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We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a
neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure
the stability of neural identification. Then four types of compensator are addressed. The stability of closed-loop system is also
proven.

1. Introduction

Feedback control of the nonlinear systems is a big challenge
for engineer, especially when we have no complete model
information. A reasonable solution is to identify the non-
linear, then a adaptive feedback controller can be designed
based on the identifier. Neural network technique seems to
be a very effective tool to identify complex nonlinear systems
when we have no complete model information or, even,
consider controlled plants as “black box”.

Neuroidentifier could be classified as static (feed for-
ward) or as dynamic (recurrent) ones [1]. Most of publica-
tions in nonlinear system identification use static networks,
for example multilayer perceptrons, which are implemented
for the approximation of nonlinear function in the right-
side hand of dynamic model equations [2]. The main draw-
back of these networks is that the weight updating utilize
information on the local data structures (local optima) and
the function approximation is sensitive to the training dates
[3]. Dynamic neural networks can successfully overcome this
disadvantage as well as present adequate behavior in presence
of unmodeled dynamics because their structure incorporate
feedback [4–6].

Neurocontrol seems to be a very useful tool for unknown
systems, because it is model-free control, that is, this
controller does not depend on the plant. Many kinds of

neurocontrol were proposed in recent years, for example,
supervised neuro control [7] is able to clone the human
actions. The neural network inputs correspond to sensory
information perceived by the human, and the outputs
correspond to the human control actions. Direct inverse
control [1] uses an inverse model of the plant cascaded with
the plant, so the composed system results in an identity map
between the desired response and the plant one, but the
absence of feedback dismisses its robustness; internal model
neurocontrol [8] that used forward and inverse model is
within the feedback loop. Adaptive neurocontrol has two
kinds of structure: indirect and direct adaptive control.
Direct neuroadaptive may realize the neurocontrol by neural
network directly [1]. The indirect method is the combination
of the neural network identifier and adaptive control, the
controller is derived from the on-line identification [5].

In this paper we extend our previous results in [9, 10].
In [9], the neurocontrol was derived by gradient principal,
so the neural control is local optimal. No any restriction is
needed, because the controller did not include the inverse
of the weights. In [10], we assume the inverse of the
weights exists, so the learning law was normal. The main
contributions of this paper are (1) a special weights updating
law is proposed to assure the existence of neurocontrol. (2)
Four different robust compensators are proposed. By means
of a Lyapunov-like analysis, we derive stability conditions for
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the neuroidentifier and the adaptive controller. We show that
the neuroidentifier-based adaptive control is effective for a
large classes of unknown nonlinear systems.

2. Neuroidentifier

The controlled nonlinear plant is given as

ẋt = f (xt,ut, t), xt ∈ �n, ut ∈ �n, (1)

where f (xt) is unknown vector function. In order to realize
indirect neural control, a parallel neural identifier is used as
in [9, 10] (in [5] the series-parallel structure is used):

˙̂xt = Ax̂t + W1,tσ(x̂t) + W2,tφ(x̂t)γ(ut), (2)

where x̂t ∈ �n is the state of the neural network, W1,t,W2,t ∈
�n×n are the weight matrices, A ∈ �n×n is a stable matrix.
The vector functions σ(·) ∈ �n, φ(·) ∈ �n×n is a diagonal
matrix. Function γ(·) is selected as ‖γ(ut)‖2 ≤ u., for
example γ(·) may be linear saturation function,

γ(ut) =
{

ut, if |ut| < b,

u, if |ut| ≥ b.
(3)

The elements of the weight matrices are selected as mono-
tone increasing functions, a typical presentation is sigmoid
function:

σi(x̂t) = ai
1 + e−bix̂t

− ci, (4)

where ai, bi, ci > 0. In order to avoid φ(x̂t) = 0, we select

φi(x̂t) = ai
1 + e−bix̂t

+ ci. (5)

Remark 1. The dynamic neural network (2) has been
discussed by many authors, for example [4, 5, 9, 10]. It can be
seen that Hopfield model is the special case of this networks
with A = diag{ai}, ai := −1/RiCi, Ri > 0 and Ci > 0. Ri and
Ci are the resistance and capacitance at the ith node of the
network, respectively.

Let us define identification error as

Δt = x̂t − xt. (6)

Generally, dynamic neural network (2) cannot follow the
nonlinear system (1) exactly. The nonlinear system may be
written as

ẋt = Axt + W0
1σ(xt) + W0

2φ(xt)γ(ut)− ˜ft, (7)

where W0
1 and W0

2 are initial matrices of W1,t and W2,t

W0
1Λ

−1
1 W0T

1 ≤W1, W0
2Λ

−1
2 W0T

2 ≤W2. (8)

W1 and W2 are prior known matrices, vector function ˜ft can
be regarded as modelling error and disturbances. Because

σ(·) and φ(·) are chosen as sigmoid functions, clearly they
satisfy the following Lipschitz property:

σ̃TΛ1σ̃ ≤ ΔT
t DσΔt,

(

˜φtγ(ut)
)T

Λ2

(

˜φtγ(ut)
)

≤ uΔT
t DφΔt,

(9)

where σ̃ = σ(x̂t)−σ(xt), ˜φ = φ(x̂t)−φ(xt), Λ1, Λ2, Dσ , and
Dφ are known positive constants matrices. The error dynamic
is obtained from (2) and (7):

Δ̇t = AΔt+˜W1,tσ(x̂t)+˜W2,tφ(x̂t)γ(ut)+W0
1 σ̃+W0

2
˜φγ(ut)+ ˜ft,

(10)

where ˜W1,t =W1,t −W0
1 , ˜W2,t =W2,t −W0

2 . As in [4, 5, 9,
10], we assume modeling error is bounded.

(A1) the unmodeled dynamic ˜f satisfies

˜f Tt Λ−1
f
˜ft ≤ η. (11)

Λ f is a known positive constants matrix.
If we define

R =W1 + W2 + Λ f , Q = Dσ + uDφ + Q0, (12)

and the matrices A and Q0 are selected to fulfill the following
conditions:

(1) the pair (A,R1/2) is controllable, the pair (Q1/2,A) is
observable,

(2) local frequency condition [9] satisfies frequency
condition:

ATR−1A−Q ≥ 1
4

[

ATR−1 − R−1A
]

R
[

ATR−1 − R−1A
]T

,

(13)

then the following assumption can be established.

(A2) There exist a stable matrix A and a strictly positive
definite matrix Q0 such that the matrix Riccati
equation:

ATP + PA + PRP + Q = 0 (14)

has a positive solution P = PT > 0.
This condition is easily fulfilled if we select A as stable

diagonal matrix. Next Theorem states the learning procedure
of neuroidentifier.

Theorem 2. Subject to assumptions A1 and A2 being satis-
fied, if the weights W1,t and W2,t are updated as

Ẇ1,t = st
[

−K1PΔtσ
T(x̂t)

]

,

Ẇ2,t = stPr
[

−K2Pφ(x̂t)γ(ut)ΔT
t

]

,
(15)
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where K1, K2 > 0, P is the solution of Riccati equation (14),
Pri[ω] (i = 1, 2) are projection functions which are defined as
ω = K2Pφ(x̂t)γ(ut)ΔT

t

Pr[−ω] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−ω, condition,

−ω +

∥

∥

∥
˜W2,t

∥

∥

∥

2

tr
(

˜WT
2,t(K2P)˜W2,t

)ω otherwise,
(16)

where the “condition” is ‖˜W2,t‖ < r or [‖˜W2,t‖ =
r and tr(−ω˜W2,t) ≤ 0], r < ‖W0

2‖ is a positive constant. st
is a dead-zone function

st =
{

1, if ‖Δt‖2 > λ−1
min(Q0)η,

0, otherwise,
(17)

then the weight matrices and identification error remain
bounded, that is,

Δt ∈ L∞, W1,t ∈ L∞, W2,t ∈ L∞, (18)

for any T > 0 the identification error fulfills the following
tracking performance:

1
T

∫ T

0
‖Δt‖2

Q0
dt ≤ κη +

ΔT
0 PΔ0

T
, (19)

where κ is the condition number of Q0 defined as κ =
λmax(Q0)/λmin(Q0).

Proof. Select a Lyapunov function as

Vt = ΔT
t PΔt + tr

{

˜WT
1,tK

−1
1
˜W1,t

}

+ tr
{

˜WT
2,tK

−1
2
˜W2,t

}

, (20)

where P ∈ �n×n is positive definite matrix. According to
(10), the derivative is

V̇t = ΔT
t

(

PA + ATP
)

Δt + 2ΔT
t P˜W1,tσ(x̂t)

+ 2ΔT
t P˜W2,tφ(x̂t)γ(ut) + 2ΔT

t P ˜ft

+ 2ΔT
t P
[

W∗
1 σ̃ + W∗

1
˜φγ(ut)

]

+ 2 tr
{

˙̃W
T

1,tK
−1
1
˜W1,t

}

+ 2 tr
{

˙̃W
T

2,tK
−1
2
˜W2,t

}

.

(21)

Since ΔT
t PW

∗
1 σ̃t is scalar, using (9) and matrix inequality

XTY +
(

XTY
)T ≤ XTΛ−1X + YTΛY , (22)

where X ,Y ,Λ ∈ �n×k are any matrices, Λ is any positive
definite matrix, we obtain

2ΔT
t PW

∗
1 σ̃t ≤ ΔT

t PW
∗
1 Λ

−1
1 W∗T

1 PΔt + σ̃Tt Λ1σ̃t

≤ ΔT
t

(

PW1P + Dσ

)

Δt,

2ΔT
t PW

∗
2
˜φtγ(ut) ≤ ΔT

t

(

PW2P + uDφ

)

Δt .

(23)

In view of the matrix inequality (22) and (A1),

2ΔT
t P ˜ft ≤ ΔT

t PΛ f PΔt + η. (24)

So we have

V̇t ≤ ΔT
t

[

PA + ATP + P
(

W1 + W2 + Λ f

)

P

+
(

Dσ + uDφ + Q0

)]

Δt

+ 2 tr
{

˙̃W
T

1,tK
−1
1
˜W1,t

}

+ 2ΔT
t P˜W1,tσ(x̂t) + η − ΔT

t Q0Δt

+ 2 tr
{

˙̃W
T

2,tK
−1
2
˜W2,t

}

+ 2ΔT
t P˜W2,tφ(x̂t)γ(ut).

(25)

Since ˙̃W1,t = Ẇ1,t and ˙̃W2,t = Ẇ2,t, if we use (A2), we have

V̇t ≤ 2 tr
{[

K−1
1 ẆT

1,t + K1PΔtσ
T(x̂t)

]

˜W1,t

}

+ η − ΔT
t Q0Δt

+ 2 tr
{[

K−1
2 Ẇ2,t + Pφ(x̂t)γ(ut)ΔT

t

]

˜W2,t

}

.

(26)

(I) if ‖Δt‖2 > λ−1
min(Q0)η, using the updating law as (15)

we can conclude that

V̇t ≤ 2 tr
{[

Pr
[

Pφ(x̂t)γ(ut)ΔT
t

]

+ Pφ(x̂t)γ(ut)ΔT
t

]

˜W2,t

}

− ΔT
t Q0Δt + η,

(27)

(a) if ‖˜W2,t‖ < r or [‖˜W2,t‖ = r and tr(−ω˜W2,t) ≤
0], V̇t ≤ −λmin(Q0)‖Δt‖2 + η < 0,

(b) if ‖˜W2,t‖ = r and tr(−ω˜W2,t) > 0

V̇t ≤ 2 tr

⎧

⎪

⎨

⎪

⎩

K2P

∥

∥

∥
˜W2,t

∥

∥

∥

2

tr
(

˜WT
2,t(K2P)˜W2,t

)ω˜W2,t

⎫

⎪

⎬

⎪

⎭

− ΔT
t Q0Δt + η

≤ −ΔT
t Q0Δt + η < 0.

(28)

Vt is bounded. Integrating (27) from 0 up to T
yields

VT −V0 ≤ −
∫ T

0
ΔT
t Q0Δtdt + ηT. (29)

Because κ ≥ 1, we have
∫ T

0
ΔT
t Q0Δtdt ≤ V0 −VT +

∫ T

0
ΔT
t Q0Δtdt ≤ V0 + ηT ,

≤ V0 + κηT ,
(30)

where κ is condition number of Q0

(II) If ‖Δt‖2 ≤ λ−1
min(Q0)η, the weights become constants,

Vt remains bounded. And

∫ T

0
ΔT
t Q0Δtdt ≤

∫ T

0
λmax(Q0)‖Δt‖2dt

≤ λmax(Q0)
λmin(Q0)

ηT ≤ V0 + κηT.

(31)

From (I) and (II), Vt is bounded, (18) is realized. From
(20) and ˜W1,t =W1,t −W0

1 ,˜W2,t =W2,t −W0
2 we know V0 =

ΔT
0 PΔ0. Using (30) and (31), (19) is obtained. The theorem

is proved.
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Figure 1: Projection algorithm.

Remark 3. The weight update law (15) uses two techniques.
The dead-zone st is applied to overcome the robust problem

caused by unmodeled dynamic ˜ft. In presence of distur-
bance or unmodeled dynamics, adaptive procedures may
easily go unstable. The lack of robustness of parameters
identification was demonstrated in [11] and became a hot
issue in 1980s. Dead-zone method is one of simple and
effective tool. The second technique is projection approach
which may guarantee that the parameters remain within
a constrained region and do not alter the properties of
the adaptive law established without projection [12]. The
projection approach proposed in this paper is explained
in Figure 1. We hope to force W2,t inside the ball of
center W0

2 and radius r. If ‖˜W2,t‖ < r, we use the
normal gradient algorithm. When W2,t −W0

2 is on the ball,
and the vector W2,t points either inside or along the ball,

that is, (d/dt)‖˜W2,t‖2 = 2 tr(−ω˜W2,t) ≤ 0, we also keep this

algorithm. If tr(−ω˜W2,t) > 0, tr[(−ω + (‖˜W2,t‖2
/ tr(˜WT

2,t

(K2P)˜W2,t))ω)˜W2,t] < 0, so (d/dt)‖˜W2,t‖2
< 0,W2,t are di-

rected toward the inside or the ball, that is, W2,t will never
leave the ball. Since r < ‖W0

2‖,W2,t /= 0.

Remark 4. Figure 1 and (7) show that the initial conditions
of the weights influence identification accuracy. In order to
find good initial weights, we design an offline method. From
above theorem, we know the weights will convergence to a
zone. We use any initial weights, W0

1 and W0
2, after T0, the

identification error should become smaller, that is, W1,T0 and
W2,T0 are better than W0

1 and W0
2 . We use following steps to

find the initial weights.

(1) Start from any initial value for W0
1 = W1,0, W0

2 =
W2,0.

(2) Do identification until training time arrives T0.

(3) If the ‖Δ(T0)‖ < ‖Δ(0)‖, letW1,T0 ,W2,T0 as a newW0
1

and W0
2 , go to 2 to repeat the identification process.

(4) If the ‖Δ(T0)‖ ≥ ‖Δ(0)‖, stop this offline identifica-
tion, now W1,T0 , W2,T0 are the final initial weights.

Remark 5. Since the updating rate is KiP (i = 1, 2), and Ki

can be selected as any positive matrix, the learning process
of the dynamic neural network (15) is free of the solution of
Riccati equation (14).

Remark 6. Let us notice that the upper bound (19) turns
out to be “sharp”, that is, in the case of not having any

uncertainties (exactly matching case: ˜f = 0) we obtain η = 0
and, hence,

lim sup
T→∞

1
T

∫ T

0
‖Δt‖2

Q0
dt = 0 (32)

from which, for this special situation, the asymptotic stability
property (‖Δt‖ →

t→∞ 0) follows. In general, only the

asymptotic stability “in average” is guaranteed, because the
dead-zone parameter η can be never set zero.

3. Robust Adaptive Controller Based on
Neuro Identifier

From (7) we know that the nonlinear system (1) may be
modeled as

ẋt = Axt + W∗
1 σ(xt) + W∗

2 φ(xt)γ(ut) + ˜f

= Axt + W1,tσ(x̂t) + W2,tφ(xt)γ(ut)

+ ˜f +˜W1,tσ(x̂t)+˜W2,tφ(xt)γ(ut)+W∗
1,t σ̃t+W

∗
1
˜φγ(ut).

(33)

Equation (33) can be rewritten as

ẋt = Axt + W1,tσ(x̂t) + W2,tφ(xt)γ(ut) + dt , (34)

where

dt = ˜f + ˜W1,tσ(x̂t) + ˜W2,tφ(xt)γ(ut) + W∗
1,t σ̃t + W∗

1
˜φγ(ut).

(35)

If updated law of W1,t and W2,t is (15), W1,t and W2,t are
bounded. Using the assumption (A1), dt is bounded as d =
supt‖dt‖.

The object of adaptive control is to force the nonlinear
system (1) following a optimal trajectory x∗t ∈ �r which is
assumed to be smooth enough. This trajectory is regarded as
a solution of a nonlinear reference model:

x∗t = ϕ
(

x∗t , t
)

, (36)

with a fixed initial condition. If the trajectory has points
of discontinuity in some fixed moments, we can use any
approximating trajectory which is smooth. In the case of
regulation problem ϕ(x∗t , t) = 0, x∗(0) = c, c is constant.
Let us define the sate trajectory error as

Δ∗t = xt − x∗t . (37)
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From (34) and (36) we have

Δ̇∗t = Axt + W1,tσ(x̂t) + W2,tφ(xt)γ(ut) + dt − ϕ
(

x∗t , t
)

.
(38)

Let us select the control action γ(ut) as linear form

γ(ut) = U1,t +
[

W2,tφ(x̂t)
]−1

U2,t, (39)

where U1,t ∈ �n is direct control part and U2,t ∈ �n is a
compensation of unmodeled dynamic dt . As ϕ(x∗t , t), x∗t ,
W1,tσ(x̂t) and W2,tφ(x̂t) are available, we can select U1,t as

U1,t =
[

W2,tφ(x̂t)
]−1[

ϕ
(

x∗t , t
)− Ax∗t −W1,tσ(x̂t)

]

. (40)

Because φ(x̂t) in (5) is different from zero, and W2,t /= 0 by
the projection approach in Theorem 2. Substitute (39) and
(40) into (38), we have So the error equation is

Δ̇∗t = AΔ∗t + U2,t + dt. (41)

Four robust algorithms may be applied to compensate dt .

(A) Exactly Compensation. From (7) and (2) we have

dt =
(

ẋt − ˙̂xt
)

− A(xt − x̂t). (42)

If ẋt is available, we can select U2,t as Ua
2,t = −dt , that is,

Ua
2,t = A(xt − x̂t)−

(

ẋt − ˙̂xt
)

. (43)

So, the ODE which describes the state trajectory error is

Δ̇∗t = AΔ∗t . (44)

Because A is stable, Δ∗t is globally asymptotically stable.

lim
t→∞Δ

∗
t = 0. (45)

(B) An Approximate Method. If ẋt is not available, an
approximate method may be used as

ẋt = xt − xt−τ
τ

+ δt, (46)

where δt > 0, is the differential approximation error. Let us
select the compensator as

Ub
2,t = A(xt − x̂t)−

(

xt − xt−τ
τ

− ˙̂xt

)

. (47)

So Ub
2,t = Ua

2,t + δt, (44) become

Δ̇∗t = AΔ∗t + δt. (48)

Define Lyapunov-like function as

Vt = Δ∗Tt P2Δ
∗
t , P2 = PT

2 > 0. (49)

The time derivative of (49) is

V̇t = Δ∗t
(

ATP2 + P2A
)

Δ∗t + 2Δ∗Tt P2δt, (50)

2ΔT
t P2δt can be estimated as

2Δ∗Tt P2δt ≤ Δ∗Tt P2ΛP2Δ
∗
t + δTt Λ

−1δt (51)

where Λ is any positive define matrix. So (50) becomes

V̇t≤Δ∗t
(

ATP2 +P2A+P2ΛP2 +Q2

)

Δ∗t +δTt Λ
−1δt−Δ∗Tt Q2Δ

∗
t ,

(52)

where Q is any positive define matrix. Because A is stable,
there exit Λ and Q2 such that the matrix Riccati equation:

ATP2 + P2A + P2ΛP2 + Q2 = 0 (53)

has positive solution P2 = PT
2 > 0. Defining the following

seminorms:

∥

∥Δ∗t
∥

∥
2
Q2
= lim

T→∞
1
T

∫ T

0
Δ∗t Q2Δ

∗
t dt, (54)

where Q2 = Q2 > 0 is the given weighting matrix, the
state trajectory tracking can be formulated as the following
optimization problem:

Jmin = min
ut

J , J = ∥∥xt − x∗t
∥

∥
2
Q2
. (55)

Note that

lim
T→∞

1
T

(

Δ∗T0 P2Δ
∗
0

)

= 0 (56)

based on the dynamic neural network (2), the control law
(47) can make the trajectory tracking error satisfies the
following property:

∥

∥Δ∗t
∥

∥
2
Q2
≤ ‖δt‖2

Λ−1 . (57)

A suitable selection of Λ and Q2 can make the Riccati
equation (53) has positive solution and make ‖Δ∗t ‖2

Q2
small

enough if τ is small enough.

(C) Sliding Mode Compensation. If ẋt is not available,
the sliding mode technique may be applied. Let us define
Lyapunov-like function as

Vt = Δ∗Tt P3Δ
∗
t , (58)

where P3 is a solution of the Lyapunov equation:

ATP3 + P3A = −I. (59)

Using (41) whose time derivative is

V̇t = Δ∗t
(

ATP3 + P3A
)

Δ∗t + 2Δ∗Tt P3U2,t + 2Δ∗Tt P3dt. (60)

According to sliding mode technique, we may select u2,t as

Uc
2,t = −kP−1

3 sgn
(

Δ∗t
)

, k > 0, (61)

where k is positive constant,

sgn
(

Δ∗t
) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 Δ∗t > 0

0 Δ∗t = 0

−1 Δ∗t < 0

sgn
(

Δ∗t
) =

[

sgn
(

Δ∗1,t

)

, . . . sgn
(

Δ∗n,t

)]T ∈ �n.

(62)
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Substitute (59) and (61) into (60)

V̇t = −
∥

∥Δ∗t
∥

∥
2 − 2k

∥

∥Δ∗t
∥

∥ + 2Δ∗Tt Pdt

≤ −∥∥Δ∗t
∥

∥
2 − 2k

∥

∥Δ∗t
∥

∥ + 2λmax(P)
∥

∥Δ∗t
∥

∥‖dt‖
= −∥∥Δ∗t

∥

∥
2 − 2

∥

∥Δ∗t
∥

∥(k − λmax(P)‖dt‖).

(63)

If we select

k > λmax(P3)d, (64)

where d is define as (35), then V̇t < 0. So,

lim
t→∞Δ

∗
t = 0. (65)

(D) Local Optimal Control. If ẋt is not available and ẋt is not
approximated as (B). In order to analyze the tracking error
stability, we introduce the following Lyapunov function:

Vt
(

Δ∗t
) = Δ∗t P4Δ

∗
t , P4 = PT

4 > 0. (66)

Using (41), whose time derivative is

Vt = Δ∗t
(

ATP4 + P4A
)

Δ∗t + 2Δ∗Tt P4U2,t + 2Δ∗Tt P4dt , (67)

2Δ∗Tt P4dt can be estimated as

2Δ∗Tt P4dt ≤ Δ∗t P4Λ
−1
4 P4Δ

∗
t + dTt Λ4dt. (68)

Substituting (68) in (67), adding and subtracting the term
Δ∗Tt Q4Δ

∗
t and UdT

2,t R4U
d
2,t with Q4 = QT

4 > 0 and R4 = RT
4 >

0, we formulate

Vt ≤ Δ∗t
(

ATP4 + P4A + P4Λ4P4 + Q4

)

Δ∗t

+ 2Δ∗Tt P4U
d
2,t + UdT

2,t R4U
d
2,t + dTt Λ

−1
4 dt − Δ∗t QΔ

∗
t

−UdT
2,t R4U

d
2,t .

(69)

Because A is stable, there exit Λ4 and Q4 such that the matrix
Riccati equation:

ATP4 + P4A + P4Λ4P4 + Q4 = 0. (70)

So (69) is

Vt ≤ −
(

∥

∥Δ∗t
∥

∥
2
Q4

+
∥

∥

∥Ud
2,t

∥

∥

∥

2

R4

)

+ Ψ
(

Ud
2,t

)

+ dTt Λ
−1
4 dt, (71)

where

Ψ
(

Ud
2,t

)

= 2Δ∗Tt P4U
d
2,t + UdT

2,t R4U
d
2,t . (72)

We reformulate (71) as
∥

∥Δ∗t
∥

∥
2
Q4

+
∥

∥

∥Ud
2,t

∥

∥

∥

2

R4
≤ Ψ

(

Ud
2,t

)

+ dTt Λ
−1
4 dt −Vt. (73)

Then, integrating each term from 0 to τ, dividing each term
by τ, and taking the limit, for τ → ∞ of these integrals’
supreme, we obtain

lim
T→∞

1
T

∫ T

0
Δ∗Tt Q4Δ

∗
t dt + lim

T→∞
1
T

∫ T

0
UdT

2,t R4U
d
2,tdt

≤ lim
T→∞

1
T

∫ T

0
dTt Λ

−1
4 dtdt + lim

T→∞
1
T

∫ T

0
Ψ
(

Ud
2,t

)

dt

+ lim
T→∞

1
T

∫ T

0

[

−Vt

]

dt.

(74)

In the view of definitions of the seminorms (55), we have

∥

∥Δ∗t
∥

∥
2
Q4

+
∥

∥

∥Ud
2,t

∥

∥

∥

2

R4
≤ ‖dt‖2

Λ−1
4

+ lim
T→∞

1
T

∫ T

0
Ψ
(

Ud
2,t

)

dt. (75)

It fixes a tolerance level for the trajectory-tracking error. So,
the control goal now is to minimize Ψ(Ud

2,t) and ‖dt‖2
Λ−1

4
.

To minimize ‖dt‖2
Λ−1

4
, we should minimize Λ−1

4 . From (13),
if select Q4 to make (70) have solution, we can choose the
minimal Λ−1

4 as

Λ−1
4 = A−TQ4A

−1. (76)

To minimizing Ψ(Ud
2,t), we assume that, at the given t

(positive), x∗(t) and x̂(t) are already realized and do not
depend on Ud

2,t. We name the Ud∗
2,t (t) as the locally optimal

control, because it is calculated based only on “local”
information. The solution of this optimization problem is
given by

minΨ
(

ud2,t

)

= 2Δ∗Tt P4u
d
2,t + UdT

2,t R4U
d
2,t .

subject:A0

(

U1,t + Ud
2,t

)

≤ B0.
(77)

It is typical quadratic programming problem. Without
restriction U∗ is selected according to the linear squares
optimal control law:

ud2,t = −2R−1
4 P4Δ

∗
t . (78)

Remark 7. Approaches (A) and (C) are exactly compen-
sations of dt, Approach (A) needs the information of ẋt.
Because Approach (C) uses the sliding mode control Uc

2,t

that is inserted in the closed-loop system, chattering occurs
in the control input which may excite unmodeled high-
frequency dynamics. To eliminate chattering, the boundary
layer compensator can be used, it offers a continuous
approximation to the discontinuous sliding mode control
law inside the boundary layer and guarantees the output
tracking error within any neighborhood of the origin [13].

Finally, we give following design steps for the robust
neurocontrollers proposed in this paper.

(1) According to the dimension of the plant (1), design
a neural networks identifier (2) which has the same
dimension as the plant. In (2), A can be selected a
stable matrix. A will influence the dynamic response
of the neural network. The bigger eigenvalues of
A will make the neural network slower. The initial
conditions for W1,t and W2,t are obtained as in
Remark 4.

(2) Do online identification. The learning algorithm is
(15) with the dead zone in Theorem 2. We assume we
know the upper bound of modeling error, we can give
a value for η. Q0 is chosen such that Riccati equation
(14) has positive defined solution,R can be selected as
any positive defined matrix because Λ−1

1 is arbitrary
positive defined matrix. The updating rate in the
learning algorithm (15) is K1P, and K1 can be selected
as any positive defined matrix, so the learning process
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is free of the solution P of the Riccati equations (14).
The larger K1P is selected, the faster convergence the
neuroidentifier has.

(3) Use robust control (39) and one of compensation of
(43), (47), (61), and (78).

4. Simulation

In this section, a two-link robot manipulator is used to
illustrate the proposed approach. Its dynamics of can be
expressed as follows [14]:

M(θ)
..

θ +V
(

θ, θ̇
)

θ̇ + G(θ) + Fd
(

θ̇
)

= τ, (79)

where θ ∈ �2 consists of the joint variables, θ̇ ∈ �2

denotes the links velocity, τ is the generalized forces, M(θ)
is the intertie matrix, V(θ, θ̇) is centripetal-Coriolis matrix,
and G(θ) is gravity vector, Fd(θ̇) is the friction vector. M(θ)
represents the positive defined inertia matrix. If we define
x1 = θ = [θ1, θ2] is joint position, x2 = θ̇ is joint velocity
of the link, xt = [x1, x2]T , (79) can be rewritten as state space
form [15]:

ẋ1 = x2,

ẋ2 = H(xt,ut),
(80)

where ut = τ is control input,

H(xt,ut) = −M(x1)−1[C(x1, x2)ẋ1 + G(x1) + Fẋ1 + ut].
(81)

Equation (80) can also be rewritten as

ẋ1 =
∫ t

0
H(xτ ,uτ)dτ + H(x0,u0). (82)

So the dynamic of the two-link robot (79) is in form of (1)
with

f (xt,ut, t) =
∫ t

0
H(xτ ,uτ)dτ + H(x0,u0). (83)

The values of the parameters are listed below: m1 = m2 =
1.53 kg, l1 = l2 = 0.365 m, r1 = r2 = 0.1, v1 = v2 =
0.4, k1 = k2 = 0.8. Let define x̂ = [̂θ1, ̂θ2]

T
, and u =

[τ1, τ2]T , the neural network for control is represented as

˙̂x = Ax̂ + W1,tσ(x̂t) + W2,tφ(x̂)u. (84)

We select A = [−1.5 0
0 −1

]

, φ(x̂t) = diag(φ1(x̂1),φ2(x̂2)),
σ(x̂t) = [σ2(x̂2), σ2(x̂2)]T

σi(x̂i) = 2
(

1 + e−2x̂i
) − 1

2
,

φi(x̂i) = 2
(

1 + e−2x̂i
) +

1
2

,
(85)

where i = 1, 2. We used Remark 4 to obtain a suitable W0
1

and W0
2 , start from random values, T0 = 100. After 2 loops,

‖Δ(T0)‖ does not decrease, we let the W1,300 andW2,300 as the
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Figure 2: Tracking control of θ1 (method B).

new W0
1 =

[

0.51 3.8
−2.3 1.51

]

and W0
2 =

[

3.12 −2.78
5.52 −4.021

]

. For the update
laws (15), we select η = 0.1, r = 5, K1P = K1P =

[

5 0
0 2

]

. If we
select the generalized forces as

τ1 = 7 sin t, τ2 = 0. (86)

Now we check the neurocontrol. We assume the robot
is changed at t = 480, after that m1 = m2 = 3.5 kg, l1 =
l2 = 0.5 m, and the friction becomes disturbance as
D sin((π/3)t), D is a positive constant. We compare neuro-
control with a PD control as

τPD = −10(θ − θ∗)− 5
(

θ̇ − θ̇∗
)

, (87)

where θ∗1 = 3; θ∗2 is square wave. So ϕ(θ∗) = θ̇∗ = 0.
The neurocontrol is (39)

τneuro =
[

W2,tφ(x̂)
]+[

ϕ
(

x∗t , t
)− Ax∗t −W1,tσ(x̂)

]

+
[

W2,tφ(x̂)
]+
U2,t .

(88)

U2,t is selected to compensate the unmodeled dynamics. Sine
f is unknown method. (A) exactly compensation, cannot be
used.

(B) D = 1. The link velocity θ̇ is measurable, as in (43),

U2,t = A
(

θ − ̂θ
)

−
(

θ̇ − ˙̂
θ
)

. (89)

The results are shown in Figures 2 and 3.
(C) D = 0.3. θ̇ is not available, the sliding mode

technique may be applied. we select u2,t as (61).

u2,t = −10× sgn(θ − θ∗). (90)

The results are shown in Figures 4 and 5.
(D) D = 3. We select Q = 1/2, R = 1/20, Λ = 4.5, the

solution of following Riccati equation:

ATP + PA + PΛPt + Q = −Ṗ (91)

is P = [ 0.33 0
0 0.33

]

. If without restriction τ, the linear squares
optimal control law:

u2,t = −2R−1P(θ − θ∗) =
[

−20 0
0 −20

]

(θ − θ∗). (92)
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Figure 3: Tracking control of θ2 (method B).
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Figure 4: Tracking control of θ1 (method C).
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Figure 5: Tracking control of θ2 (method C).
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Figure 6: Tracking control of θ1 (method D).

−10

−8

−6

−4

−2

0 100 200 300 400 500 600 700 800

0

2

4

6

Neurocontrol

PD control

Figure 7: Tracking control of θ2 (method D).

The results of local optimal compensation are shown in
Figures 6 and 7.

We may find that the neurocontrol is robust and effective
when the robot is changed.

5. Conclusion

By means of Lyapunov analysis, we establish bounds for both
the identifier and adaptive controller. The main contribu-
tions of our paper is that we give four different compensation
methods and prove the stability of the neural controllers.
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