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A simple sequential quadratic programming method is proposed to solve the constrained minimax problem. At each iteration,
through introducing an auxiliary variable, the descent direction is given by solving only one quadratic programming. By
solving a corresponding quadratic programming, a high-order revised direction is obtained, which can avoid the Maratos effect.
Furthermore, under some mild conditions, the global and superlinear convergence of the algorithm is achieved. Finally, some
numerical results reported show that the algorithm in this paper is successful.

1. Introduction

Consider the following constrained minimax optimization
problems:

min
𝑥∈𝑅
𝑛

𝐹 (𝑥) ,

s.t. 𝑔
𝑗
(𝑥) ≤ 0, 𝑗 ∈ 𝐽 = {1, 2, . . . , 𝑚

1
} ,

ℎ
𝑙
(𝑥) ≤ 0, 𝑙 ∈ 𝐿 = {1, 2, . . . , 𝑚

2
} ,

(1)

where 𝐹(𝑥) = max{𝑓
𝑖
(𝑥) | 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚}} and

𝑓
𝑖
(𝑥), 𝑔
𝑗
(𝑥), ℎ
𝑙
(𝑥) : 𝑅

𝑛

→ 𝑅 are continuously differentiable.
Minimax problem is one of the most important non-

differentiable optimization problems, and it can be widely
applied in many fields (such as [1–4]). In real life, a lot of
problems can be stated as a minimax problem, such as finan-
cial decision making, engineering design, and other fields
which wants to obtain the objection functions minimum
under conditions of the maximum of the functions. Since
the objective function 𝐹(𝑥) is non-differentiable, we cannot
use the classical methods for smooth optimization problems
directly to solve such constrained optimization problems.

Generally speaking, a lot of the schemes have been
proposed for solving minimax problems, by converting

the problem (1) to a smooth constrained optimization prob-
lem as follows

min 𝑧,

s.t. 𝑓
𝑖
(𝑥) ≤ 𝑧, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥) ≤ 0, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥) = 0, 𝑙 ∈ 𝐿.

(2)

Obviously, from the problem (2), the KKT conditions of (1)
can be stated as follows:

∑

𝑖∈𝐼

𝜆
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥) + ∑

𝑗∈𝐿

]
𝑗
∇ℎ
𝑗
(𝑥) = 0,

𝜆
𝑖
≥ 0, 𝑓

𝑖
(𝑥) − 𝐹 (𝑥) ≤ 0, 𝜆

𝑖
(𝑓
𝑖
(𝑥) − 𝐹 (𝑥)) = 0,

𝑖 ∈ 𝐼,

𝜇
𝑗
≥ 0, 𝑔

𝑗
(𝑥) ≤ 0, 𝜇

𝑗
𝑔
𝑗
(𝑥) = 0, 𝑗 ∈ 𝐽,

∑

𝑖∈𝐼

𝜆
𝑖
= 1, ℎ

𝑙
(𝑥) = 0, 𝑙 ∈ 𝐿,

(3)

where 𝜆
𝑖
, 𝜇
𝑗
, and ]

𝑗
are the corresponding vector. Based

on the equivalent relationship between the K-T point of (2)
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and the stationary point of (1), a lot of methods focus on
finding the K-T point of (1), namely, solving (3). And many
algorithms have been proposed to solve minimax problem
[5–15]. Such as [5–8], the minimax problems are discussed
with nonmonotone line search, which can effectively avoid
theMaratos effect. Combining the trust-regionmethods with
the line-search methods and curve-search methods, Wang
and Zhang [9] propose a hybrid algorithm for linearly con-
strained minimax problems. Many other effective algorithms
for solving the minimax problems are presented, such as [11–
15].

Sequential quadratic programming (SQP) method is one
of the efficient algorithms for solving smooth constrained
optimization problems because of its fast convergence rate.
Thus, it is studied deeply and widely (see, e.g., [16–20],
etc.). For typical SQP method, the standard search direction
𝑑 should be obtained by solving the following quadratic
programming:

min ∇𝐹(𝑥)
𝑇

𝑑 +
1

2
𝑑
𝑇

𝐻𝑑,

s.t. 𝑔
𝑗
(𝑥) + ∇𝑔

𝑗
(𝑥)
𝑇

𝑑 ≤ 0, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿,

(4)

where 𝐻 is a symmetric positive definite matrix. Since the
objective function 𝐹(𝑥) contains the max operator, it is
continuous but non-differentiable even if every constrained
function 𝑓

𝑖
(𝑥) (𝑖 ∈ 𝐼) is differentiable. Therefore this method

may fail to reach an optimum for the minimax problem.
In view of this and combining with (2), one considers the
following quadratic programming through introducing an
auxiliary variable 𝑧:

min 𝑧 +
1

2
𝑑
𝑇

𝐻𝑑,

s.t. 𝑓
𝑖
(𝑥) + ∇𝑓

𝑖
(𝑥)
𝑇

𝑑 ≤ 𝑧, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥) + ∇𝑔

𝑗
(𝑥)
𝑇

𝑑 ≤ 0, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿.

(5)

However, it is well known that the solution 𝑑 of (5) may not
be a feasible descent direction and can not avoid the Maratos
effect. Recently, many researches have extended the popular
SQP scheme to theminimax problems (see [21–26], etc.). Jian
et al. [22] and Q.-J. Hu and J.-Z. Hu [23] process pivoting
operation to generate an 𝜀-active constraint subset associated
with the current iteration point. At each iteration of their
proposed algorithm, a main search direction is obtained by
solving a reduced quadratic program which always has a
solution.

The feasible direction method (MFD) (see [27, 28], etc.)
is another effective way for solving smooth constrained
optimization problems. An advantage of MFD over the
classical SQPmethod is that a feasible direction of descent can
be obtained by solving only one quadratic programming. In
this paper, to obtain a feasible direction of descent and reduce

the computational cost, we construct a new quadratic pro-
gramming subproblem. Suppose 𝑥

𝑘 is the current iteration
point; at each iteration, the descent direction 𝑑

𝑘 is obtained
by solving the following quadratic programming subproblem:

min 𝑧 +
1

2
𝑑
𝑇

𝐻
𝑘
𝑑,

s.t. 𝑓
𝑖
(𝑥
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑 − 𝐹 (𝑥
𝑘

) ≤ 𝑧, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥
𝑘

) + ∇𝑔
𝑗
(𝑥
𝑘

)
𝑇

𝑑 ≤ 𝜂
𝑘
𝑧, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿,

(6)

where 𝐻
𝑘
is a symmetric positive definite matrix and 𝜂

𝑘
is

nonnegative auxiliary variable. In order to avoid the Maratos
effect, a height-order correction direction is computed by the
corresponding quadratic programming:

min 𝑧 +
1

2
(𝑑
𝑘

+ 𝑑)
𝑇

𝐻
𝑘
(𝑑
𝑘

+ 𝑑) ,

s.t. 𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

)
𝑇

𝑑

− 𝐹 (𝑥
𝑘

+ 𝑑
𝑘

) ≤ 𝑧, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

) + ∇𝑔
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

)
𝑇

𝑑 ≤ 𝜂
𝑘
𝑧, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿.

(7)

Under suitable conditions, the theoretical analysis shows that
the convergence of our algorithm can be obtained.

The plan of the paper is as follow. The algorithm is pro-
posed in Section 2. In Section 3, we show that the algorithm
is globally convergent, while the superlinear convergence rate
is analyzed in Section 4. Finally, some preliminary numerical
tests are reported in Section 5.

2. Description of the Algorithm

Now we state our algorithm as follows.

Algorithm 1.

Step 0. Given initial point 𝑥
0

∈ 𝑅
𝑛, define a symmetric

positive definite matrix 𝐻
0
∈ 𝑅
𝑛×𝑛. Choose parameters 𝛼 ∈

(0, 1/2), 𝜂
0
> 0, and 𝛾 ∈ (0, 1). Set 𝑘 = 0.

Step 1. Compute (𝑑
𝑘

, 𝑧
𝑘
) by the quadratic problem (6) at 𝑥𝑘.

Let (𝜆𝑘, 𝜇𝑘, ]𝑘) be the corresponding KKT multipliers vector.
If 𝑑𝑘 = 0, then STOP.

Step 2. Compute (𝑑
𝑘

, 𝑧̃
𝑘
) by the quadratic problem (7).

Set (𝜆̃
𝑘

, 𝜇
𝑘

, ]̃𝑘) as the corresponding KKT multipliers
vector. If ‖𝑑𝑘‖ > ‖𝑑

𝑘

‖, set 𝑑𝑘 = 0.

Step 3 (the line search). A merit function is defined as follows:

𝑤 (𝑥) = 𝐹 (𝑥) + 𝑟𝜑 (𝑥) + 𝑟∑

𝑙∈𝐿

󵄨󵄨󵄨󵄨ℎ𝑙 (𝑥)
󵄨󵄨󵄨󵄨 , (8)
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where 𝜑(𝑥) = max{𝑔
𝑗
(𝑥), 𝑗 ∈ 𝐽; 0} and 𝑟 is a suitable large

positive scalar.

Compute 𝑡
𝑘
, the first number 𝑡 in the sequence

{1, 1/2, 1/4, 1/8, . . .} satisfying

𝑤(𝑥
𝑘

+ 𝑡𝑑
𝑘

+ 𝑡
2

𝑑
𝑘

) ≤ 𝑤 (𝑥
𝑘

) − 𝛼𝑡(𝑑
𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

. (9)

Step 4 (update). Obtain𝐻
𝑘+1

by updating the positive definite
matrix 𝐻

𝑘
using some quasi-Newton formulas. Set 𝑥

𝑘+1

=

𝑥
𝑘

+ 𝑡𝑑
𝑘

+ 𝑡
2

𝑑
𝑘, 𝜂
𝑘+1

= min{𝜂
0
, ‖𝑑
𝑘

‖
𝛾

}. Set 𝑘 := 𝑘 + 1. Go
back to Step 1.

3. Global Convergence of the Algorithm

For convenience, we denote

𝐼 (𝑥) = {𝑖 ∈ 𝐼 | 𝑓
𝑖
(𝑥) = 𝐹 (𝑥)} ,

𝐽 (𝑥) = {𝑗 ∈ 𝐽 | 𝑔
𝑗
(𝑥) = 𝜑 (𝑥)} .

(10)

In this section, we analyze the convergence of the algo-
rithm. The following general assumptions are true through-
out this paper.

(H 3.1) The functions 𝑓
𝑖
(𝑥), 𝑖 ∈ 𝐼, 𝑔

𝑗
(𝑥), 𝑗 ∈ 𝐽, and ℎ

𝑙
(𝑥),

𝑙 ∈ 𝐿, are continuously differentiable.
(H 3.2) ∀𝑥 ∈ 𝑅

𝑛; the set of vectors

{(
−1

∇𝑓
𝑖
(𝑥)

) , 𝑖 ∈ 𝐼 (𝑥) ; (
0

∇𝑔
𝑗
(𝑥)

) , 𝑗 ∈ 𝐽 (𝑥) ;

(
0

∇ℎ
𝑙
(𝑥)

) , 𝑙 ∈ 𝐿}

(11)

is linearly independent.
(H 3.3) There exist 𝑎, 𝑏 > 0, such that 𝑎‖𝑑‖

2

≤ 𝑑
𝑇

𝐻
𝑘
𝑑 ≤

𝑏‖𝑑‖
2, for all 𝑘 ∈ 𝑅 and 𝑑 ∈ 𝑅

𝑛.

Lemma 2. Suppose that (H 3.1)–(H 3.3) hold, matrix 𝐻
𝑘
is

symmetric positive definite, and (𝑑
𝑘

, 𝑧
𝑘
) is an optimal solution

of (6). Then

(1) 𝑧
𝑘
+ (1/2)(𝑑

𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

≤ 0, 𝑧
𝑘
≤ 0,

(2) if 𝑑𝑘 = 0, then 𝑥
𝑘 is a K-T point of problem (1).

Proof. (1) For (0, 0) ∈ 𝑅
𝑛+1 is a feasible solution of (6) and𝐻

𝑘

is positive definite, one has

𝑧
𝑘
+

1

2
(𝑑
𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

≤ 0, 𝑧
𝑘
≤ −

1

2
(𝑑
𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

≤ 0. (12)

Further, if 𝑑𝑘 ̸= 0, then 𝑧
𝑘
< 0.

(2) Firstly, we prove 𝑑
𝑘

= 0 ⇔ 𝑧
𝑘

= 0. If 𝑧
𝑘

= 0, then
(1/2)(𝑑

𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

= (1/2)(𝑑
𝑘

)
𝑇

𝐻
𝑘
𝑑
𝑘

+ 𝑧
𝑘
≤ 0. For the positive

definite property of 𝐻
𝑘
, it has 𝑑𝑘 = 0. On the other hand, if

𝑑
𝑘

= 0, in view of the constraints

𝑓
𝑖
(𝑥
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

− 𝐹 (𝑥
𝑘

) ≤ 𝑧
𝑘
, 𝑖 ∈ 𝐼 (𝑥

𝑘

) , (13)

we have 𝑧
𝑘
≥ 0. Combining 𝑧

𝑘
≤ 0, we have 𝑧

𝑘
= 0.

Secondly, we show that 𝑥𝑘 is a K-T point of problem (1)
when 𝑑

𝑘

= 0. From the problem (6), the K-T condition at 𝑥𝑘
is defined as follows:

𝐻
𝑘
𝑑
𝑘

+ ∑

𝑖∈𝐼

𝜆
𝑘

𝑖
∇𝑓
𝑖
(𝑥
𝑘

) + ∑

𝑗∈𝐽

𝜇
𝑘

𝑗
∇𝑔
𝑗
(𝑥
𝑘

) + ∑

𝑙∈𝐿

]𝑘
𝑙
∇ℎ
𝑙
(𝑥
𝑘

) = 0,

∑

𝑖∈𝐼

𝜆
𝑘

𝑖
+ 𝜂
𝑘
∑

𝑗∈𝐽

𝜇
𝑘

𝑗
= 1,

𝜆
𝑖
≥ 0,

0 ≤ 𝜆
𝑘

𝑖
⊥ (𝑓
𝑖
(𝑥
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

− 𝐹 (𝑥
𝑘

) − 𝑧
𝑘
) ≤ 0,

𝑖 ∈ 𝐼,

𝜇
𝑗
≥ 0,

0 ≤ 𝜇
𝑘

𝑗
⊥ (𝑔
𝑗
(𝑥
𝑘

) + ∇𝑔
𝑗
(𝑥
𝑘

)
𝑇

𝑑
𝑘

− 𝜂
𝑘
𝑧
𝑘
) ≤ 0,

𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑
𝑘

= 0, 𝑙 ∈ 𝐿.

(14)

If 𝑑𝑘 = 0, then 𝑧
𝑘
= 0, and according to the definition of 𝜂

𝑘
in

Step 4, we have 𝜂
𝑘
= 0. Furthermore, it holds that

∑

𝑖∈𝐼

𝜆
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥) = 0,

∑

𝑖∈𝐼

𝜆
𝑖
= 1,

𝜆
𝑖
≥ 0, 𝑓

𝑖
(𝑥) − 𝐹 (𝑥) ≤ 0, 𝜆

𝑖
(𝑓
𝑖
(𝑥) − 𝐹 (𝑥)) = 0,

𝑖 ∈ 𝐼,

𝜇
𝑗
≥ 0, 𝑔

𝑗
(𝑥) ≤ 0, 𝜇

𝑗
𝑔
𝑗
(𝑥) = 0, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) = 0, 𝑙 ∈ 𝐿.

(15)

That is to see that the results hold.

From Lemma 2, it is obvious, if 𝑑𝑘 ̸= 0, that the line search
in Step 3 yields is always completed.

Lemma 3. If 𝑑𝑘 ̸= 0 and if 𝑟 satisfies 𝑟 ≥ ‖𝜇‖
∞

and 𝑟 ≥ ‖]‖
∞
,

the line search in Step 3 of the algorithm is well defined.

Proof. Firstly, we consider the functions𝑓
𝑖
(𝑥+𝑡𝑑

𝑘

+𝑡
2

𝑑), 𝑖 ∈ 𝐼,
𝑔
𝑗
(𝑥+𝑡𝑑+𝑡

2

𝑑), 𝑗 ∈ 𝐽, and ℎ
𝑙
(𝑥+𝑡𝑑+𝑡

2

𝑑), 𝑙 ∈ 𝐿, of the Taylor
expansion at 𝑥. Then, we obtain

𝑤(𝑥 + 𝑡𝑑 + 𝑡
2

𝑑) = 𝑤 (𝑥; 𝑡𝑑) + 𝑜 (𝑡) , (16)
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where

𝑤 (𝑥; 𝑡𝑑) = 𝑡{max
𝑖∈𝐼

{𝑓
𝑖
(𝑥) + ∇𝑓

𝑖
(𝑥)
𝑇

𝑑}

+ 𝑟∑

𝑗∈𝐽

max {𝑔
𝑗
(𝑥) + ∇𝑔

𝑗
(𝑥)
𝑇

𝑑, 0}

+𝑟∑

𝑙∈𝐿

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑙
(𝑥) + ∇ℎ

𝑙
(𝑥)
𝑇

𝑑
󵄨󵄨󵄨󵄨󵄨
} .

(17)

𝑤(𝑥; 𝑑) is convex as a function of 𝑑, and thus we have

𝑤 (𝑥; 𝑡𝑑) − 𝑤 (𝑥) ≤ 𝑡 {𝑤 (𝑥; 𝑑) − 𝑤 (𝑥)} , ∀𝑡 ∈ [0, 1] . (18)

From the definition of𝑤(𝑥),𝑤(𝑥; 𝑑) and (1), it is easy to obtain

𝑤 (𝑥; 𝑑) − 𝑤 (𝑥) = max
𝑖∈𝐼

{𝑓
𝑖
(𝑥) + ∇𝑓

𝑖
(𝑥)
𝑇

𝑑}

−max
𝑖∈𝐼

𝑓
𝑖
(𝑥) − 𝑟∑

𝑗∈𝐽

max {𝑔
𝑗
(𝑥) , 0}

− 𝑟∑

𝑙∈𝐿

󵄨󵄨󵄨󵄨ℎ𝑙 (𝑥)
󵄨󵄨󵄨󵄨 .

(19)

On the other hand, from the first equation of (14) we can get

𝑑
𝑇

𝐻𝑑 + ∑

𝑖∈𝐼

𝜆
𝑖
∇𝑓
𝑖
(𝑥)
𝑇

𝑑 + ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥)
𝑇

𝑑

+ ∑

𝑙∈𝐿

]
𝑙
∇ℎ
𝑙
(𝑥)
𝑇

𝑑 = 0.

(20)

Let 𝐼
𝑓
(𝑥; 𝑑) = {𝑖; 𝑓

𝑖
(𝑥) + ∇𝑓

𝑖
(𝑥)
𝑇

𝑑 = max
𝑙∈𝐼

{𝑓
𝑙
(𝑥) +

∇𝑓
𝑙
(𝑥)
𝑇

𝑑}, 𝑖 ∈ {1, 2, . . . , 𝑚}}. Since the third formula of (14)
implies

𝜆
𝑖
= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑚} \ 𝐼

𝑓
(𝑥; 𝑑) , (21)

then

𝑑
𝑇

𝐻𝑑 + ∑

𝑖∈𝐼
𝑓
(𝑥;𝑑)

𝜆
𝑖
∇𝑓
𝑖
(𝑥)
𝑇

𝑑

+ ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥)
𝑇

𝑑 + ∑

𝑙∈𝐿

]
𝑙
∇ℎ
𝑙
(𝑥)
𝑇

𝑑 = 0.

(22)

For 𝑖 ∈ 𝐼
𝑓
(𝑥; 𝑑), we get

∇𝑓
𝑖
(𝑥)
𝑇

𝑑 = max
𝑙∈𝐼

{𝑓
𝑙
(𝑥) + ∇𝑓

𝑙
(𝑥)
𝑇

𝑑} − 𝑓
𝑖
(𝑥) ,

∑

𝑖∈𝐼

𝜆
𝑖
= 1 󳨐⇒ ∑

𝑖∈𝐼
𝑓
(𝑥;𝑑)

𝜆
𝑖
= 1.

(23)

Thus, (22) implies

max
𝑖∈𝐼

{𝑓
𝑖
(𝑥) + ∇𝑓

𝑖
(𝑥)
𝑇

𝑑}

= ∑

𝑖∈𝐼
𝑓
(𝑥;𝑑)

𝜆
𝑖
𝑓
𝑖
(𝑥) − 𝑑

𝑇

𝐻𝑑

− ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥)
𝑇

𝑑 − ∑

𝑙∈𝐿

]
𝑙
∇ℎ
𝑙
(𝑥)
𝑇

𝑑.

(24)

Substituting the above equality in (19), we can obtain

𝑤 (𝑥; 𝑑) − 𝑤 (𝑥)

≤ −

{

{

{

𝑑
𝑇

𝐻𝑑 + ∑

𝑗∈𝐽

𝜇
𝑗
∇𝑔
𝑗
(𝑥)
𝑇

𝑑

+ 𝑟∑

𝑗∈𝐽

max {𝑔
𝑗
(𝑥) ; 0}

+ ∑

𝑙∈𝐿

]
𝑙
∇ℎ
𝑙
(𝑥)
𝑇

𝑑 + 𝑟∑

𝑙∈𝐿

󵄨󵄨󵄨󵄨ℎ𝑙 (𝑥)
󵄨󵄨󵄨󵄨

}

}

}

.

(25)

It follows from (14) that

𝑤 (𝑥; 𝑡𝑑) − 𝑤 (𝑥)

≤ −𝑡

{

{

{

𝑑
𝑇

𝐻𝑑 − ∑

𝑗∈𝐽

𝜇
𝑗
𝑔
𝑗
(𝑥)

+ 𝑟∑

𝑗∈𝐽

max {𝑔
𝑗
(𝑥) ; 0}

− ∑

𝑙∈𝐿

]
𝑙
ℎ
𝑙
(𝑥) + 𝑟∑

𝑙∈𝐿

󵄨󵄨󵄨󵄨ℎ𝑙 (𝑥)
󵄨󵄨󵄨󵄨

}

}

}

.

(26)

Considering 𝑟 satisfies 𝑟 ≥ ‖𝜇‖
∞

and 𝑟 ≥ ‖]‖
∞
, then we have

𝑤 (𝑥; 𝑡𝑑) − 𝑤 (𝑥) ≤ −𝑡𝑑
𝑇

𝐻𝑑 < 0, ∀𝑡 ∈ [0, 1] . (27)

Then, at 𝑥𝑘, we have

𝑤(𝑥
𝑘

+ 𝑡𝑑
𝑘

+ 𝑡
2

𝑑
𝑘

) − 𝑤 (𝑥
𝑘

) = 𝑤 (𝑥
𝑘

; 𝑡𝑑
𝑘

) − 𝑤 (𝑥
𝑘

) + 𝑜 (𝑡) .

(28)

Since 𝛼 ∈ (0, 1/2), for 𝑡 small enough, it holds that

𝑤(𝑥
𝑘

+ 𝑡𝑑
𝑘

+ 𝑡
2

𝑑
𝑘

) − 𝑤 (𝑥
𝑘

)

≤ 𝛼 (𝑤 (𝑥
𝑘

; 𝑡𝑑
𝑘

) − 𝑤 (𝑥
𝑘

)) ≤ −𝛼𝑡𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

.

(29)

That is, the line search condition (9) is satisfied.

In the following of this section, we will show the
global convergence of the algorithm. Since {𝑑

𝑘

, 𝑧
𝑘
, 𝜆
𝑘

, 𝜇
𝑘

} is
bounded under all the above-mentioned assumptions, we can
assume without loss of generality that there exist an infinite
index set 𝐾 and a constant 𝜂∗ such that

𝑥
𝑘

󳨀→ 𝑥
∗

, 𝐻
𝑘
󳨀→ 𝐻

∗
, 𝜂
𝑘
󳨀→ 𝜂
∗
, 𝑑
𝑘

󳨀→ 𝑑
∗

,

𝑧
𝑘
󳨀→ 𝑧
∗
, 𝜆
𝑘

󳨀→ 𝜆
∗

, 𝜇
𝑘

󳨀→ 𝜇
∗

, 𝑘 ∈ 𝐾.

(30)

Theorem 4. The algorithm either stops at the KKT point 𝑥𝑘 of
the problem (1) in finite number of steps or generates an infinite
sequence {𝑥

𝑘

} any accumulation point 𝑥∗ of which is a KKT
point of the problem (1).
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Proof. The first statement is obvious, the only stopping point
being in Step 1.Thus, assume that the algorithm generates an
infinite sequence {𝑥

𝑘

} and (30) holds. The cases 𝜂
∗

= 0 and
𝜂
∗
> 0 are considered separately.

Case A (𝜂
∗

= 0). By Step 4, there exists an infinite index set
𝐾
1
⊆ 𝐾, such that 𝑑𝑘−1 → 0, 𝑘 ∈ 𝐾

1
, while, by Step 3, it holds

that

lim
𝑘∈𝐾
1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘−1

󵄩󵄩󵄩󵄩󵄩
= lim
𝑘∈𝐾
1

󵄩󵄩󵄩󵄩󵄩
𝑡
𝑘−1

𝑑
𝑘−1

+ 𝑡
2

𝑘−1
𝑑
𝑘−1

󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑘∈𝐾
1

(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘−1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘−1

󵄩󵄩󵄩󵄩󵄩
) = 0.

(31)

So, the fact that 𝑥𝑘−1
𝑘∈𝐾
1

󳨀󳨀󳨀󳨀→ 𝑥
∗ implies that 𝑑𝑘−1

𝑘∈𝐾
1

󳨀󳨀󳨀󳨀→ 0. So,
from Lemma 2, it is clear that 𝑥∗ is a K-T point of (1).

Case B (𝜂
∗
> 0). Obviously, it only needs to prove that 𝑑𝑘 →

0, 𝑘 ∈ 𝐾. Suppose by contradiction that 𝑑∗ ̸= 0. Since

𝑓
𝑖
(𝑥
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

− 𝐹 (𝑥
𝑘

) ≤ 𝑧
𝑘
, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥
𝑘

) + ∇𝑔
𝑗
(𝑥
𝑘

)
𝑇

𝑑
𝑘

≤ 𝜂
𝑘
𝑧
𝑘
, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿,

(32)

in view of 𝑘 ∈ 𝐾, 𝑘 → ∞, we have

𝑓
𝑖
(𝑥
∗

) + ∇𝑓
𝑖
(𝑥
∗

)
𝑇

𝑑
∗

− 𝐹 (𝑥
∗

) ≤ 𝑧
∗
, 𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥
∗

) + ∇𝑔
𝑗
(𝑥
∗

)
𝑇

𝑑
∗

≤ 𝜂
∗
𝑧
∗
, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
∗

) + ∇ℎ
𝑙
(𝑥
∗

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿.

(33)

So, the following corresponding QP subproblem (6) at 𝑥∗

min
(𝑑,𝑧)∈𝑅

𝑛+1

𝑧 +
1

2
𝑑
𝑇

𝐻
∗
𝑑,

s.t. 𝑓
𝑖
(𝑥
∗

) + ∇𝑓
𝑖
(𝑥
∗

)
𝑇

𝑑 − 𝐹 (𝑥
∗

) ≤ 𝑧,

𝑖 ∈ 𝐼,

𝑔
𝑗
(𝑥
∗

) + ∇𝑔
𝑗
(𝑥
∗

)
𝑇

𝑑 ≤ 𝜂
∗
𝑧, 𝑗 ∈ 𝐽,

ℎ
𝑙
(𝑥
∗

) + ∇ℎ
𝑙
(𝑥
∗

)
𝑇

𝑑 = 0, 𝑙 ∈ 𝐿,

(34)

has a nonempty feasible set. Moreover, it is not difficult to
show that (𝑧

∗
, 𝑑
∗

) is the unique solution of (34). So, it holds
that

𝑧
∗
< 0, ∇𝑓

𝑖
(𝑥
∗

)
𝑇

𝑑
∗

≤ 𝑧
∗
< 0, 𝑖 ∈ 𝐼 (𝑥

∗

) ,

∇𝑔
𝑗
(𝑥
∗

)
𝑇

𝑑
∗

≤ 𝜂
∗
𝑧
∗
< 0, 𝑗 ∈ 𝐽 (𝑥

∗

) .

(35)

For 𝑥𝑘 → 𝑥
∗, 𝑑𝑘 → 𝑑

∗, 𝑘 ∈ 𝐾, it is clear, for 𝑘 ∈ 𝐾, 𝑘 large
enough, that

∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

≤
1

2
∇𝑓
𝑖
(𝑥
∗

)
𝑇

𝑑
∗

< 0, 𝑖 ∈ 𝐼 (𝑥
∗

) ,

∇𝑔
𝑗
(𝑥
𝑘

)
𝑇

𝑑
𝑘

≤
1

2
∇𝑔
𝑗
(𝑥
∗

)
𝑇

𝑑
∗

< 0, 𝑗 ∈ 𝐽 (𝑥
∗

) .

(36)

From (36), by imitating the proof of [17, Proposition 3.2],
we know that the stepsize 𝑡

𝑘
obtained by the line search is

bounded away from zero on𝐾; that is,

𝑡
𝑘
≥ 𝑡
∗
= inf {𝑡

𝑘
, 𝑘 ∈ 𝐾} > 0. (37)

In addition, from (9) and Lemma 2, it follows that {𝑓(𝑥
𝑘

)} is
monotonous decreasing. So, considering {𝑥

𝑘

}
𝐾

→ 𝑥
∗ and

the hypothesis (H 3.1), one holds that

𝑓
𝑖
(𝑥
𝑘

) 󳨀→ 𝑓
𝑖
(𝑥
∗

) , 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (𝑥
∗

) . (38)

Hence, from (9) and (36)–(38), we get

0 = lim
𝑘∈𝐾

(𝑓
𝑖
(𝑥
𝑘+1

) − 𝑓
𝑖
(𝑥
𝑘

))

≤ lim
𝑘∈𝐾

𝛼𝑡
𝑘
∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

≤
1

2
𝛼𝑡
∗
∇𝑓
𝑖
(𝑥
∗

)
𝑇

𝑑
∗

< 0.

(39)

It is a contradiction. So, 𝑑
∗

= 0. Thereby, according to
Lemma 2, 𝑥∗ is a KKT point of problem (1).

4. Rate of Convergence

In this section, we show the convergence rate of the algo-
rithm. For this purpose, we add the following some stronger
regularity assumptions.
(H 4.1) The functions 𝑓

𝑖
(𝑥) (𝑖 ∈ 𝐼), 𝑔

𝑗
(𝑥) (𝑗 ∈ 𝐽), and

ℎ
𝑙
(𝑥) (𝑙 ∈ 𝐿) are twice continuously differentiable.

(H 4.2) The sequence 𝑥𝑘 generated by the algorithmpossesses
an accumulation point 𝑥∗, and𝐻

𝑘
→ 𝐻
∗
, 𝑘 → ∞.

(H 4.3) The second-order sufficiency conditions with strict
complementary slackness are satisfied at the KKT
point 𝑥∗; that is, it holds that 𝜆

𝑖
> 0, 𝑖 ∈ 𝐼(𝑥

∗

), 𝜇
𝑗
> 0,

𝑗 ∈ 𝐽(𝑥
∗

), and

𝑑
𝑇

∇
2

𝑥𝑥
𝐿 (𝑥
∗

, 𝜆
∗

, 𝜇
∗

, ]∗) 𝑑 > 0, 0 ̸= 𝑑 ∈ 𝑆
∗

, (40)

where

∇
2

𝑥𝑥
𝐿 (𝑥
∗

, 𝜆
∗

, 𝜇
∗

, ]∗)

= ∑

𝑖∈𝐼

𝜆
∗

𝑖
∇
2

𝑓
𝑖
(𝑥
∗

) + ∑

𝑗∈𝐽

𝜇
∗

𝑗
∇
2

𝑔
𝑗
(𝑥
∗

)

+ ∑

𝑙∈𝐿

]∗
𝑙
∇
2

ℎ
𝑙
(𝑥
∗

)

= ∑

𝑖∈𝐼(𝑥
∗
)

𝜆
∗

𝑖
∇
2

𝑓
𝑖
(𝑥
∗

) + ∑

𝑗∈𝐽(𝑥
∗
)

𝜇
∗

𝑗
∇
2

𝑔
𝑗
(𝑥
∗

)

+ ∑

𝑙∈𝐿

]∗
𝑙
∇
2

ℎ
𝑙
(𝑥
∗

) ,

𝑆
∗

= {𝑑 ∈ 𝑅
𝑛

| ∇𝑓
𝑖
(𝑥
∗

)
𝑇

𝑑 = ∇𝑓
𝑖
𝑘

(𝑥
∗

)
𝑇

𝑑,

∀𝑖 ∈ 𝐼 (𝑥
∗

) , 𝑖
𝑘
∈ 𝐼 (𝑥

∗

) ,

∇𝑔
𝑗
(𝑥
∗

)
𝑇

𝑑 = 0,

∀𝑗 ∈ 𝐽 (𝑥
∗

) , ∇ℎ
𝑙
(𝑥
∗

)
𝑇

𝑑 = 0, ∀𝑖 ∈ 𝐼 (𝑥
∗

)} .

(41)
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According to the all stated assumptions (H 4.1)–(H 4.3)
and [21, Theorem 2], we have the following results.

Lemma 5. The KKT point 𝑥∗ of problem (1) is isolated.

Lemma 6. The entire sequence {𝑥
𝑘

} converges to 𝑥
∗; that is,

𝑥
𝑘

→ 𝑥
∗, 𝑘 → ∞.

Proof. The result of this lemma is similar to the proof of [19,
Lemma 4.1].

Lemma 7. For 𝑘 large enough, it holds that

(1) 𝑑𝑘 → 0 and 𝑧
𝑘

→ 0,

(2) 𝜆𝑘 → 𝜆
∗, 𝜇𝑘 → 𝜇

∗, and ]𝑘 → ]∗.

Lemma 8. For 𝑘 large enough, 𝑑𝑘 obtained by Step 2 satisfies

(1)

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩
= 𝑂 (

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) , (42)

(2)

ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) , ∀𝑙 ∈ 𝐿,

𝑔
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) , ∀𝑗 ∈ 𝐽 (𝑥) .

(43)

Proof. (1) The result can be proven similarly to the proof of
[5, Proposition 3.1] or [19, Lemma 4.3].

(2) We have

ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

)
𝑇

𝑑
𝑘

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

) + (∇ℎ
𝑙
(𝑥
𝑘

) + 𝑂
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩
)
𝑇

𝑑
𝑘

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

) + ∇ℎ
𝑙
(𝑥
𝑘

)
𝑇

𝑑
𝑘

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

)

= 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) , 𝑙 ∈ 𝐿.

(44)

Analogously, the other result is not difficult to be shown.

To get the superlinearly convergent rate of the above
proposed algorithm, the following additional assumption is
necessary.

(H 4.4) The matrix sequence𝐻
𝑘
satisfies that

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑘
(𝐻
𝑘
− ∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

, 𝜇
𝑘

, ]𝑘)) 𝑑𝑘
󵄩󵄩󵄩󵄩󵄩
= 𝑜 (

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩
) , (45)

where

𝑃
𝑘
= 𝐼
𝑛
− 𝐴
𝑘
(𝐴
𝑇

𝑘
𝐴
𝑘
)
−1

𝐴
𝑇

𝑘
,

𝐴
𝑘
= 𝐴
𝑘
(𝑥
𝑘

) = ((∇𝑓
𝑖
(𝑥
𝑘

) − ∇𝑓
𝑖
𝑘

(𝑥
𝑘

)) ,

∇𝑔
𝑗
(𝑥
𝑘

) , ∇ℎ
𝑙
(𝑥
𝑘

)) ,

(𝑖 ∈ 𝐼 (𝑥
𝑘

) \ {𝑖
𝑘
} , 𝑗 ∈ 𝐽 (𝑥

𝑘

) , 𝑙 ∈ 𝐿 (𝑥
𝑘

)) .

(46)

According to Lemmas 6 and 8, it is easy to know
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑘
(𝐻
𝑘
− ∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

, 𝜇
𝑘

, ]𝑘)) 𝑑𝑘
󵄩󵄩󵄩󵄩󵄩

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩
) ⇐⇒

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑘
(𝐻
𝑘
− ∇
2

𝑥𝑥
𝐿 (𝑥
∗

, 𝜆
∗

, 𝜇
∗

, ]∗)) 𝑑𝑘
󵄩󵄩󵄩󵄩󵄩

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩
) .

(47)

Lemma 9. For 𝑘 large enough, under the above-mentioned
assumptions, 𝑡

𝑘
≡ 1.

Proof. It is only necessary to prove that

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) ≤ 𝑤 (𝑥
𝑘

) − 𝛼𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

. (48)

From (6) and (14), we have

𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

) = 𝑓
𝑖
(𝑥
𝑘

) + ∇𝑓
𝑖
(𝑥
𝑘

)
𝑇

𝑑
𝑘

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= 𝑓 (𝑥
𝑘

) + 𝑧
𝑘
+ 𝑂(

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) , 𝑖 ∈ 𝐼 (𝑋
∗

) ,

𝑓
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

) = 𝑓
𝑗
(𝑥
𝑘

) + ∇𝑓
𝑗
(𝑥
𝑘

)
𝑇

𝑑
𝑘

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= 𝑓 (𝑥
𝑘

) + 𝑧
𝑘
+ 𝑂(

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) , 𝑗 ∈ 𝐼 (𝑋
∗

) .

(49)
Hence,

𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

) = 𝑓
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

) + 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) , ∀𝑖, 𝑗 ∈ 𝐼 (𝑥
∗

) .

(50)

Similarly, together with ‖𝑑
𝑘

‖ = 𝑂(‖𝑑
𝑘

‖
2

), it is easy to get

𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= 𝑓
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) + 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) , ∀𝑖, 𝑗 ∈ 𝐼 (𝑥
∗

) .

(51)

On the other hand, the facts that 𝑑
𝑘

→ 0 and 𝑑
𝑘

→ 0

imply that 𝐼(𝑥𝑘 +𝑑
𝑘

+𝑑
𝑘

) ⊆ 𝐼(𝑥
∗

) (𝑘 large enough).Thus, for
𝑗
𝑘
∈ 𝐼(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) ⊆ 𝐼(𝑥
∗

), we have

𝐹 (𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = max
𝑙∈𝐼

{𝑓
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)}

= 𝑓
𝑗
𝑘

(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = 𝑓
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

+ 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) , ∀𝑗 ∈ 𝐼 (𝑥
∗

) .

(52)
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By the definition of 𝑤(𝑥) and Lemma 8, we have

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = max
𝑙∈𝐼

{𝑓
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)} + 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) .

(53)

Multiplying both sides of (52) by 𝜆
𝑘

𝑖
and adding them,

combining∑
𝑙∈𝐼(𝑥
∗
)
𝜆
𝑘

𝑖
= 1 with (53), we get

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) = max
𝑖∈𝐼(𝑥
∗
)

{𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)} + 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) .

(54)

In addition, for 𝑘 large enough, we have

𝐿 (𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)

= ∑

𝑖∈𝐼

𝜆
𝑘

𝑖
𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

+ ∑

𝑗∈𝐽

𝜇
𝑘

𝑗
𝑔
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

+ ∑

𝑙∈𝐿

]𝑘
𝑙
ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= ∑

𝑖∈𝐼(𝑥
∗
)

𝜆
𝑘

𝑖
𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

+ ∑

𝑗∈𝐽
𝑔
(𝑥
∗
)

𝜇
𝑘

𝑗
𝑔
𝑗
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

+ ∑

𝑙∈𝐿

]𝑘
𝑙
ℎ
𝑙
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= ∑

𝑖∈𝐼(𝑥
∗
)

𝜆
𝑘

𝑖
𝑓
𝑖
(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) + 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

) .

(55)

Combining the above equation with (54) we can obtain

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= 𝐿 (𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) + 𝑂(

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

3

)

= 𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) + ∇
𝑥
𝐿(𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)
𝑇

(𝑑
𝑘

+ 𝑑
𝑘

)

+
1

2
(𝑑
𝑘

+ 𝑑
𝑘

)
𝑇

∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)

× (𝑑
𝑘

+ 𝑑
𝑘

) + 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= 𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) + ∇
𝑥
𝐿(𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)
𝑇

(𝑑
𝑘

+ 𝑑
𝑘

)

+
1

2
(𝑑
𝑘

)
𝑇

∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) (𝑑
𝑘

) + 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) .

(56)

From the KKT condition (14) implies ∇
𝑥
𝐿(𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) =

−𝐻
𝑘
𝑑
𝑘; then we get

∇
𝑥
𝐿(𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)
𝑇

(𝑑
𝑘

+ 𝑑
𝑘

)

= −𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+ 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) , ∑

𝑖∈𝐼(𝑥
∗
)

𝜆
𝑘

𝑖
= 1.

(57)

Thus,

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

)

= 𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) − 𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+
1

2
(𝑑
𝑘

)
𝑇

∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
)

× (𝑑
𝑘

) + 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

= 𝑤 (𝑥
𝑘

) − 𝛼𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+
1

2
(𝑑
𝑘

)
𝑇

× (∇
2

𝑥𝑥
𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) − 𝐻

𝑘
) (𝑑
𝑘

)

−
1

2
𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+ 𝛼𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+ 𝐿 (𝑥
𝑘

, 𝜆
𝑘

𝑖
, 𝜇
𝑘

𝑗
, ]𝑘
𝑙
) − 𝑤 (𝑥

𝑘

) + 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝑤 (𝑥
𝑘

) − 𝛼𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

− (
1

2
− 𝛼)𝑑

𝑘𝑇

𝐻
𝑘
𝑑
𝑘

+ 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘
󵄩󵄩󵄩󵄩󵄩

2

) .

(58)

For 𝑘 large enough, according to 𝛼 ∈ (0, 1/2), it holds that

𝑤(𝑥
𝑘

+ 𝑑
𝑘

+ 𝑑
𝑘

) ≤ 𝑤 (𝑥
𝑘

) − 𝛼𝑑
𝑘𝑇

𝐻
𝑘
𝑑
𝑘

. (59)

From Lemma 9 and the method of [29, Theorem 5.2], we
can get the following.

Theorem 10. Under all stated assumptions, the algorithm is
superlinearly convergent; that is, the sequence {𝑥

𝑘

} generated
by the algorithm satisfies ‖𝑥𝑘+1 − 𝑥

∗

‖ = 𝑜(‖𝑥
𝑘

− 𝑥
∗

‖).

5. Numerical Experiments

In this section, we select several problems to show the
efficiency of the algorithm in Section 2. Some preliminary
numerical experiments are tested on an Intel(R) Celeron(R)
CPU2.40GHz computer.The code of the proposed algorithm
is written by usingMATLAB 7.0 and utilized the optimization
toolbox to solve the quadratic programmings (6) and (7).The
results show that the proposed algorithm is efficient.

During the numerical experiments, are chosen at random
some parameters as follows: 𝛼 = 0.25, 𝜂

0
= 1, 𝛾 = 0.5, and

𝐻
0

= 𝐼, the 𝑛 × 𝑛 unit matrix. 𝐻
𝑘
is updated by the BFGS
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Table 1: Numerical results of Algorithm 1.

Number 𝑛,𝑚,𝑚
1
, 𝑚
2

NT IP FV
1 ([10, Problem 1]) 2, 3, 0, 0 11 (1, 5)

𝑇 1.952224
2 ([10, Problem 4]) 2, 3, 0, 0 10 (3, 1)

𝑇 0.616234
3 ([11, Problem 1]) 2, 3, 2, 0 7 (0, 0)

𝑇 1.952224
4 ([11, Problem 2]) 2, 6, 2, 0 12 (1, 3)

𝑇 0.616432
5 ([11, Problem 4]) 2, 3, 2, 0 10 (4, 2)

𝑇 2.250000
6 ([11, Problem 5]) 4, 4, 3, 0 32 (0, 1, 1, 0)

𝑇

−44.000000
7 ([11, Problem 6]) 2, 3, 2, 0 4 (0, 1)

𝑇 2.000000
8 ([26, Problem 5]) 2, 2, 0, 1 12 (0, 4)

𝑇

−5.875407
9 ([26, Problem 6]) 3, 3, 1, 2 5 (2, 3, 2)

𝑇

−3.934502
10 ([26, Problem 7]) 10, 8, 0, 3 54 (0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0)

𝑇

2.3339𝑒 + 003

formula [16]. In the implementation, the stopping criterion
of Step 1 is changed to If ‖𝑑𝑘

0
‖ ≤ 10

−6, STOP.
This algorithm has been tested on some problems from

[10, 11, 26]. The results are summarized in Table 1. The
columns of this table have the following meanings:

Number: the number of the test problem in [10, 11] or
[26];

𝑛: the dimension of the problem;

𝑚: the number of objective functions;

𝑚
1
: the number of inequality constraints;

𝑚
2
: the number of equality constraints;

NT: the number of iterations;

IP: the initial point;

FV: the final value of the objective function.

6. Concluding Remarks

In this paper, we propose a simple feasible sequential
quadratic programming algorithm for inequality constrained
minimax problems.With the help of the technique ofmethod
of feasible direction, at each iteration, amain search direction
is obtained by solving only one reduced quadratic program-
ming subproblem. Then, a correction direction is yielded by
solving another quadratic programming to avoid Maratos
effect and guarantee the superlinear convergence under mild
conditions. The preliminary numerical results also show that
the proposed algorithm is effective.

As further work, we can get the main search direction by
other techniques, for example, sequential systems of linear
equations technique. And we can also consider removing the
strict complementarity.
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