𝑡

2
, . . . , 𝑥

𝑡

𝑗
, . . . , 𝑥

𝑡

𝐽
]
𝑇: the number of seats

reserved for each separate ODF in the reservation
time period 𝑡;
𝐴 = (𝑎

𝑖𝑗
)
𝐼×𝐽

: the matrix denotation of flight legs that
eachODF travels, where if the ODF 𝑗 travels the flight
leg 𝑖, then 𝑎

𝑖𝑗
= 1, otherwise 𝑎

𝑖𝑗
= 0;

𝐴
𝑗: the 𝑗th columnof thematrix𝐴, denoting the flight

legs that the ODF 𝑗 travels.
The model (20) is described as follows in the form of the

matrix and the vector:

LP (𝐶𝑡, 𝐷𝑡) = max (𝐹
𝑡
)
𝑇

𝑋
𝑡

s.t.

𝐴𝑋
𝑡
≤ 𝐶
𝑡
,

0 ≤ 𝑋
𝑡
≤ 𝐷
𝑡
.

(21)

The dual problem of the model above can be described as
follows:

DLP (𝐶𝑡, 𝐷𝑡) = min [(𝑃
𝑡
)
𝑇

𝐶
𝑡
+ (𝑄
𝑡
)
𝑇

𝐷
𝑡
]

s.t.

𝐴
𝑇
𝑃
𝑡
+ 𝑄
𝑡
≥ 𝐹
𝑡
,

𝑃
𝑡
, 𝑄
𝑡
≥ 0,

(22)

where 𝑃𝑡 = [𝑃
𝑡

1
, 𝑃
𝑡

2
, . . . , 𝑃

𝑡

𝑖
, . . . , 𝑃

𝑡

𝐼
]
𝑇 denotes the shadow

prices corresponding to each flight leg and 𝑄𝑡 = [𝑄
𝑡

1
, 𝑄
𝑡

2
,

. . . , 𝑄
𝑡

𝑗
, . . . , 𝑄

𝑡

𝐽
]
𝑇 denotes the shadow prices corresponding to

each𝐷ODF.
Bid price control method is one of the prevalent methods

of network seat inventory control. The bid price of each ODF
is equal to the sum of shadow prices of the flight legs that
the ODF crosses. A booking request for a passenger from the
ODF is rejected if the bid price of the ODF exceeds the fare
for the ODF and is accepted otherwise. Although bid price
control method has been used in the actual operations of the
airlines, it has a few shortcomings as follows.

(a) Each ODF’s contribution to network revenue is not
considered in the bid price control method.

(b) When calculating shadow prices using the relevant
models, the solution of the model may be degenerate
solution. This will cause the multiple bid prices of an
ODF.

(c) The fares of most of the passengers on the flight just
exceed the bid prices so that airlines suffer losses.

For this, we present a nesting control method based
on the network contribution value for the above uncertain
programming model.

First, we define an ODF’s net contribution value to
network revenue in the reservation time period 𝑡 as the
expected fare for the ODF in the reservation time period 𝑡
minus the opportunity cost of the ODF in the reservation
time period 𝑡, that is,

NCV𝑡
𝑗
= 𝑓
𝑡

𝑗
−OC𝑡
𝑗
, (23)

where NCV𝑡
𝑗
denotes the net contribution value of the ODF 𝑗

to network revenue in the reservation time period 𝑡 and OC𝑡
𝑗

denotes the opportunity cost of the ODF 𝑗 in the reservation
time period 𝑡.
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Table 3: Parameters of normal distribution of fare.

𝑁(𝑒
󸀠

𝑖
, 𝜎
󸀠

𝑖
)

1 2 3 4 5 6
(1000, 80) (800, 40) (400, 20) (320, 10) (1200, 90) (960, 50)

Table 4: The seat inventory control for t = 10.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 10

ABY 1000 200 42 140 3 3
ABT 800 0 63 63 13 13
BCY 400 80 41 105 0 0
BCT 320 0 64 64 15 15
ACY 1200 80 35 98 2 2
ACT 960 −160 10 0 10 0

Table 5: The seat inventory control result.

The combination of the
ODF The total number of accepted seats

ABY 52
ABT 54
BCY 48
BCT 58
ACY 30
ACT 4
The total expected revenue 172800

Table 6: The seat inventory control result of the bid price control
method.

The combination of the
ODF The total number of accepted seats

ABY 48
ABT 54
BCY 45
BCT 57
ACY 30
ACT 8
The total expected revenue 171120

Table 7: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(40, 2) (56, 2) (39, 3) (61, 4) (34, 1) (42, 3)

The opportunity cost OC𝑡
𝑗
of the ODF 𝑗 in the reservation

time period 𝑡 is calculated based on theDLPmodel as follows:

OC𝑡
𝑗
= (𝑃
𝑡
)
𝑇

𝐴
𝑗 (24)

for 1 ≤ 𝑗 ≤ 𝐽.
Now the opportunity cost of the ODF in the reservation

time period 𝑡 is known, so we figure up the net contribution
value of the ODF to network revenue in the reservation time
period 𝑡. However, the solution of the model DLP may be
degenerate solution and this phenomenonwill causemultiple

net contribution values of the ODF to network revenue. In
this case, we will use the following method to calculate the
net contribution value of the ODF to network revenue in the
reservation time period 𝑡. If 𝐶𝑡 − 𝐴𝑗 ≥ 0, then NCV𝑡

𝑗
=

𝑓
𝑡

𝑗
−[LP(𝐶𝑡, 𝐷𝑡)−LP(𝐶𝑡 −𝐴𝑗, 𝐷𝑡)]. Otherwise, NCV𝑡

𝑗
= −∞

where∞ denotes a large enough number.
Finally, we rank the ODF on the basis of their net con-

tribution value to network revenue to determine the nesting
level. If some of the ODFs have the same net contribution
value to network revenue, we can rank the ODF on the basis
of their expected fare.

4.2. The Algorithm for Nested ODF-Based Booking Control.
Every time a booking request arrives for any ODF in the
network, a quick decision should be made whether or not
to accept the request. We have to specify a booking control
strategy for the decision.We propose the algorithm for nested
ODF-based booking control.

The notations used in the following algorithm are given
as below:

𝑋
𝑡
= [𝑥
1

𝑡
, 𝑥
2

𝑡
, . . . , 𝑥

𝑗

𝑡
, . . . , 𝑥

𝐽

𝑡
]
𝑇

: the number of seats
reserved for each separate ODF in the reservation
time period 𝑡 after ranking the elements of𝑋𝑡 accord-
ing to the nesting level;

PL
𝑡
= [PL1

𝑡
,PL2
𝑡
, . . . ,PL𝑗

𝑡
, . . . ,PL𝐽

𝑡
]
𝑇

: seat protect level
for each ranked ODF in the reservation time period 𝑡;
𝑀
𝑘
(1 ≤ 𝑘 ≤ 𝑗): the set of flight legs that the 𝑘th ODF

travels;
𝑏
𝑡
= [𝑏
1

𝑡
, 𝑏
2

𝑡
, . . . , 𝑏

𝑗

𝑡
, . . . , 𝑏

𝐽

𝑡
]: the number of booking

requests for the ranked ODF that have already been
accepted in the reservation time period 𝑡;
BL𝑗
𝑡
: seat booking limit for the 𝑗th ODF.

The heuristic algorithm for nested ODF-based booking
control is as follows.

Step 1. Calculate each ODF’s net contribution value to net-
work revenue in the reservation time period 𝑡 and determine
the nesting level. By solving the model above, we can obtain
𝑋
𝑡
= [𝑥
𝑡

1
, 𝑥
𝑡

2
, . . . , 𝑥

𝑡

𝑗
, . . . , 𝑥

𝑡

𝐽
]
𝑇.
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Table 8: The seat inventory control for t = 9.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 9

ABY 1000 200 40 122 3 3
ABT 800 0 48 48 5 5
BCY 400 80 39 89 2 2
BCT 320 0 50 50 5 5
ACY 1200 80 34 82 0 0
ACT 960 −160 0 0 2 0

Table 9: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(38, 2) (47, 2) (36, 3) (51, 4) (32, 1) (36, 3)

Step 2. Determine seat protect level for each ODF. According
to ranking results of Step 1, we rank the elements of 𝑋𝑡

and obtain 𝑋𝑡 = [𝑥
1

𝑡
, 𝑥
2

𝑡
, . . . , 𝑥

𝑗

𝑡
, . . . , 𝑥

𝐽

𝑡
]
𝑇

. Seat protect level
is determined as PL

𝑡
= [PL1

𝑡
,PL2
𝑡
, . . . ,PL𝑗

𝑡
, . . . ,PL𝐽

𝑡
] =

[𝑥
1

𝑡
, 𝑥
2

𝑡
, . . . , 𝑥

𝑗

𝑡
, . . . , 𝑥

𝐽

𝑡
]
𝑇

.

Step 3. At the beginning of the reservation time period 𝑡, it
is obvious that 𝑏

𝑡
= 0. Determine seat booking limit for the

ranked ODF as follows.
For the first ODF,

BL1
𝑡
= min {𝑁𝑡

𝑖
| 1 ≤ 𝑖 ≤ 𝐼, 𝑖 ∈ 𝑀

1
} ; (25)

for the 𝑗th ODF (2 ≤ 𝑗 ≤ 𝐽), on the flight leg 𝑖 (1 ≤ 𝑖 ≤

𝐼), the total number of the seats protected for the lower level
ODF than the 𝑗th ODF isΠ𝑡

𝑖
= ∑
𝑗−1

𝑘=1
PR𝑡
𝑘
, where the 𝑘th ODF

travels the flight leg 𝑖 and the number of the seats available on
the flight leg 𝑖 is (𝐶𝑡

𝑖
− Π
𝑡

𝑖
). So we have

BL𝑗
𝑡
= min {𝐶𝑡

𝑖
− Π
𝑡

𝑖
| 1 ≤ 𝑖 ≤ 𝐼, 𝑖 ∈ 𝑀

𝑗
} . (26)

Step 4. If BL𝑗
𝑡
> 𝑏
𝑗

𝑡
, then accept the booking request, let 𝑏𝑗

𝑡
=

𝑏
𝑗

𝑡
+ 1; if BL𝑗

𝑡
= 𝑏
𝑗

𝑡
, then decline the request.

Step 1 determines the nesting level for each separate ODF;
Step 2 determines seat protect level for each ranked ODF;
Step 3 determines seat booking limit for the ranked ODF;
Step 4 develops the standard of accepting or rejecting the
booking requests.

When entering the next reservation time period, let

𝐶
𝑡
= 𝐶
𝑡
− 𝑏
𝑇

𝑡
[𝐴
1
𝐴
2
⋅ ⋅ ⋅ 𝐴

𝑗
⋅ ⋅ ⋅ 𝐴

𝐽
]
𝑇

,

𝑡 = 𝑡 − 1, 𝑏
𝑡
= 0,

(27)

and then go into the algorithm above.

5. Numerical Experiment

In this section, we apply the model and the algorithm of the
former two sections to airline seat inventory control and give
an optimal policy.

A B CY

T

Y

T

Y

T

Figure 1: Schematic.

An airline prepares to open a new route, which is from
A to C through B. So there are two legs and three segments.
Every segment has two fare classes with Y and T, so there are
six ODFs. These are shown in Figure 1.

That is,

𝑁 = 2,

𝑙 = 1, 2,

𝑆
1
= {ABY,ABT,ACY,ACT} ,

𝑆
2
= {BCY,BCT,ACY,ACT} .

(28)

Furthermore, there are 140 seats available in the flight and
the booking period is partitioned into 11 time intervals.

In order to simulate the booking process, some simulated
reservation data about each time interval are given in Table 1.

When 𝑡 = 10, there is 𝐶
1
= 𝐶
2
= 140.

According to experts’ experience, the demands for ABY,
ABT, BCY, BCT, ACY, and ACT follow a normal uncertainty
distribution 𝑁(𝑒

𝑖
, 𝜎
𝑖
), 𝑖 = 1, 2, 3, 4, 5, 6, respectively. The

fare 𝑓
𝑖
for ABY, ABT, BCY, BCT, ACY, and ACT follows a

normal uncertainty distribution 𝑁(𝑒󸀠
𝑖
, 𝜎
󸀠

𝑖
), 𝑖 = 1, 2, 3, 4, 5, 6,

respectively. Tables 2 and 3 give the value of the quantities.
Note that the normal uncertain variable 𝑁(𝑒, 𝜎) has an

expected value 𝑒 and an inverse uncertainty distribution

Φ
−1
(𝑥) = 𝑒 +

√3𝜎

𝜋
ln 1 − 𝑥

𝑥
. (29)

Furthermore, 𝛽 = 0.9.
According to Section 3 and Section 4, the result of the seat

inventory control for 𝑡 = 10 is obtained in Table 4.
When 𝑡 = 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, the results of the seat

inventory control are listed in Appendix.
Finally, the result of simulation is listed as Table 5.
The numerical experiment shows that the computation

time of the algorithm is 0.4–0.8 seconds.
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Table 10: The seat inventory control for t = 8.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 8

ABY 1000 200 38 114 3 3
ABT 800 0 44 44 8 8
BCY 400 80 36 84 1 1
BCT 320 0 48 48 11 11
ACY 1200 80 32 76 0 0
ACT 960 −160 0 0 5 0

Table 11: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(36, 2) (39, 2) (33, 3) (42, 4) (30, 1) (30, 3)

Table 12: The seat inventory control for t = 7.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 7

ABY 1000 200 36 103 5 5
ABT 800 0 37 37 7 7
BCY 400 80 33 74 5 5
BCT 320 0 41 41 9 9
ACY 1200 80 30 67 1 1
ACT 960 −160 0 0 6 0

Table 13: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(33, 2) (32, 2) (30, 3) (34, 4) (28, 1) (24, 3)

Table 14: The seat inventory control for t = 6.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 6

ABY 1000 200 23 90 4 4
ABT 800 0 29 29 1 1
BCY 400 80 30 61 4 4
BCT 320 0 31 31 9 9
ACY 1200 80 28 57 2 2
ACT 960 −160 0 0 2 0

Table 15: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(30, 2) (25, 2) (27, 3) (26, 4) (25, 1) (19, 3)

Table 16: The seat inventory control for t = 5.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 5

ABY 1000 200 30 83 1 1
ABT 800 0 25 28 2 2
BCY 400 80 27 49 8 8
BCT 320 0 19 19 8 8
ACY 1200 80 25 53 9 9
ACT 960 −160 3 3 4 3

Table 17: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(27, 2) (20, 2) (23, 3) (20, 4) (22, 1) (15, 3)
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Table 18: The seat inventory control for t = 4.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 4

ABY 1000 200 27 68 3 3
ABT 800 0 19 19 6 6
BCY 400 80 23 24 6 6
BCT 320 0 1 1 2 1
ACY 1200 80 22 41 1 1
ACT 960 −160 0 0 7 0

Table 19: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(23, 2) (15, 2) (19, 3) (14, 4) (19, 1) (11, 3)

Table 20: The seat inventory control for t = 3.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 3

ABY 1000 440 23 58 7 7
ABT 800 240 15 16 2 2
BCY 400 0 18 18 4 4
BCT 320 −80 0 0 3 0
ACY 1200 240 19 35 7 7
ACT 960 0 1 1 4 1

Table 21: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(19, 2) (11, 2) (15, 3) (10, 4) (16, 1) (8, 3)

Table 22: The seat inventory control for t = 2.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 2

ABY 1000 200 19 41 8 8
ABT 800 0 6 6 5 5
BCY 400 0 10 10 7 7
BCT 320 −80 0 0 4 0
ACY 1200 0 16 22 5 5
ACT 960 −240 0 0 3 0

Table 23: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(14, 2) (8, 2) (10, 3) (6, 4) (12, 1) (5, 3)

Table 24: The seat inventory control for t = 1.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 1

ABY 1000 200 14 23 11 11
ABT 800 0 5 5 5 5
BCY 400 0 10 10 7 7
BCT 320 −80 0 0 2 0
ACY 1200 0 4 9 3 3
ACT 960 −240 0 0 1 0

Table 25: Parameters of normal distribution of demand.

𝑁(𝑒
𝑖
, 𝜎
𝑖
)

1 2 3 4 5 6
(9, 2) (3, 2) (5, 3) (2, 1) (7, 1) (2, 1)
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Table 26: The seat inventory control for t = 0.

ODF 𝑓
𝑡

𝑗
NCV𝑡
𝑗

𝑥
𝑡

𝑗
BL𝑗
𝑡

Simulated reservation data The number of accepted seats

t = 0

ABY 1000 0 4 4 8 4
ABT 800 200 0 0 2 0
BCY 400 0 4 4 4 4
BCT 320 −80 0 0 0 0
ACY 1200 −200 0 0 5 0
ACT 960 −440 0 0 1 0

We use bid price control method for the above simulation
data and the result is listed as Table 6.

Comparing Tables 5 and 6, we can see that the total
expected revenue using the bid price control method is
171120 RMB, while the total expected revenue using the
proposed method in this paper is 172800 RMB. Numerical
simulation results show that the proposed method in this
paper is effective for improving the airline’s revenue.

6. Conclusions

To consider network revenue management problem under
conditions of new routes and unconventional sudden events,
we established an uncertain programming model. Based on
the strategy of nested booking limits, a heuristic algorithm
for booking control was developed. Numerical test was
performed to evaluate the model and the solution algorithm.
The test results show that the model and the solution are all
effective. There are some suggestions for future research:

(i) the impact of the nesting heuristics on total revenue;
(ii) more complex hub-spoke network;
(iii) considering dynamic factors such as the arrival order

of the requests;
(iv) integrated uncertain and stochastic model.

Appendix

(1) When 𝑡 = 9, there is 𝐶
1
= 122, 𝐶

2
= 123, 𝛽 = 0.8.

(See Tables 7, 3, and 8.)
(2) When 𝑡 = 8, there is 𝐶

1
= 114, 𝐶

2
= 116, 𝛽 = 0.8.

(See Tables 9, 3, and 10.)
(3) When 𝑡 = 7, there is 𝐶

1
= 103, 𝐶

2
= 104, 𝛽 = 0.8.

(See Tables 11, 3, and 12.)
(4) When 𝑡 = 6, there is 𝐶

1
= 90, 𝐶

2
= 89, 𝛽 = 0.8. (See

Tables 13, 3, and 14.)
(5) When 𝑡 = 5, there is 𝐶

1
= 83, 𝐶

2
= 74, 𝛽 = 0.8. (See

Tables 15, 3, and 16.)
(6) When 𝑡 = 4, there is 𝐶

1
= 68, 𝐶

2
= 46, 𝛽 = 0.8. (See

Tables 17, 3, and 18.)
(7) When 𝑡 = 3, there is 𝐶

1
= 58, 𝐶

2
= 38, 𝛽 = 0.8. (See

Tables 19, 3, and 20.)
(8) When 𝑡 = 2, there is 𝐶

1
= 41, 𝐶

2
= 26, 𝛽 = 0.8. (See

Tables 21, 3, and 22.)

(9) When 𝑡 = 1, there is 𝐶
1
= 23, 𝐶

2
= 14, 𝛽 = 0.8. (See

Tables 23, 3, and 24.)
(10) When 𝑡 = 0, there is 𝐶

1
= 4, 𝐶

2
= 4, 𝛽 = 0.8. (See

Tables 25, 3, and 26.)
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