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We study the existence and uniqueness of the positive solution for the fractional differential system involving the Riemann-Stieltjes
integral boundary conditions −D𝛼

𝑡
𝑥(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), − D

𝛽

𝑡
𝑦(𝑡) = 𝑔(𝑡, 𝑥(𝑡)), 𝑡 ∈ (0, 1), 𝑥(0) = 𝑦(0) = 0, 𝑥(1) = ∫

1

0

𝑥(𝑠)𝑑𝐴(𝑠), and
𝑦(1) = ∫

1

0

𝑦(𝑠)𝑑𝐵(𝑠), where 1 < 𝛼, 𝛽 ≤ 2, andD𝛼
𝑡
andD

𝛽

𝑡
are the standard Riemann-Liouville derivatives, 𝐴 and 𝐵 are functions

of bounded variation, and ∫1
0

D
𝛽

𝑡
𝑥(𝑠)𝑑𝐴(𝑠) and ∫1

0

D
𝛽

𝑡
𝑦(𝑠)𝑑𝐵(𝑠) denote the Riemann-Stieltjes integral. Our results are based on a

generalized fixed point theorem for weakly contractive mappings in partially ordered sets.

1. Introduction

Mathematical model is an important tool designed to
describe the operation of the economy of a country or a
region. Because fractional operators are non-local, they are
more suitable for constructing models possessing memory
effect with the long time periods, and then fractional dif-
ferential equations possess large advantage in describing
economic phenomena over the time periods. In this paper, we
focus on a fractional model arising from economy. Assuming
that 𝑓, 𝑔 : [0, 1] × [0, +∞) → [0, +∞) are continuous
and nondecreasing with respect to the second variable on
[0, +∞), we discuss the existence and uniqueness of positive
solutions for the following system of fractional differential
equation with nonlocal Riemann-Stieltjes integral boundary
conditions:

−D
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

− D
𝛽

𝑡
𝑦 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = ∫

1

0

𝑥 (𝑠) 𝑑𝐴 (𝑠) ,

𝑦 (1) = ∫

1

0

𝑦 (𝑠) 𝑑𝐵 (𝑠) ,

(1)

where 1 < 𝛼, 𝛽 ≤ 2, and D𝛼
𝑡
and D

𝛽

𝑡
are the standard

Riemann-Liouville derivatives, 𝐴 and 𝐵 are functions of
bounded variation, and∫1

0

D
𝛽

𝑡
𝑥(𝑠)𝑑𝐴(𝑠) and∫1

0

D
𝛽

𝑡
𝑦(𝑠)𝑑𝐵(𝑠)

denote the Riemann-Stieltjes integral.
Boundary value problems with integral boundary con-

ditions constitute a very interesting and important class of
problems. The idea of using a Riemann-Stieltjes integral
with a signed measure is due to Webb and Infante in [1,
2]. The papers [1–3] contain several new ideas and give
a unified approach to many BVPs. This implies that the
Riemann-Stieltjes integral boundary value problem is a more
generalized case which includes multipoints, integral bound-
ary conditions and many nonlocal boundary conditions,
as special cases. For some recent work on boundary value
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problems of fractional differential equation, we refer the
reader to some recent papers (see [1–14]).

Recently, motivated by [1–3], Hao et al. [4] studied the
existence of positive solutions for the 𝑛th-order singular
nonlocal boundary value problem

𝑥

(𝑛)

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑥

(𝑘)

(0) = 0, 0 ≤ 𝑘 ≤ 𝑛 − 2, 𝑥 (1) = ∫

1

0

𝑥 (𝑠) 𝑑𝐴 (𝑠) ,

(2)

where 𝑎may be singular at 𝑡 = 0, 1 and𝑓 alsomay be singular
at 𝑥 = 0, but there is no singularity at 𝑡 = 0, 1. The existence
of positive solutions of the BVP (2) is obtained by means of
the fixed point index theory in cones. In [5], Zhang and Han
considered the existence of positive solutions of the following
singular fractional differential equation:

D
𝛼

𝑡
𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 0 < 𝑡 < 1, 𝑛 − 1 < 𝛼 ≤ 𝑛,

𝑥

(𝑘)

(0) = 0, 0 ≤ 𝑘 ≤ 𝑛 − 2, 𝑥 (1) = ∫

1

0

𝑥 (𝑠) 𝑑𝐴 (𝑠) ,

(3)

where 𝛼 ≥ 2, and 𝑑𝐴(𝑠) can be a signed measure. Some
growth conditions were adopted to guarantee that (3) has a
unique positive solution. Recently, by using a new fixed point
theorem for weakly contractivemappings in partially ordered
sets, Tao et al. [6] considered the existence and uniqueness of
positive solution for the following problem:

−D
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , −D

𝛽

𝑡
𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

D
𝛽

𝑡
𝑥 (0) = D

𝛽+1

𝑡
𝑥 (0) = 0,

D
𝛽

𝑡
𝑥 (1) = ∫

1

0

D
𝛽

𝑡
𝑥 (𝑠) 𝑑𝐴 (𝑠) ,

(4)

where 2 < 𝛼 ≤ 3, 0 < 𝛽 < 1, and 𝛼 − 𝛽 > 2, and D
𝑡
is the

standard Riemann-Liouville derivative.
Motivated by the above work, in this paper, we study the

existence and uniqueness of positive solution for the system
of fractional differential equations with nonlocal Riemann-
Stieltjes boundary integral conditions. Our main tool is the
fixed point theorem for weakly contractive mappings in
partially ordered sets, which is obtained by papers [6, 15].

2. Preliminaries and Lemmas

Definition 1 (see [16–18]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is
given by

𝐼

𝛼

𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)

𝛼−1

𝑥 (𝑠) 𝑑𝑠
(5)

provided that the right-hand side is pointwise defined on
(0, +∞).

Definition 2 (see [16–18]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is
given by

D
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)

(

𝑑

𝑑𝑡

)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)

𝑛−𝛼−1

𝑥 (𝑠) 𝑑𝑠,
(6)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number
𝛼, provided that the right-hand side is pointwise defined on
(0, +∞).

Lemma 3 (see [16–18]). (1) If 𝑥 ∈ 𝐿1(0, 1), ] > 𝜎 > 0, then

𝐼

]
𝐼

𝜎

𝑥 (𝑡) = 𝐼

]+𝜎
𝑥 (𝑡) , D

𝜎

𝑡
𝐼

]
𝑥 (𝑡) = 𝐼

]−𝜎
𝑥 (𝑡) ,

D
𝜎

𝑡
𝐼

𝜎

𝑥 (𝑡) = 𝑥 (𝑡) .

(7)

(2) If ] > 0, 𝜎 > 0, then

D
V
𝑡
𝑡

𝜎−1

=

Γ (𝜎)

Γ (𝜎 − ])
𝑡

𝜎−]−1
. (8)

(3) If 𝛼 > 0 and 𝑓(𝑥) is integrable, then

𝐼

𝛼

D
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑥) + 𝑐

1
𝑥

𝛼−1

+ 𝑐

2
𝑥

𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐

𝑛
𝑥

𝛼−𝑛

,
(9)

where 𝑐
𝑖
∈ R(𝑖 = 1, 2, . . . , 𝑛), 𝑛 is the smallest integer greater

than or equal to 𝛼.

Lemma 4 (see [19]). Given ℎ ∈ 𝐿1(0, 1). Then, the problems

D
𝛼

𝑡
𝑥 (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1), 𝑥 (0) = 0, 𝑥 (1) = 0,

D
𝛽

𝑡
𝑦 (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1), 𝑦 (0) = 0, 𝑦 (1) = 0

(10)

have the unique solution

𝑥 (𝑡) = ∫

1

0

𝐺

𝐴
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑦 (𝑡) = ∫

1

0

𝐺

𝐵
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠,

(11)

where 𝐺
𝐴
(𝑡, 𝑠) and 𝐺

𝐵
(𝑡, 𝑠) are given by

𝐺

𝐴
(𝑡, 𝑠) =

1

Γ (𝛼)

{

[𝑡 (1 − 𝑠)]

𝛼−1

, 𝑡 ≤ 𝑠,

[𝑡 (1 − 𝑠)]

𝛼−1

− (𝑡 − 𝑠)

𝛼−1

, 𝑠 ≤ 𝑡,

𝐺

𝐵
(𝑡, 𝑠) =

1

Γ (𝛽)

{

[𝑡(1 − 𝑠)]

𝛽−1

, 𝑡 ≤ 𝑠,

[𝑡(1 − 𝑠)]

𝛽−1

− (𝑡 − 𝑠)

𝛽−1

, 𝑠 ≤ 𝑡,

(12)

which are the Green function of the BVP (10), respectively.

It follows from Lemma 3 that the linear problems

D
𝛼

𝑡
𝑥 (𝑡) = 0, 0 < 𝑡 < 1, 𝑥 (0) = 0, 𝑥 (1) = 1,

D
𝛽

𝑡
𝑦 (𝑡) = 0, 0 < 𝑡 < 1, 𝑦 (0) = 0, 𝑦 (1) = 1

(13)

have the unique solutions 𝑡𝛼−1 and 𝑡𝛽−1, respectively. Letting

A = ∫

1

0

𝑡

𝛼−1

𝑑𝐴 (𝑡) , B = ∫

1

0

𝑡

𝛽−1

𝑑𝐵 (𝑡)

(14)
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and defining

G
𝐴
(𝑠) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝐴 (𝑡) , G
𝐵
(𝑠) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝐵 (𝑡)

(15)

as in [3–5], we can get that the Green functions for nonlocal
BVP (1) are given by

𝐻

𝐴
(𝑡, 𝑠) =

𝑡

𝛼−1

1 −A
G
𝐴
(𝑠) + 𝐺

𝐴
(𝑡, 𝑠) ,

𝐻

𝐵
(𝑡, 𝑠) =

𝑡

𝛽−1

1 −B
G
𝐵
(𝑠) + 𝐺

𝐵
(𝑡, 𝑠) .

(16)

To ensure the nonnegativity of Green functions, we use
the following elementary assumption in this paper.

(H0) 𝐴, 𝐵 are increasing functions of bounded variation
such that G

𝐴
(𝑠) ≥ 0, G

𝐵
(𝑠) ≥ 0 for 𝑠 ∈ [0, 1] and

0 ≤ A,B < 1, whereA,B are defined by (14).

Lemma 5. Let 1 < 𝛼, 𝛽 ≤ 2, and let (H0) hold; then𝐻
𝐴
(𝑡, 𝑠)

and𝐻
𝐵
(𝑡, 𝑠) satisfy

0 ≤ 𝐻

𝐴
(𝑡, 𝑠) ≤

1

(1 −A) Γ (𝛼 − 1)

= A
∗

,

0 ≤ 𝐻

𝐵
(𝑡, 𝑠) ≤

1

(1 −B) Γ (𝛽 − 1)

= B
∗

.

(17)

The main tool of this paper is the following fixed point theo-
rem, which was firstly obtained by Harjani and Sadarangani
[15] and was improved by Tao et al. [6].

Lemma 6 (see [6]). Let (𝑋, ≥) be a partially ordered set, and
suppose that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is
a complete metric space. Assume that 𝑋 satisfies the following
condition: if 𝑥

𝑛
is a nondecreasing sequence in 𝑋 such that

𝑥

𝑛
→ 𝑥, then 𝑥

𝑛
≤ 𝑥 for all 𝑛 ∈ N. Let 𝑇 : 𝑋 → 𝑋 be a

nondecreasing mapping, and there exists a constant 𝜆 ∈ (0, 1)

such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑 (𝑥, 𝑦) − 𝜓 (𝜆𝑑 (𝑥, 𝑦)) , 𝑓𝑜𝑟 𝑥 ≥ 𝑦, (18)

where 𝜓 : [0, +∞) → [0, +∞) is a nondecreasing function. If
there exists 𝑥 ∈ 𝑋 with 𝑥

0
≤ 𝑇𝑥

0
, then 𝑇 has a fixed point.

If the space (𝑋, ≤) satisfies the following condition:

for 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋

which is comparable to 𝑥 and 𝑦,

(19)

then we have the following theorem; see [6, 15].

Lemma 7. Adding condition (19) to the hypotheses of
Lemma 6, one obtains uniqueness of the fixed point of 𝑇.

Now, we mean by 𝐶[0, 1] the Banach space of all contin-
uous functions on [0, 1] with the usual ‖𝑥‖ = max

0≤𝑡≤1
|𝑥(𝑡)|.

Note that this space can be equippedwith a partial order given
by

𝑥, 𝑦 ∈ 𝐶 [0, 1] , 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) ,

for 𝑡 ∈ [0, 1] .
(20)

It has been proved in [20, 21] that (𝐶[0, 1], ≤) with the classic
metric given by

𝑑 (𝑥, 𝑦) = max
0≤𝑡≤1

{









𝑥 (𝑡) − 𝑦 (𝑡)









} (21)

satisfies the following condition.
If 𝑥
𝑛
is a nondecreasing sequence in 𝑋 such that 𝑥

𝑛
→

𝑥, then 𝑥

𝑛
≤ 𝑥 for all 𝑛 ∈ N. Moreover, for 𝑥, 𝑦 ∈ 𝐶[0, 1],

the functionmax{𝑥, 𝑦} is continuous in [0, 1], and (𝐶[0, 1], ≤)
satisfies condition (19).

Next, define a subcone of 𝐶[0, 1] as follows:

𝑃 = {𝑥 ∈ 𝐶 [0, 1] : 𝑥 (𝑡) ≥ 0} . (22)

Note that 𝑃 is a closed set of 𝐶[0, 1]; 𝑃 is a complete metric
space.

Clearly, (𝑥, 𝑦) is a solution of system (1) if and only if
(𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] is a solution of the following
nonlinear integral system of equations:

𝑥 (𝑡) = ∫

1

0

𝐻

𝐴
(𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠,

𝑦 (𝑡) = ∫

1

0

𝐻

𝐵
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(23)

Consequently, system (23) is equivalent to the following
integral equation:

𝑥 (𝑡) = ∫

1

0

𝐻

𝐴
(𝑡, 𝑠) 𝑓 (𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(24)

Thus, for 𝑥 ∈ 𝑃, define the operator 𝑇 by

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻

𝐴
(𝑡, 𝑠) 𝑓 (𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(25)

Then from the assumption on 𝑓, 𝑔, and Lemma 5, we have
𝑇(𝑃) ⊂ 𝑃.

3. Main Results

Now, define the class of functionsX,

X = {𝜙 | 𝜙 : [0, +∞) → [0, +∞)

is differential and nondecreasing,

and 𝜓 (𝑥) = 𝑥 − 𝜙 (𝑥) satisfies

𝜓 : [0, +∞) → [0, +∞) is nondecreasing} .

(26)
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Remark 8. The standard function 𝜙 ∈ X; for example, 𝜙(𝑥) =
arctan𝑥, 𝜙(𝑥) = (1/2)𝑥, 𝜙(𝑥) = ln(1 + 𝑥), 𝜙(𝑥) = 𝑥/(1 + 𝑥),
and so forth.

Remark 9. Clearly, given that 𝜙
1
, 𝜙

2
∈ X, then 𝜙

1
(𝜙

2
(𝑥)) ∈

X.

Theorem 10. Suppose that (H0) holds, and there exist two
functions 𝜙

1
, 𝜙

2
∈ X and constants 𝜌

1
, 𝜌
2
, 𝜃
1
, and 𝜃

2
which

satisfy

0 < 𝜌

1
≤ A
∗−1

, 0 < 𝜌

2
≤ B
∗−1

,

0 < 𝜃

1
< 𝜌

2

−1

B
∗−1

, 0 < 𝜃

2
< 1

(27)

such that

𝑓 (𝑡, 𝑥

1
) − 𝑓 (𝑡, 𝑥

2
) ≤ 𝜌

1
𝜙

1
(𝜃

1
(𝑥

1
− 𝑥

2
)) ,

𝑔 (𝑡, 𝑦

1
) − 𝑔 (𝑡, 𝑦

2
) ≤ 𝜌

2
𝜙

2
(𝜃

2
(𝑦

1
− 𝑦

2
)) ,

(28)

for 𝑥
1
, 𝑥

2
, 𝑦

1
, 𝑦

2
∈ [0, +∞) with 𝑥

1
≥ 𝑥

2
, 𝑦
1
≥ 𝑦

2
. Then,

problem (1) has a unique nonnegative solution.

Proof. Toprove that the problem (1) has a unique nonnegative
solution, it is sufficient to check that the hypotheses of
Lemma 6 are satisfied.

By the monotonicity of 𝑓 and 𝑔, we know that the
operator 𝑇 is nondecreasing. Now, denote

𝜙 (𝑥) = 𝜙

1
(𝜙

2
(𝑥)) . (29)

Then, 𝜙 ∈ X. For any 𝑢 ≥ V ∈ 𝑃, from (27) and (28), we have

𝑑 (𝑇𝑢, 𝑇V)

= max
𝑡∈[0,1]

|𝑇𝑢 (𝑡) − 𝑇V (𝑡)|

= max
𝑡∈[0,1]

∫

1

0

𝐻

𝐴
(𝑡, 𝑠)

× [𝑓(𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)

−𝑓(𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, V (𝜏)) 𝑑𝜏)] 𝑑𝑠

≤ max
𝑡∈[0,1]

{∫

1

0

𝐻

𝐴
(𝑡, 𝑠)

× [𝜌

1
𝜙

1
(𝜃

1
∫

1

0

𝐻

𝐵
(𝑠, 𝜏)

× (𝑔 (𝜏, 𝑢 (𝜏))

−𝑔 (𝜏, V (𝜏))) ) ] 𝑑𝑠}

≤ A
∗

𝜌

1
𝜙

1
(B
∗

𝜃

1
𝜌

2
𝜙

2
(𝜃

2
(𝑢 (𝜏)) − V (𝜏)))

≤ A
∗

𝜌

1
𝜙

1
(𝜙

2
(𝜃

2
𝑑 (𝑢, V))) ≤ 𝜙 (𝜃

2
𝑑 (𝑢, V)) .

(30)

Since 𝜙 ∈ X, which implies that𝜓(𝑥) = 𝑥−𝜙(𝑥), and 𝜓 :

[0, +∞) → [0, +∞) is nondecreasing. Thus, for 𝑢 ≥ V, we
find 𝜓 and 𝜃

2
such that

𝑑 (𝑇𝑢, 𝑇V) ≤ 𝜙 (𝜃

2
𝑑 (𝑢, V))

= 𝜃

2
𝑑 (𝑢, V) − (𝜃

2
𝑑 (𝑢, V) − 𝜙 (𝜃

2
𝑑 (𝑢, V)))

= 𝜃

2
𝑑 (𝑢, V) − 𝜓 (𝜃

2
𝑑 (𝑢, V)) .

(31)

Finally, taking into account the zero function, 0 ≤

(𝑇0)(𝑡), by Lemma 6, problem (1) has a unique nonnegative
solution.

In the following, we consider the positive solution of
the problem (1). A positive solution (𝑥, 𝑦) of the problem
(1) means a solution of the problem (1) satisfying 𝑥(𝑡) > 0,
𝑦(𝑡) > 0 for 𝑡 ∈ (0, 1).

Theorem 11. Suppose that there exists ̂𝑡 ∈ [0, 1] such that
𝑓(

̂

𝑡, 0) ̸= 0 and 𝑔(

̂

𝑡, 0) ̸= 0, and the assumptions of Theorem 10
also hold; then, the unique solution of (1) is positive.

Proof. It follows from Theorem 10 that the problem (1) has
a unique nonnegative solution. We prove that it is also a
positive solution of the problem (1).

Otherwise, there exists 0 < 𝑡

∗

< 1 such that 𝑥(𝑡∗) = 0;
that is;

𝑥 (𝑡

∗

) = ∫

1

0

𝐻

𝐴
(𝑡

∗

, 𝑠) 𝑓

× (𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠 = 0.

(32)

Then,

0 = 𝑥 (𝑡

∗

) = ∫

1

0

𝐻

𝐴
(𝑡

∗

, 𝑠) 𝑓

× (𝑠, ∫

1

0

𝐻

𝐵
(𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ ∫

1

0

𝐻

𝐴
(𝑡

∗

, 𝑠) 𝑓 (𝑠, 0) 𝑑𝑠 ≥ 0.

(33)

Consequently,

∫

1

0

𝐻

𝐴
(𝑡

∗

, 𝑠) 𝑓 (𝑠, 0) 𝑑s = 0.

(34)

Note that𝐻(𝑡∗, 𝑠) > 0, 𝑠 ∈ (0, 1); then, we have

𝑓 (𝑠, 0) = 0, a.e. (0, 1) . (35)

In addition, it follows from 𝑓(

̂

𝑡, 0) ̸= 0, ̂𝑡 ∈ [0, 1] that
𝑓(

̂

𝑡, 0) > 0, and by the continuity of 𝑓, we can find a set
Ω ⊂ [0, 1] such that ̂𝑡 ∈ Ω and 𝑓(𝑡, 0) > 0 for any 𝑡 ∈ Ω,
where 𝜇(Ω) > 0 and 𝜇(⋅) stands for the Lebesgue measure,
which contradicts with (35). Consequently, we have 𝑥(𝑡) > 0,
𝑡 ∈ (0, 1). In the same way, we also have

𝑦 (𝑡) = ∫

1

0

𝐻

𝐵
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

(36)
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and 𝑦(𝑡) > 0, 𝑡 ∈ (0, 1). Hence, the problem (1) has a unique
positive solution.

Example 12. Consider the following boundary value problem
with fractional order 𝛼 = 1.5, 𝛽 = 1.2:

−D
1.5

𝑡
𝑥 (𝑡) = 𝑡

2 sin 𝑡 +
𝑦 (𝑡)

100 (1 + 𝑦 (𝑡))

,

−D
1.2

𝑡
𝑦 (𝑡) = 𝑡𝑒

𝑡

+

1

300

𝑥 (𝑡) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = ∫

1

0

𝑥 (𝑠) 𝑑𝐴 (𝑠) ,

𝑦 (1) = ∫

1

0

𝑦 (𝑠) 𝑑𝐵 (𝑠) ,

(37)

where

𝐴 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

0, 𝑡 ∈ [0,

1

3

) ,

1

6

, 𝑡 ∈ [

1

3

,

2

3

) ,

1

2

, 𝑡 ∈ [

2

3

, 1] ,

𝐵 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

0, 𝑡 ∈ [0,

1

4

) ,

1

2

, 𝑡 ∈ [

1

4

,

3

4

) ,

1

3

, 𝑡 ∈ [

3

4

, 1] .

(38)

The BVP (37) becomes the 4-point BVP with coefficients:

−D
1.5

𝑡
𝑥 (𝑡) = 𝑡

2 sin 𝑡 +
𝑦 (𝑡)

100 (1 + 𝑦 (𝑡))

,

−D
1.2

𝑡
𝑦 (𝑡) = 𝑡𝑒

𝑡

+

1

300

𝑥 (𝑡) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) =

1

6

𝑥 (

2

3

) +

1

3

𝑥 (

1

3

) ,

𝑦 (1) =

1

2

𝑦 (

1

4

) +

1

6

𝑦 (

3

4

) .

(39)

ByTheorem 11, the BVP (37) has a unique positive solution.

Proof. Obviously, 𝛼 = 1.5, 𝛽 = 1.2, and

A = ∫

1

0

𝑡

0.5

𝑑𝐴 (𝑡) =

1

6

(

1

3

)

0.5

+

1

3

(

2

3

)

0.5

≈ 0.3684 < 1,

B = ∫

1

0

𝑡

0.2

𝑑𝐵 (𝑡) =

1

2

(

1

4

)

0.2

+

1

6

(

3

4

)

0.2

≈ 0.8171 < 1,

A
∗−1

= (1 −A) Γ (0.5) = 1.1195,

B
∗−1

= (1 −B) Γ (0.2) = 0.8397.

(40)

By simple calculation, we know that G
𝐴
(𝑠) ≥ 0, G

𝐵
(𝑠) ≥ 0,

and 𝐴(𝑠), 𝐵(𝑠) are all increasing. So, (H0) holds.
Take

𝑓 (𝑡, 𝑢) = 𝑡

2 sin 𝑡 + 𝑢

100 (1 + 𝑢)

,

𝑔 (𝑡, 𝑢) = 𝑡𝑒

𝑡

+

1

300

𝑢,

(𝑡, 𝑢) ∈ [0, 1] × [0, +∞) ,

𝜙

1
(𝑥) =

𝑥

1 + 𝑥

, 𝜙

2
(𝑥) =

1

2

𝑥.

(41)

Then, for any 𝑥
1
≥ 𝑥

2
, 𝑦
1
≥ 𝑦

2
,

𝑓 (𝑡, 𝑥

1
) − 𝑓 (𝑡, 𝑥

2
) =

𝑥

1

100 (1 + 𝑥

1
)

−

𝑥

2

100 (1 − 𝑥

2
)

≤

𝑥

1
− 𝑥

2

100 (1 + 𝑥

1
− 𝑥

2
)

≤

1

100

×

𝑥

1
− 𝑥

2

1 + (1/2) (𝑥

1
− 𝑥

2
)

+

1

300

×

𝑦

2
− 𝑦

1

1 + (1/3) (𝑦

2
− 𝑦

1
)

=

1

50

×

(1/2) (𝑥

1
− 𝑥

2
)

1 + (1/2) (𝑥

1
− 𝑥

2
)

=

1

50

𝜙

1
(

1

2

(𝑥

1
− 𝑥

2
)) ,

𝑔 (𝑡, 𝑦

1
) − 𝑔 (𝑡, 𝑦

2
) =

1

300

(𝑦

1
− 𝑦

2
)

≤

1

2

[

1

50

(

1

2

(𝑦

1
− 𝑦

1
))] ,

(42)

where

𝜌

1
=

1

50

< 1.1195 = A
∗−1

, 𝜌

2
=

1

2

< 0.8397 = B
∗−1

,

𝜃

1
=

1

2

< 1.6794 = 𝜌

2

−1

B
∗−1

, 𝜃

2
=

1

50

< 1.

(43)

Thus, 𝜙
1
, 𝜙

2
∈ X, and all of the conditions ofTheorem 10 are

satisfied.
On the other hand, 𝑓(𝜋/6, 0) = 𝜋

2

/36 ̸= 0, 𝑔(1/2, 0) =

(1/2)𝑒

1/2

̸= 0, and by Theorem 11, the BVP (37) has a unique
positive solution.
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theorems in partially ordered sets and applications to ordinary
differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.

[21] J. Caballero, J. Harjani, and K. Sadarangani, “On existence
and uniqueness of positive solutions to a class of fractional
boundary value problems,” Boundary Value Problems, vol. 2011,
25 pages, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


