
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 712437, 12 pages
http://dx.doi.org/10.1155/2013/712437

Research Article
Efficient Model Selection for Sparse Least-Square SVMs

Xiao-Lei Xia,1 Suxiang Qian,1 Xueqin Liu,2 and Huanlai Xing3

1 School of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001, China
2 School of Electronics, Electrical Engineering and Computer Science, Queen’s University of Belfast, Belfast BT9 5AH, UK
3 School of Computer Science and IT, University of Nottingham, Nottingham NG8 1BB, UK

Correspondence should be addressed to Xiao-Lei Xia; xxia01@qub.ac.uk

Received 11 April 2013; Revised 13 June 2013; Accepted 19 June 2013

Academic Editor: Ker-Wei Yu

Copyright © 2013 Xiao-Lei Xia et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Forward Least-Squares Approximation (FLSA) SVM is a newly-emerged Least-Square SVM (LS-SVM) whose solution is
extremely sparse. The algorithm uses the number of support vectors as the regularization parameter and ensures the linear
independency of the support vectors which span the solution. This paper proposed a variant of the FLSA-SVM, namely, Reduced
FLSA-SVM which is of reduced computational complexity and memory requirements. The strategy of “contexts inheritance”
is introduced to improve the efficiency of tuning the regularization parameter for both the FLSA-SVM and the RFLSA-SVM
algorithms. Experimental results on benchmark datasets showed that, compared to the SVM and a number of its variants, the
RFLSA-SVM solutions contain a reduced number of support vectors, while maintaining competitive generalization abilities. With
respect to the time cost for tuning of the regularize parameter, the RFLSA-SVM algorithm was empirically demonstrated fastest
compared to FLSA-SVM, the LS-SVM, and the SVM algorithms.

1. Introduction

As with the standard Support Vector Machine (SVM), the
Least Squares Support Vector Machine (LS-SVM) optimizes
the tradeoff between the model complexity and the squared
error loss functional [1, 2]. The optimization problem, in the
dual form, can be solved by the sequential minimal optimiza-
tion (SMO) algorithm [3]. Bo et al. proposed a novel strategy
for working-set selection which improved the efficiency of
the SMO implementation [4]. Meanwhile, the optimization
problem, which is subject to equality constraints, can be
transformed into a set of linear equations for which the
conjugate gradient (CG)method can be applied [5]. Chu et al.
further reduced the time complexity of training the LS-SVM
using the CG method [6]. However, the solution of the LS-
SVM is parameterized by a majority of the training samples,
which is known as the nonsparseness problem of the LS-
SVM. As the classification of test samples involves primarily
the kernel evaluation between the test sample and the training
samples contained in the solution, a nonsparse solution can
cause a slow classification procedure.

A range of algorithms, aiming at easing the nonsparse-
ness of LS-SVM solutions, have been available. Suykens et
al. proposed to prune training samples with the minimal
Lagrangian multiplier [7]. De Kruif and De Vries, on the
other hand, proposed to remove samples that introduced the
least approximation error for the next iteration [8]. Zeng
and Chen presented a pruning algorithm based on the SMO
implementation which causes the least change to the dual
objective function [9].

Another class of sparse LS-SVM algorithms views each
column of the kernel matrix as the output of a specific “basis
function” on the training samples. The “basis function” is
selected iteratively into the solution. Among them is the ker-
nel matching pursuit algorithm which adopts a squared error
loss function [10], and the algorithmwas extended to address
large-scale problem [11]. Jiao et al. proposed to select, at each
iteration, the basis function which minimizes the change in
theWolfe dual objective function of the LS-SVM.Also among
this class is the Forward Least-Squares Approximation SVMs
(FLSA-SVMs) algorithm which uses the number of support
vectors as the regularization parameter. The FLSA-SVM

2 Mathematical Problems in Engineering

avoids the explicit formulation of training cost, by applying a
function approximation technique of squared error loss [12].
The algorithm can also detect the linear dependencies among
column vectors of the input Gramian matrix, ensuring that
the set of the training samples which span the solution are
linearly independent.

Unfortunately, the exhaustive search for the optimal basis
function at each iteration in the FLSA-SVM is computation-
ally expensive. To tackle this problem, the Reduced FLSA-
SVM (RFLSA-SVM) is proposed inwhich a random selection
of the basis functions is adopted. The RFLSA-SVM also
has a lower memory requirement since the input Gramian
matrix for training is now rectangular, in contrast to the
square one of the FLSA-SVM. Compared to the FLSA-
SVM, the RFLSA-SVM risks increasing number of support
vectors. Nevertheless, the paper empirically proves that the
FLSA-SVM and the RFLSA-SVM variant both provide sparse
solutions, in comparison to the conventional LS-SVMand the
standard SVM, as well as the other sparse SVM algorithms
developed upon the idea of “basis functions.”

Further, the technique of “contexts inheritance” is pro-
posed which is another effort to reduce the time complexity
for training the proposed RFLSA-SVM and the FLSA-SVM.
Taking the RFLSA-SVM algorithm, for example, “contexts
inheritance” takes advantages of the connection between any
two RFLSA-SVMs whose kernel functions are identical, but
value settings on the regularization parameter are different.
The intermediate variables, the by-products of training the
RFLSA-SVM with a smaller regularization parameter, can be
inherited to be the starting point for training the RFLSA-
SVMwith a greater one.This property, referred to as “contexts
inheritance”, can be further utilized in the tuning of the
regularization parameter for both the RFLSA-SVM and the
FLSA-SVM.

The paper is organized as follows. Section 2 briefly
reviews sparse LS-SVM algorithm, namely, the Forward
Least-Squares Approximation SVM (FLSA-SVM), followed
by a description of the Reduced FLSA-SVM (RFLSA-SVM)
variant in Section 3. In Section 4, the attribute of “contexts
inheritance”, which makes these two algorithms more com-
putationally attractive, is described. Experimental results are
given in Section 5 and concluding remarks in Section 6.

2. The Forward Least-Squares Approximation
SVM [12]

Given a set of ℓ samples (x
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , ℓ where x

𝑖
∈ R𝑁

is the 𝑖th training pattern and 𝑦 ∈ {−1, +1} the class label, the
Forward Least-Squares Approximation SVM (FLSA-SVM)
seeks a classifier which is the solution to the following
optimization problem:

min
w,𝑏

1

2
(w⊤w + 𝑏2) , (1)

s.t. w⊤𝜙 (x
𝑖
) + 𝑏 = 𝑦

𝑖
𝑖 = 1, . . . , ℓ, (2)

|Γ| = 𝑚, (3)

where 𝜙(⋅) is the function mapping an input pattern into the
feature space. The vector Γ = (𝛾

1
, . . . , 𝛾

𝑚
) is composed of the

indices of the support vectors and |Γ| is the cardinality of the
set.

Introducing ℓ Lagrange multipliers 𝛼
𝑖
(𝑖 = 1, . . . , ℓ) for

the equality constraints of (2), it results in a linear system of:

(K + 1⃗)𝛼 = D𝛼 = y, (4)

where K ∈ Rℓ×ℓ and K
𝑖𝑗
= 𝐾(x

𝑖
, x
𝑗
), y = [𝑦

1
, . . . , 𝑦

ℓ
]
⊤, 𝛼 =

[𝛼
1
, . . . , 𝛼

ℓ
]
⊤, 1⃗ is a ℓ-by-ℓmatrix of ones andD ∈ Rℓ×ℓ where

D
𝑖𝑗
= K
𝑖𝑗
+1.The 𝑖th column ofD can be viewed as the output

on the ℓ training samples of the function d(x
𝑖
, ⋅) = 𝐾(x

𝑖
, ⋅) + 1

which is parameterized by the training sample of x
𝑖
. d(x
𝑖
, ⋅) is

often referred to as a “basis function” and D a dictionary of
basis functions.

The constraints of (3) demands that only 𝑚 Lagrange
multipliers 𝛼

𝑖
end up non-zero in the solution to (4). The

resultant decision function of the FLSA-SVM classifier on a
test sample z is:

𝑓 (z) =
𝑚

∑

𝑖=1

𝛼
𝑖
d (x
𝛾𝑖
, z) , (5)

where 𝛾
𝑖
(𝑖 = 1, . . . , 𝑚) is the column index of the 𝑖th

basis function whose weight 𝛼
𝑖
is non-zero. Each associated

training sample of x
𝛾𝑖

is known as the “support vector”
which makes actual contribution to the establishment of the
decision function.

Equation (5) suggests that, the training of the FLSA-SVM
is mathematically composed of two major procedures which
are the selection of each d

𝛾𝑖
and then the computation of the

𝑚-dimensional weight vector of 𝛼.
The algorithm selects one basis function iteratively to

span the solution.The following describes how the algorithm
selects a basis function at each iteration.

2.1. The Selection of a Basis Function. At the end of the 𝑖th
iteration for the algorithm, 𝑖 basis functions whose indices in
the dictionary matrix is (𝛾

1
, . . . , 𝛾

𝑖
) have been selected. They

form a matrix Ω
𝑖
= (d
𝛾1
, . . . , d

𝛾𝑖
) ∈ Rℓ×𝑖 where d

𝛾𝑖
= d(x

𝛾𝑖
, ⋅)

for simplicity of notations. The objective of the (𝑖 + 1)-th
iteration is to select the (𝑖 + 1)-th basis function d

𝛾𝑖+1
from

the dictionary.
d
𝛾𝑖+1

is identified by solving the optimization problem of

𝛾
𝑖+1
= argmax
𝑗=1,...,ℓ

𝛿𝐿
𝑖
(d
𝑗
) , (6)

where 𝛿𝐿
𝑖
(d
𝑗
) is the perturbation in the loss function as a

result of an additional basis function d
𝑗
to the matrixΩ

𝑖
.

For the calculation of 𝛿𝐿
𝑖
(d
𝑗
), the algorithm defines a

“residue matrix” R
𝑖
∈ Rℓ×ℓ:

R
𝑖
= I −Ω

𝑖
(Ω
⊤

𝑖
Ω
𝑖
)
−1

Ω
⊤

𝑖
, (7)

where I is a unity matrix. The squared error loss 𝐿
𝑖
, after 𝑖

iterations, can be shown to be

𝐿
𝑖
= 𝑦
⊤R
𝑖
𝑦. (8)

Mathematical Problems in Engineering 3

The decrease of the local approximation error 𝐿
𝑖
= 𝑦
⊤R
𝑖
𝑦

due to the addition of d
𝑗
has been proven to be

𝛿𝐿
𝑖
(d
𝑗
) =

y⊤R
𝑖
d
𝑗
d⊤
𝑗
R⊤
𝑗
y

d⊤
𝑗
R
𝑖
d
𝑗

=

[(R
𝑖
d
𝑗
)
⊤

(R
𝑖
y)]
2

(R
𝑖
d
𝑗
)
⊤

(R
𝑖
d
𝑗
)

. (9)

d
𝛾𝑖+1

is eventually identified as the one which leads to the
maximum of 𝛿𝐿

𝑖
(d
𝑗
).

With introduction of the residue matrices (R
1
, . . . ,R

𝑖
),

starting with R
0
= I, any d

𝑗
that can be expressed as a

linear combination of the previously selected basis functions
(d
𝛾1
, . . . , d

𝛾𝑖
) can be detected and pruned from the pool of

the candidate basis functions.This fact also contributes to the
sparseness of the FLSA-SVM solution.

After the identification of all the 𝑚 basis functions, the
vector of (𝛼

1
, . . . , 𝛼

𝑚
), where 𝛼

𝑖
is the weight for d

𝛾𝑖
, is then

computed.

2.2. The Computation of the Weight Vector 𝛼. Other than
selecting an extra basis function d

𝛾𝑖+1
to span the solution,

the (𝑖 + 1)-th iteration, in fact, establishes the following linear
system whose solutions are the last𝑚 − 𝑖 elements of 𝛼

[𝜙
(𝑖)

𝑖+1
𝜙
(𝑖)

𝑖+2
⋅ ⋅ ⋅ 𝜙
(𝑖)

𝑚
]

[
[
[
[

[

𝛼
𝑖+1

𝛼
𝑖+2

...
𝛼
𝑚

]
]
]
]

]

= y(𝑖), (10)

where the vector 𝜙(𝑖)
𝑖+1

= R
𝑖
d
𝛾𝑖+1

∈ Rℓ×1 and the vector y(𝑖) =
R
𝑖
y ∈ Rℓ×1.
After 𝑚 iterations, a set of linear equations, represented

by (11), is constructed. The weight vector 𝛼 can be computed
by performing a back substitution procedure that is used by
a typical Gaussian elimination process.

[
[
[
[
[
[

[

(𝜙
(0)

1
)
⊤

𝜙
(0)

1
(𝜙
(0)

1
)
⊤

𝜙
(0)

2
⋅ ⋅ ⋅ (𝜙

(0)

1
)
⊤

𝜙
(0)

𝑚

0 (𝜙
(1)

2
)
⊤

𝜙
(1)

2
⋅ ⋅ ⋅ (𝜙

(1)

2
)
⊤

𝜙
(1)

𝑚

...
... d

...
0 0 ⋅ ⋅ ⋅ (𝜙

(𝑚−1)

𝑚
)
⊤

𝜙
(𝑚−1)

𝑚

]
]
]
]
]
]

]

×

[
[
[
[

[

𝛼
1

𝛼
2

...
𝛼
𝑚

]
]
]
]

]

=

[
[
[
[
[
[

[

(𝜙
(0)

1
)
⊤

y(0)

(𝜙
(1)

2
)
⊤

y(1)
...

(𝜙
(𝑚−1)

𝑚
)
⊤

y(𝑚−1)

]
]
]
]
]
]

]

.

(11)

3. The Reduced FLSA-SVM

At each iteration of the FLSA algorithm, it costs a major
share of the computational efforts to solve the optimization
problem formulated by (6).

Meanwhile, it is noted that, in the FLSA algorithm,
the sequence of local approximation errors {y⊤R

𝑖
y, 𝑖 =

1, . . . , rank(D)} form a sequence decreasing monotonously,
where rank(D) is the rank of thematrixD.Thus the following

Table 1: Benchmark information.

#Training #Test #Feature

Banana 400 4900 2

Splice 1000 2175 60

Image 1300 1010 18

Ringnorm 3000 4400 20

proposition can be applied to the monotonously increasing
sequence {y⊤y − y⊤R

𝑖
y, 𝑖 = 1, . . . , rank(D)}

Proposition 1 (see [11]). Assuming a uniform distribution of z,
the maximum of a sample {𝑧

1
, . . . , 𝑧

𝑠
} has a quantile of at least

𝜀
1/𝑠 with probability 1 − 𝜀.

Theproposition suggests that the probability of reaching a
value that has a quantile of 𝑞 is 1 − 𝜀 if 𝑠 = ⌈log 𝜀/ log 𝑞⌉ basis
functions are randomly chosen from the dictionary matrix.
Consequently, given a training set of 10000 samples, in order
to obtain the best 1% values for the approximation with a
probability of 0.98, themaximumnumber of training samples
required is ⌈log 0.01/ log 0.98⌉ = 228.

It is thus proposed to select basis functions randomly
from D without evaluating (9), which results in the Reduced
FLSA-SVM (RFLSA-SVM) whose pseudocode is given in
Algorithm 1. With a value setting of 𝑚 on the regularization
parameter, a random selection of𝑚 basis functions, denoted
as D
𝑚
which is a submatrix from the matrix D

ℓ
built on the

entire training set, are used as the dictionary.
The RFLSA-SVM also differs from the FLSA-SVM with

respect to the interpretation of the value of the regularization
parameter. For the FLSA-SVM, the value of the parameter,
provided it does not exceed the column rank of D, is the
actual number of support vectors. For the RFLSA-SVM
whose dictionary D

𝑚
exhibits linear dependencies between

column vectors, the number of basis functions available is
lower than 𝑚. From the perspective of the input kernel
matrix, the RFLSA-SVM is analogous to the Reduced SVM
[13] although the latter is subject to inequality constraints.
The RFLSA-SVM also bears resemblance to the PFSALS-
SVM algorithm [14]. Both are in the framework of Least-
Squares SVMs and iteratively select basis functions into the
solution. Nonetheless, rather than converting the optimiza-
tion problem to a set of linear system, the PFSALS-SVM
algorithm addresses the dual form of the objective function.

In terms of a single round of training, the time complexity
of RFLSA-SVM is 𝑂(𝑚2ℓ) while that of FLSA-SVM is
𝑂(𝑚ℓ

2
).Thememory requirement for FLSA-SVM in order to

store the dictionary matrix is𝑂(ℓ2), while with RFLSA-SVM,
it is reduced to𝑂(𝑚ℓ).Thus the RFLSA-SVMmethod ismore
computationally attractive, requiring less storage space and
less computational time. Encouragingly, the computational
cost of the FLSA-SVM can be further reduced by employing
the technique of “contexts inheritance” which is discussed in
detail in the folowing.

4 Mathematical Problems in Engineering

INPUT:
(i) The data set {(x

1
, 𝑦
1
), . . . , (x

ℓ
, 𝑦
ℓ
)}

(ii)𝑚 which is the number of support vectors desired in the expansion of the solution and 1 ≤ 𝑚 ≤ ℓ

(iii) A dictionary of𝑚 basis functionsD
0
= {d
1
, . . . , d

𝑚
}

INITIALIZATION:
(i) Generate a permutation of integers between 1 and ℓ. The first𝑚 elements form a vector Γ = {𝛾

1
, . . . , 𝛾

𝑚
}

which are the indices of randomly-sampled columns from the dictionary matrixD
0
.

(ii) Current residue vector y, current dictionaryD which is initially a matrix of evaluations of ℓ candidate basis functions on
training data:

y ←󳨀 (
𝑦
1

...
𝑦
ℓ

) and D←󳨀(

𝑑
𝛾1
(x
1
) . . . 𝑑

𝛾𝑚
(x
1
)

... d
...

𝑑
𝛾1
(x
ℓ
) . . . 𝑑

𝛾𝑚
(x
ℓ
)

)

(iii) The matrix A and the vector b both starts as empty A is appended a row and b grows by one extra element
at each iteration, which in the end forms a linear system.

(iv) A variable 𝑝 which is the pointer to the current investigated basis functions and also a count of selected basis functions. At
the start, 𝑝 = 0.

FOR 𝑖 = 1, . . . , 𝑚 AND 𝛾
𝑖
̸= − 1

𝑝 ← 𝑝 + 1

𝑏
𝑝
←󳨀

D(., 𝛾
𝑖
)
𝑇y

󵄩󵄩󵄩󵄩D (., 𝛾𝑖)
󵄩󵄩󵄩󵄩

2

(v) The residue vector is reduced by 𝑏
𝑝
d
𝛾𝑖
as the target values for the next linear system of size 𝑙:

y ←󳨀 y − 𝑏
𝑝
D(., 𝛾

𝑖
)

(vi) Update the dictionary matrix and prune the candidate basis functions which can be represented as a linear combinations
of the previously selected ones:
FOR 𝑗 = 𝑖 + 1, . . . , 𝑚 AND 𝛾

𝑗
̸= − 1

𝛽
𝛾𝑗
←󳨀

D(., 𝛾
𝑖
)
𝑇D (., 𝛾

𝑗
)

󵄩󵄩󵄩󵄩D (., 𝛾𝑖)
󵄩󵄩󵄩󵄩

2

D (., 𝛾
𝑖
) ←󳨀 D (., 𝛾

𝑗
) − 𝛽
𝑗
D (., 𝛾

𝑖
)

IF D (., 𝛾
𝑗
) = 0

𝛾
𝑖
←󳨀 −1

𝛽
𝛾𝑖
←󳨀 1

D (., 𝛾
𝑗
) ←󳨀 0

A←󳨀 (𝛽1, . . . , 𝛽𝑚A)

b←󳨀 (𝑏𝑝b)

BACK SUBSTITUTION:
The 𝑝 positive elements of Γ, which is represented by Λ = {𝜆

1
, . . . , 𝜆

𝑝
} in ascending order, are the indices of the 𝑝 selected basis

functions. 𝑝 columns of matrix A whose indices are Λ and b forms a linear system, on which the process of back substitution is
performed for the solution:

𝛼
𝑝
←󳨀 𝑏
𝑝

FOR 𝑖 = 𝑝 − 1, . . . , 1

𝛼
𝑖
←󳨀 𝑏
𝑖
−

𝑝

∑

𝑗=𝑖+1

𝛼
𝑗
A(𝑖, 𝜆

𝑗
)

OUTPUT:
The solution is defined by 𝑓(x) = ∑𝑝

𝑖=1
𝛼
𝑖
d
𝜆𝑖
(x)

Algorithm 1: The Reduced Forward Least-Squares Approximation SVM.

Mathematical Problems in Engineering 5

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure 1: Two-spiral dataset.

4. The Technique of Contexts Inheritance

Assuming an RFLSA-SVM whose solution contains 𝑚 basis
functions (d

𝛾1
, . . . , d

𝛾𝑚
) has been trained. For simplicity of

notations, define d
𝛾𝑖
= q
𝑖
, 𝑖 = 1, . . . , 𝑚. The weight vector

𝛼
𝑚
for the selected basis functions (p

1
, . . . , p

𝑚
) is obtained by

solving the linear system of (11). Denoting its upper triangle
coefficient matrix as A ∈ R𝑚×𝑚 and the target vector as
b ∈ R𝑚×1 (11) can be written as A

𝑚
𝛼
𝑚
= b
𝑚
.

Now consider the training for the RLFSA-SVM whose
solution is parameterized by 𝑛(> 𝑚) support vectors. An
extra of (𝑛 − 𝑚) basis functions are required to be randomly
selected and they are denoted as (q

𝑚+1
, . . . , q

𝑛
). Defining the

linear system required to be built as A
𝑛
𝛼
𝑛
= b
𝑛
, it can be

derived that the upper triangular coefficient matrix A
𝑛
is in

the form of

A
𝑛
=

[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜙
(0)

1
)
⊤

𝜙
(0)

1
⋅ ⋅ ⋅ (𝜙

(0)

1
)
⊤

𝜙
(0)

𝑚
(𝜙
(0)

1
)
⊤

𝜙
(0)

𝑚+1
⋅ ⋅ ⋅ (𝜙

(0)

1
)
⊤

𝜙
(0)

𝑛

... d
...

... d
...

0 ⋅ ⋅ ⋅ (𝜙
(𝑚−1)

𝑚
)
⊤

𝜙
(𝑚−1)

𝑚
(𝜙
(𝑚−1)

𝑚
)
⊤

𝜙
(𝑚−1)

𝑚+1
⋅ ⋅ ⋅ (𝜙

(𝑚−1)

𝑚
)
⊤

𝜙
(𝑚−1)

𝑛

0 ⋅ ⋅ ⋅ 0 (𝜙
(𝑚)

𝑚+1
)
⊤

𝜙
(𝑚)

𝑚+1
⋅ ⋅ ⋅ (𝜙

(𝑚)

𝑚+1
)
⊤

𝜙
(𝑚)

𝑛

... d
...

... d
...

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ (𝜙
(𝑛−1)

𝑛
)
⊤

𝜙
(𝑛−1)

𝑛

]
]
]
]
]
]
]
]
]
]
]
]

]

, (12)

𝜙
(𝑗)

𝑖
= R
𝑗
q
𝑖
, where 𝑖 = 1, . . . , 𝑛, 𝑗 = 0, . . . , 𝑛 − 1, and 𝑖 > 𝑗.

It can be seen that the upper triangular submatrix on the
upper left corner is in fact A

𝑚
. Denoting the upper right𝑚 ×

(𝑛 − 𝑚) submatrix asB and the bottom right (𝑛−𝑚)×(𝑛−𝑚)
submatrix as C, the matrix A

𝑛
is simplified into.

A
𝑛
= [

A
𝑚

B
0 C] (13)

It is noted that the submatrix C is also an upper triangular
matrix. And for the target vectors, it follows that b⊤

𝑛
=

[b⊤
𝑚
, (𝜙
(𝑚)

𝑚+1
)
⊤y(𝑚), . . . , (𝜙(𝑛−1)

𝑛
)
⊤y(𝑛−1)].

Hence, in order to construct the linear system of A
𝑛
𝛼
𝑛
=

b
𝑛
, the following intermediate variables, produced from

training the FLSA-SVMwith𝑚 basis functions, can be simply
inherited:

(a) the coefficient matrix A
𝑚
,

(b) the residue matrices for the first 𝑚 matrices R
𝑗
, 𝑗 =

1, . . . , 𝑚,
(c) the target vector b

𝑚
.

The residue matrix R
𝑗
, 𝑗 = 1, . . . , 𝑚makes the determination

of the matrix B fast. Thus the determination of the matrix
A
𝑛
is primarily reduced to the determination of the upper

triangular matrix C.
It is rather clear that the FLSA-SVM can also benefit

from the technique of “contexts inheritance.”The technique of

“contexts inheritance” makes the tuning of the regularization
parameter𝑚much faster for the RFLSA-SVM and the FLSA-
SVM, which was demonstrated by the experimental results in
Section 5.

5. Experimental Results

A set of experiments were performed to evaluate the per-
formance of the proposed RFLSA-SVM algorithm. It was
first applied to the two-spiral benchmark [15] to illustrate its
generalization ability.The followingGaussian kernel function
was used throughout:

𝐾(X
𝑖
,X
𝑗
) = 𝑒
−𝜆‖X𝑖−X𝑗‖2 . (14)

The standard SVMs were implemented using LIBSVM [16].
The conjugate gradient implementation for the LS-SVM was
conducted using the toolbox of LS-SVMlab [17] and its
sequential minimal optimization implementation using the
software package of [4]. The FLSA-SVM and the RFLSA-
SVM are implemented in our own C source code. All
experiments were run on a Pentium 4 3.2GHz processor
under Windows XP with 2GB of RAM.

5.1. Generalization Performance on the Two-Spiral Dataset.
The 2D “two-spiral” benchmark is known to be difficult for
pattern recognition algorithms and poses great challenges for

6 Mathematical Problems in Engineering

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(a)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b)

Figure 2: (a) the two-spiral pattern recognized by the RFLSA-SVM using 180 support vectors with 𝜆 = 1 in (14); (b) the two-spiral pattern
recognized by the RFLSA-SVM using 193 support vectors with 𝜆 = 0.5.

Table 2: Test correctness (%).

RFLSA-SVM
(𝑚, 𝜆)

FLSA-SVM
(𝐶, 𝜆)

SVM
(𝛾, 𝜆)

LS-SVM
(𝛾, 𝜆)

FSALS-SVM
(𝛾, 𝜆)

PFSALS-SVM
(𝛾, 𝜆) D-OFR

Banana 89.29 (24, 1) 89.33 (20, 1) 89.33 (25, 2−1) 88.92 (23, 0.6369) 89.14 (25, 2−1) 89.12 (23, 2−1) 89.10 (40, 2−2)

Splice 89.98 (680, 2−6) 89.98 (220, 2−6) 89.75 (23, 2−7) 89.84 (23, 0.0135) 89.93 (23, 2−6) 89.93 (28, 2−6) 89.33 (380, 2−6)

Image 97.82 (20, 2−4) 97.92 (180, 2−5) 97.82 (27, 2−3) 97.92 (27, 0.0135) 98.32 (24, 2−2) 98.02 (25, 2−2) 97.92 (480, 2−3)

Ringnorm 98.70 (20, 2−5) 98.66 (27, 2−5) 98.68 (2−6, 2−5) 97.07 (29, 0.1192) 98.70 (2−4, 2−5) 98.70 (2−5, 2−5) 98.59 (47, 2−5)

Table 3: Number of support vectors (best in bold).

RFLSA-SVM FLSA-SVM SVM LS-SVM FSALS-SVM PFSALS- SVM D-OFR

Banana 24 20 94 400 145 141 40

Splice 680 220 595 1000 507 539 380

Image 380 180 221 1300 272 278 480

Ringnorm 25 27 1624 3000 556 575 47

neural networks [18]. The training set consisted of 194 points
of the 𝑋-𝑌 plane, half of which had a target output of +1
and half −1. These training points were sampled from two
intertwining spirals that go around the origin, as illustrated
in Figure 1, where the two categories aremarked, respectively,
by “x” and “o.”

Figure 2(b) depicts the performance of the RFLSA-SVM
with the parameter settings of 𝑚 = 193, 𝜆 = 0.5 which
achieved a LOOCVaccuracy of 96.91%. It can be seen that the
two-spiral pattern has been recognized smoothly.Meanwhile,
Figure 2(a) shows the performance of the RFLSA-SVM using
180 support vectors. Although the decision boundaries are

Mathematical Problems in Engineering 7

Table 4:The value of𝑚 versus test correctness (%) for FLSA-SVMs
and RFLSA-SVMs on image and splice datasets.

𝑚

Image Splice

Best accuracy: 98.32 Best accuracy: 89.98

FLSAs
𝜆 = 2−5

RFLSAs
𝜆 = 2−4

FLSAs
𝜆 = 2−6

RFLSAs
𝜆 = 2−6

100 96.93 95.84 89.20 87.03

120 96.93 96.63 89.52 87.08

140 97.23 96.93 89.70 87.63

160 97.62 96.73 89.33 87.77

180 97.92 96.73 89.75 88.51

200 97.72 96.83 89.84 88.64

220 97.13 96.53 89.98 88.83

240 97.43 96.73 89.70 89.15

260 97.62 97.13 89.70 89.20

280 97.23 97.33 89.79 89.10

300 97.03 97.03 89.75 89.20

320 97.13 97.23 89.38 89.10

340 97.03 97.52 89.56 89.29

360 96.93 97.62 89.61 89.20

380 96.63 97.82 89.84 89.38

400 97.23 97.72 89.52 89.10

comparatively more wavy, the pattern has been still recog-
nized successfully.

In conclusion, on the small but challenging “two-spiral”
problem, the RFLSA-SVM achieved the outstanding gener-
alization performance when the number of support vectors
is large enough. Given a smaller set of support vectors, in an
effort to ease the nonsparseness of its solution, the RFLSA-
SVM still managed acceptable generalization performance.
Thus the RFLSA-SVM offers more flexibility in choosing the
number of support vectors.

5.2. Generalization Performance on More Benchmark
Problems. The FLSA-SVM algorithm was applied to 4
binary problems: the Ringnorm dataset and Banana,
Image, Splice and Ringnorm which are all accessible at
http://theoval.cmp.uea.ac.uk/matlab/#benchmarks/. The de-
tailed information of the datasets was given in Table 1.
Among all the realizations for each benchmark, the first one
of them was used. FLSA-SVMs were compared with SVMs,
LS-SVMs, the fast sparse approximation scheme for LS-SVM
(FSALS-SVM) and its variant called PFSALS-SVM, both
of which were proposed by Jiao et al. [14]. The parameter
𝜖 of FSALS-SVMs and PFSALS-SVMs was uniformly set
to be 0.5 which was empirically proved to work well with

most datasets [14]. Comparisons were also made against
D-optimality orthogonal forward regression (D-OFR) [19]
which is a technique for nonlinear function estimation,
promised to yield sparse solutions. The parameters, which
were the penalty constant and 𝜆 in (14), were tuned by tenfold
cross-validation (CV). The regularization parameter and the
𝜆 in (14) were also tuned by tenfold CV.

Tables 2 and 3, respectively, present the best test correct-
ness and the number of support vectors for different SVM
algorithms, with the best results highlighted in bold. It can
be seen that the FLSA-SVM and the RFLSA-SVM achieved
comparable classification accuracy to the standard SVM and
the LS-SVM.The number of support vectors required for the
RFLSA-SVM was much less compared to the LS-SVM, the
SVM, the FSALS-SVM, and PFSALS-SVM on the Banana
and the Ringnorm benchmarks.

The test correctness for the RFLSA-SVM, as well as the
FLSA-SVM with the number of support vectors ranging
from 100 to 400 on the Splice and the Image datasets was
further reported in Table 4. It can be seen that the RFLSA-
SVM parameterized by 240 support vectors already achieved
an accuracy of 89.15% which is over 99% of the obtainable
best accuracy of 89.98% which requires 680 support vectors.
Similarly, on the Image dataset, the RFLSA-SVM parameter-
ized by 200 support vectors already achieved an accuracy of
96.83% which is over 98% of the obtainable best accuracy of
98.32% which requires 380 support vectors.

These statistics showed that, allowing slight degradation
of the classification accuracy, the sparseness of the RFLSA-
SVM’s solutions can be further enhanced.

5.3. Merits of the Contexts Inheritance Technique. To demon-
strate the merits of the “contexts inheritance” technique, the
RFLSA-SVM was compared with the SVM, the LS-SVM,
and the FLSA-SVM, in terms of the time cost of tuning the
regularization parameter denoted as𝑚. For each dataset, the
kernel parameter 𝜆was fixed at the value which produced the
best tenfold cross-validation accuracy and the regularization
parameter was varied. For the SVM and the LS-SVM, the
regularization term 𝐶 was set as 2𝑖 where 𝑖 ∈ [−10, −10],
providing 21 values to be examined. For the FLSA-SVM and
the RFLSA-SVM, the regularization term 𝑚 was initially 1.
The remaining 20 integer values of𝑚 in training order formed
an arithmetic sequence, with both the first term and the
common difference being ℓ/20. The last term of the sequence
is equal to ℓ where ℓ is the number of training samples.
The technique of “contexts inheritance” was applied to the
consecutive training of both the FLSA-SVM and the RFLSA-
SVM.

Table 5 reports the time cost of the different algorithms on
the Banana datasets. For the SVMs and the LS-SVM, each row
entry in Table 5 gives the time cost for training the SVMwith
different value settings for the regularization parameter 𝐶.
For the RFLSA-SVM and the FLSA, each row entry indicates
the time cost for the regularization parameter, denoted by
𝑚, to reach the current value setting from the previous one.
Since 𝑚 also indicates the number of support vectors, each
row entry is the time cost for a specific growth in the number
of support vectors. For example, in the case of the FLSA-SVM,

8 Mathematical Problems in Engineering

Table 5: Training time (in CPU seconds) of the FLSA-SVM, the RFLSA-SVM, the SVM, and the LS-SVM on the banana dataset.

𝑚
FLSA-SVMs RFLSA-SVMs log2(𝐶)

SVMs LS-SVMs 𝜆 = 0.6369

𝜆 = 1 𝜆 = 1 𝜆 = 0.5 SMO CG

1 0.0630 0.0000 −10 0.0620 3.0930 0.0888

20 0.1880 0.0150 −9 0.0630 1.6880 0.0948

40 0.1880 0.0160 −8 0.0620 0.9840 0.1067

60 0.1870 0.0160 −7 0.0630 0.5940 0.1247

80 0.1720 0.0310 −6 0.0620 0.3280 0.1418

100 0.1720 0.0320 −5 0.0780 0.2190 0.1625

120 0.1560 0.0310 −4 0.0630 0.1400 0.1901

140 0.1560 0.0470 −3 0.0620 0.0780 0.2279

160 0.1400 0.0470 −2 0.0460 0.0620 0.2621

180 0.1250 0.0470 −1 0.0460 0.0470 0.3100

200 0.1410 0.0620 0 0.0310 0.0470 0.3929

220 0.1250 0.0620 1 0.0310 0.0470 0.4734

240 0.1090 0.0790 2 0.0460 0.0310 0.5691

260 0.1090 0.0780 3 0.0460 0.0320 0.6891

280 0.1100 0.0930 4 0.0310 0.0310 0.8653

300 0.1100 0.0940 5 0.0460 0.0310 1.0743

320 0.0940 0.0930 6 0.0460 0.0310 1.2615

340 0.0780 0.1090 7 0.0620 0.0320 1.6641

360 0.0780 0.1250 8 0.0620 0.0310 2.0141

380 0.0780 0.1250 9 0.0780 0.0310 2.4151

400 0.0630 0.1410 10 0.1250 0.0310 3.0980

𝑚 = 60 0.6260 0.0470 NA NA NA

𝑚 = 240 1.9220 0.4850 NA NA NA

𝑚 = 400 2.6420 1.3430 1.2110 7.6080 16.2263

the time cost for the number of support vectors to grow from 1
to 20 was 0.1880 seconds, suggested by the entry at the second
row and the second column. This indicates that, if a FLSA-
SVM with 20 support vectors is to be trained from scratch,
the time cost in all was 0.2510(= 0.1880 + 0.0630) seconds,
that is, the sum of the first two rows in the second column.
If the FLSA-SVM with 20 support vectors is trained upon
the FLSA-SVMwith 1 support vector, applying the technique
of “contexts inheritance,” the time cost is reduced to 0.1880
seconds.

For the RFLSA-SVM algorithm, the row entry starting
with 𝑚 = 60 is the training time required for an input
dictionary matrix composed of randomly selected 60 basis
functions.The row entry of𝑚 = 60 corresponds to the setting
of (𝜀 = 0.05, 𝑝 = 0.95) for Proposition 1, which is the number
of randomly samples required to obtain the top 5% function
approximation values with a probability of 0.95. It resulted
in a time cost of 0.0470 = (0.000 + 0.015 + 0.016 + 0.016)

seconds, which was the sum of the first 4 rows in the third
column. Similarly, the row entry of 𝑚 = 240 is the training

Mathematical Problems in Engineering 9

Table 6: Training time (in CPU seconds) of the FLSA-SVM, the RFLSA-SVM, the SVMs, and the LS-SVM on the splice dataset.

𝑚
FLSA-SVMs RFLSA-SVMs log2(𝐶)

SVMs LS-SVMs 𝜆 = 0.0135

𝜆 = 2−6 𝜆 = 2−6 𝜆 = 2−7 SMO CG

1 1.1400 0.0000 −10 1.0470 0.5000 0.8369

50 3.6100 0.0940 −9 1.0320 0.5310 0.8666

100 3.5780 0.2500 −8 1.0310 0.5150 0.9016

150 3.5150 0.2820 −7 1.0310 0.5160 0.9350

200 3.4530 0.3910 −6 1.0320 0.5000 1.0185

250 3.3750 0.5160 −5 1.0310 0.5000 1.1168

300 3.2820 0.6090 −4 1.0470 0.4690 1.2397

350 3.1560 0.7350 −3 0.9690 0.4530 1.4596

400 3.0160 0.8440 −2 0.8600 0.4380 1.7516

450 2.8750 2.2340 −1 0.7660 0.4060 2.1006

500 2.7040 1.1090 0 0.7500 0.3750 2.6293

550 2.5150 1.2500 1 0.7820 0.3750 3.3424

600 2.3120 1.3910 2 0.8280 0.3590 4.3024

650 2.0930 1.5940 3 0.9380 0.3280 5.5413

700 1.8440 1.7040 4 0.9380 0.2970 6.9829

750 1.5940 1.8280 5 0.9380 0.2970 8.7769

800 1.3120 1.9690 6 0.9530 0.2970 10.4062

850 1.0310 2.1250 7 0.9530 0.2970 11.8561

900 0.7040 2.2660 8 0.9380 0.3120 12.3971

950 0.4060 2.4220 9 0.9370 0.3120 13.4612

1000 0.0310 2.5940 10 0.9530 0.3120 13.7259

𝑚 = 100 8.3280 0.3440 NA NA NA

𝑚 = 250 18.6710 1.5330 NA NA NA

𝑚 = 1000 47.5460 26.2070 19.7540 8.3890 105.6486

time required for a dictionary matrix composed of randomly
selected 240 basis functions, which corresponds to the setting
of (𝜀 = 0.01, 𝑝 = 0.98) for Proposition 1.

In contrast to the RFLSA-SVM, the FLSA-SVM selects
support vectors into the solution by solving an optimization
problem rather than random sampling of the training set.
Thus for the FLSA-SVM, these two rows correspond to
the time cost for selecting 60 and 240 support vectors,
respectively, to span the solution. The last row of Table 5
shows the training time cost for using the full dictionary
matrix, which also applies to the SVM and the LS-SVM.

It can be seen that the time cost of tuning the regulariza-
tion parameter, given a dictionary matrix of 60 columns, was
only 0.047 seconds by the RFLSA-SVM and 0.626 seconds by
the FLSA-SVM. These was much less than the 1.211 seconds
required by the SVM, the 7.608 seconds implemented by the
CG method and the 12.2263 seconds by the SMO for the LS-
SVM.Using the full dictionarymatrix of 240 columns, it took
0.480 seconds for the RFLSA-SVMs which is still much less
time cost in comparison to the LS-SVM and the SVM.

Tables 6, 7, and 8 further report time cost of the different
algorithms on the datasets of Splice, Image and Ringnorm.

10 Mathematical Problems in Engineering

Table 7: Training time (in CPU seconds) of the FLSA-SVM, the RFLSA-SVM, the SVMs, and the LS-SVM on the image benchmark.

𝑚
FLSA-SVMs RFLSA-SVMs log2(𝐶)

SVMs LS-SVMs 𝜆 = 0.0135

𝜆 = 2−5 𝜆 = 2−4 𝜆 = 2−3 SMO CG

1 1.0940 0.0000 −10 0.9060 9.8130 1.2326

65 10.2810 0.1400 −9 0.9060 5.9070 1.2312

130 10.2340 0.3750 −8 0.9060 3.7820 1.3601

195 10.0160 0.6560 −7 0.9220 2.5630 1.5557

260 9.7500 0.8750 −6 0.8910 1.8440 1.8066

325 9.4540 1.3280 −5 0.7970 1.2970 2.0622

390 9.0780 1.4220 −4 0.6720 0.9840 2.3108

455 8.7040 1.6720 −3 0.5780 0.7810 2.9718

520 8.3750 2.0470 −2 0.4840 0.6090 3.2617

585 7.9210 2.3280 −1 0.4530 0.5310 3.9884

650 7.4070 2.6880 0 0.4220 0.4680 4.7408

715 6.8290 2.9220 1 0.4060 0.4530 5.8988

780 6.2350 3.0620 2 0.4530 0.4370 7.9950

845 5.5940 3.4690 3 0.4530 0.4540 10.4827

910 4.8910 3.8280 4 0.4220 0.4530 14.0951

975 4.0930 4.1720 5 0.4530 0.4370 18.2100

1040 3.3750 4.3590 6 0.4690 0.3910 24.0141

1105 2.5470 4.7970 7 0.5160 0.4070 32.1312

1170 1.7350 4.8900 8 0.5940 0.4220 39.7957

1235 0.5620 5.2340 9 0.5470 0.4220 54.6313

1300 0.0000 0.0000 10 0.6720 0.4220 76.5178

𝑚 = 65 11.3750 0.1400 NA NA NA

𝑚 = 260 41.3750 2.0460 NA NA NA

𝑚 = 1300 47.5460 26.2070 19.7540 8.3890 105.6486

RFLSA-SVMs also achieved the least time complexity on
the Splice, Image and Ringnorm datasets, which respectively
required 0.344, 0.140, and 2.140 seconds for the setting of (𝜀 =
0.05, 𝑝 = 0.95). For the setting of (𝜀 = 0.01, 𝑝 = 0.98), it took
the RFLSA only 1.533, 2.046, and 18.703 seconds respectively
on the three datasets, which makes it the fastest algorithm of
all the four algorithms.

For the FLSA-SVM algorithm, given a dictionary matrix
of 60 columns, the training cost is 8.3280 seconds on the

Splice dataset, making it the second fastest. On the Image
dataset, the time cost of the FLSA-SVM using a dictionary
matrix of 60 columns is 11.3750 seconds which is faster than
the LS-SVMs implemented by CG and the SVM.

In Table 7, at the row of 𝑚 = 1300, the entries for the
FLSA-SVM and the RFLSA-SVM are both 0.000. This is due
to the fact that the column rank of the dictionary matrix built
on the full training set is less than 1235. At each iteration
for both the FLSA-SVM and the RFLSA-SVM, the basis

Mathematical Problems in Engineering 11

Table 8: Training time (in CPU seconds) of FLSA-SVMS, RFLSA-SVMS, SVMs, and LS-SVMs on ringnorm benchmark.

𝑚
FLSA-SVMs RFLSA-SVMs log2 (𝐶)

SVMs LS-SVMs 𝜆 = 0.1192

𝜆 = 2−5 𝜆 = 2−5 𝜆 = 2−5 SMO CG

1 7.0310 0.0150 −10 5.9840 2.5620 8.1861

150 235.1560 2.1250 −9 6.0000 2.5470 8.4898

300 228.1410 16.5630 −8 5.9840 2.5630 9.1043

450 219.4060 13.5160 −7 5.9690 2.5620 9.7888

600 210.4220 36.3430 −6 5.9840 2.5620 10.5138

750 199.8600 23.6100 −5 5.9690 2.5160 11.8843

900 189.3440 29.1720 −4 6.3280 2.5310 13.8879

1050 179.0150 67.1560 −3 5.8590 2.4690 16.5239

1200 167.9220 41.3430 −2 5.2190 2.4060 20.5536

1350 156.5000 62.6090 −1 5.1100 2.3590 25.7184

1500 143.8430 63.1100 0 5.0150 2.4070 32.0827

1650 131.2180 83.4070 1 5.0160 2.3600 38.5026

1800 119.0470 82.5930 2 5.0160 2.3290 48.0788

1950 105.7820 85.5470 3 5.0000 2.3910 62.9366

2100 92.4840 136.6720 4 5.0160 2.3430 77.4289

2250 78.6570 107.9530 5 5.0310 1.9530 92.2615

2400 65.0000 105.4850 6 5.0310 1.8130 111.8921

2550 50.7500 133.1870 7 5.0310 1.7970 124.1563

2700 36.6560 142.8280 8 5.0150 1.8120 131.0737

2850 22.2180 149.6720 9 5.0310 1.7970 135.9099

3000 7.7030 170.1560 10 5.0150 1.8290 138.8800

𝑚 = 150 242.1870 2.1400 NA NA NA

𝑚 = 300 470.3280 18.7030 NA NA NA

𝑚 = 3000 2646.1550 1553.0620 113.6230 47.9080 1127.8540

functions that can be expressed as the linear combination
of the previously selected ones can be identified and then
pruned. As a result, no candidate basis function is in fact,
available any more for any setting of𝑚 > 1235.

6. Conclusion

While maintaining competitive generalization performance
to the SVM and the Least-Square SVM (LS-SVM), the
proposed Reduced Forward Least-Squares Approximation
(RFLSA) SVM uses only a random sampling of, rather than
all, the training samples as the candidates for support vectors
during the training procedure. This strategy of random
selection was shown to be statistically justified.

Meanwhile, when an RFLSA-SVM is trained whose solu-
tion is spanned by𝑚 support vectors, the training of a second
RFLSA-SVM with 𝑛 support vectors where 𝑛 > 𝑚 requires
primarily the computation associatedwith the additional (𝑛 −

𝑚) support vectors, by inheriting the intermediate variables
from training the RFLSA-SVM with 𝑚 support vectors.
This technique, referred to as “contexts inheritance,” reduces
the time cost of tuning the regularization parameter and
makes RFLSA-SVMs more computationally attractive. The
technique can also be applied to the FLSA-SVM algorithm.

Theexperiments confirmed that, for theRFLSA-SVMand
the FLSA-SVM algorithms, the technique of contexts inheri-
tance made the procedure of the tuning of the regularization
parameter much faster than the SVM and the LS-SVM.

Acknowledgments

This work was supported by Grants from Project
LQ13F030011 of Zhejiang Natural Science Foundation
and Project 2012AY1022 of Jiaxing Science and Technology
Bureau, China.

12 Mathematical Problems in Engineering

References

[1] J. A. K. Suykens, T. Van Gestel, J. Vandewalle, and B. De Moor,
“A support vector machine formulation to PCA analysis and its
kernel version,” IEEE Transactions on Neural Networks, vol. 14,
no. 2, pp. 447–450, 2003.

[2] J. A. K. Suykens and J. Vandewalle, “Least squares support
vector machine classifiers,” Neural Processing Letters, vol. 9, no.
3, pp. 293–300, 1999.

[3] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K.
Murthy, “Improvements to Platt’s SMO algorithm for SVM
classifier design,” Neural Computation, vol. 13, no. 3, pp. 637–
649, 2001.

[4] L. Bo, L. Jiao, and L. Wang, “Working set selection using
functional gain for LS-SVM,” IEEE Transactions on Neural
Networks, vol. 18, no. 5, pp. 1541–1544, 2007.

[5] J. A. K. Suykens, L. Lukas, P. V. Dooren, B. D. Moor, and J.
Vandewalle, “Least squares support vectormachine classifiers: a
large scale algorithm,” inProceedings of the EuropeanConference
on CircuitTheory and Design (ECCTD ’99), pp. 839–842, Stresa,
Italy, 1999.

[6] W. Chu, C. J. Ong, and S. S. Keerthi, “An improved conjugate
gradient scheme to the solution of least squares SVM,” IEEE
Transactions on Neural Networks, vol. 16, no. 2, pp. 498–501,
2005.

[7] J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness
and sparce approximation,” Neurocomputing, vol. 48, pp. 85–
105, 2002.

[8] B. J. De Kruif and T. J. A. DeVries, “Pruning errorminimization
in least squares support vector machines,” IEEE Transactions on
Neural Networks, vol. 14, no. 3, pp. 696–702, 2003.

[9] X. Zeng and X.-W. Chen, “SMO-based pruning methods for
sparse least squares support vector machines,” IEEE Transac-
tions on Neural Networks, vol. 16, no. 6, pp. 1541–1546, 2005.

[10] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine
Learning, vol. 48, no. 1–3, pp. 165–187, 2002.

[11] V. Popovici, S. Bengio, and J.-P. Thiran, “Kernel matching
pursuit for large datasets,” Pattern Recognition, vol. 38, no. 12,
pp. 2385–2390, 2005.

[12] X.-L. Xia, K. Li, and G. Irwin, “A novel sparse least squares sup-
port vector machine,” Mathematical Problems in Engineering,
vol. 2013, Article ID 602341, 10 pages, 2013.

[13] Y. Lee and O. Mangasarian, “RSVM: reduced support vector
machines,” Tech. Rep., Data Mining Institute, Computer Sci-
ences Department, University of Wisconsin, Madison, Wis,
USA, 2000.

[14] L. Jiao, L. Bo, and L. Wang, “Fast sparse approximation for least
squares support vector machine,” IEEE Transactions on Neural
Networks, vol. 18, no. 3, pp. 685–697, 2007.

[15] S. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Advances In Neural Information ProcessIng
Systems 2, D. S. Touretzky, Ed., 1990.

[16] C. Chang and C. Lin, “LIBSVM: a library for support vector
machines,” SofTware, vol. 80, pp. 604–611, 2001.

[17] K. Pelckmans, J. Suykens, T. Van Gestel et al., LS-SVMlAb: A
Matlab/c Toolbox for Least Squares Support Vector Machines,
KULeuven-ESAT, Leuven, Belgium, 2002.

[18] J. Garcke, M. Griebel, and M. Thess, “Data mining with sparse
grids,” Computing, vol. 67, no. 3, pp. 225–253, 2001.

[19] S. Chen, X. Hong, and C. J. Harris, “Regression based D-
optimality experimental design for sparse kernel density esti-
mation,” Neurocomputing, vol. 73, no. 4–6, pp. 727–739, 2010.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

