
Scientific Programming 20 (2012) 181–196 181
DOI 10.3233/SPR-2012-0345
IOS Press

Trilinos I/O Support (Trios)

Ron A. Oldfield a,∗, Gregory D. Sjaardema a, Gerald F. Lofstead II a and Todd Kordenbrock b

a Sandia National Laboratories, Livermore, CA, USA
E-mails: {raoldfi,gdsjaar,gflofst}@sandia.gov
b Hewlett-Packard Company, Palo Alto, CA, USA
E-mail: thkorde@sandia.gov

Abstract. Trilinos I/O Support (Trios) is a new capability area in Trilinos that serves two important roles: (1) it provides and
supports I/O libraries used by in-production scientific codes; (2) it provides a research vehicle for the evaluation and distribution
of new techniques to improve I/O on advanced platforms. This paper provides a brief overview of the production-grade I/O
libraries in Trios as well as some of the ongoing research efforts that contribute to the experimental libraries in Trios.

Keywords: Parallel I/O, I/O libraries, data staging, data services

1. Introduction

The Trilinos project was started as an effort to “fa-
cilitate the design, development, and ongoing support”
of mathematical libraries for scientific codes [12]. Ini-
tially, that involved developing parallel solver algo-
rithms and libraries for large-scale multi-physics appli-
cations. As the project evolved, it became evident that
support of scientific codes on high-performance com-
puting (HPC) platforms required more than efficient
parallel solvers. One identified gap in Trilinos was I/O
support. In late 2010, the Trilinos project added the
Trilinos I/O Support (Trios) capability area to address
this gap.

The Trios capability area has two important mis-
sions: provide support for standard production-quality
high-level I/O libraries, and provide a research vehi-
cle for exploring I/O techniques on new and evolving
platforms. Developments made through the research
platform are available for users willing to try newer
techniques that are less mature. As these techniques
mature, they will evolve into options for the users re-
quiring a more proven, widely supported technology
set.

1.1. Trios software components

Figure 1 shows the complete set of I/O libraries and
research software currently supported by Trios. For

*Corresponding author: Ron A. Oldfield, Sandia National Labo-
ratories, P.O. Box 969, Livermore, CA 94551-0969, USA. E-mail:
raoldfi@sandia.gov.

production codes, Trios supports the well-established
Sandia National Laboratories Engineering Analysis
Code Access System (SEACAS) [31]. Some of these
libraries have been in use at Sandia for more than a
decade. Incorporating the SEACAS libraries into Trios
serves multiple purposes: it allows the SEACAS devel-
opment team to leverage the stringent testing frame-
work of Trilinos to ensure robustness, it provides a sin-
gle point of access to existing Sandia customers, and it
enables a broader distribution of SEACAS to potential
external users. Section 2 provides a description of the
SEACAS I/O libraries.

To address the research objective of Trios, the Trios
team added the in-situ and in-transit data services
work that evolved from the Lightweight File Systems
project at Sandia [23,24]. The data services software
allows large-scale scientific applications to leverage
additional computational resources for real-time data
staging [8,18,26,32] or integrated data analysis [20].
Putting the data services software in Trios simplifies
development by providing a unified software reposi-
tory for researchers at different institutions and it pro-
vides an opportunity for co-design through increased
access to application code teams and external users of
Trilinos. In Section 3, we describe the Trios libraries
used to support data services along with three exam-
ples of data services currently in use.

1.2. Supported platforms

As with the other capability areas in Trilinos, Trios
provides an enabling technology that is “robust” and

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

182 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

Fig. 1. Trios software components and supporting technology.

“efficient” on parallel computing platforms. Some of
the experimental libraries in the Trios package are de-
signed specifically for capability class supercomput-
ers with low-level support for RDMA, such as the
CrayXT, CrayXE and large InfiniBand clusters. While
there are third-party libraries, like the Portals3 refer-
ence implementation [3], that enable this code to exe-
cute on traditional TCP/IP based clusters, performance
and robustness is not guaranteed or supported on all
platforms.

2. SEACAS I/O libraries

SEACAS includes applications and libraries that
support a wide range of functionality including pre-
processing and postprocessing (mesh generation, visu-
alization); libraries (including I/O), FORTRAN exten-
sions (memory management, parsing and system ser-
vices), visualization and domain decomposition; and
Exodus database manipulation (combination, parallel
decomposition, concatenation, translation, differenc-
ing and merging). In the context of this paper, we only
discuss the I/O libraries Exodus, Nemesis and IOSS.

2.1. Exodus

Exodus [29] is a library and data model used for fi-
nite element analysis. It provides a common database
for multiple application codes (e.g., mesh generators,
analysis codes and visualization software) rather than
code-specific utilities. A common database gives flex-
ibility and robustness for both the application code
developer and the application code user. The use of
the Exodus data model gives the user access to the
large selection of application codes (including vendor-
supplied codes) that read and/or write the Exodus for-
mat either directly or via translators.

The Exodus data model design was steered by finite-
element application developers to meet the following
requirements:

• Random read/write access.
• Portability. The data should be readable and

writable on many systems from large HPC clus-
ters down to small personal computers without
translation.

• Robustness. Any data written to the file should not
be corrupted if the application crashes or aborts
later.

• Support multiple languages. Application pro-
gramming interfaces (API) exist for FORTRAN,
C, C++ and Python.

• Efficiency. It should be efficient, both in file space
and time, to store and retrieve data to/from the
database.

• Real-time access during analysis. Allow read ac-
cess to the data in a file while the file is being cre-
ated.

• Extensibility. Allow new data objects to be added
without modifying the application programs that
use the file format.

To address these requirements, the Exodus designers
chose to layer the API on top of the Network Common
Data Form (NetCDF) library [27]. NetCDF provides
a portable, well-supported, self-describing data format
with APIs in C, FORTRAN, C++, Python, Java and
Perl; The data sets structure is also easily extendible
without copying or modifying the structure of the file,
thus satisfying the final requirement of Exodus users.

Because an Exodus file is a netCDF file, an applica-
tion program can access data via the Exodus API or the
netCDF API directly. This functionality is illustrated
in Fig. 2. Although accessing the data directly via the
netCDF API requires more in-depth understanding of
netCDF, this capability is a powerful feature that al-
lows the development of auxiliary libraries of special
purpose functions not offered in the standard Exodus
library. For example, if an application required spe-
cialized data access not provided by the Exodus API,
a function could be written that calls netCDF routines
directly to read the data of interest. This feature can
also be used if an application needs to store data that
is not supported by Exodus. The application can write
the data directly at the netCDF level. However, the dis-
advantages of this direct access is that: (1) other appli-
cations that only access data through the Exodus API
will not know about any extra data, (2) changes to the
Exodus data structure may result in the failure of the

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 183

Fig. 2. Exodus software stack.

direct netCDF calls since they would be trying to ac-
cess non-existent data and (3) if a different data for-
mat were chosen in the future to replace netCDF, these
calls would have to be modified before using the newer
version of Exodus.

The Exodus file can contain nodes, edges, faces, and
elements grouped in “blocks” or “sets”. A block is
a collection of homogeneous entities and all entities
must be in one, and only one, block. A set is a collec-
tion of possibly heterogeneous entities of a single en-
tity type and are optional. An additional entity group is
a “sideset” which is a collection of “element–local ele-
ment side” pairs. A sideset is typically used to specify
a surface of the model where a boundary condition is
applied. Each set and block can have optional named
attribute data, results data and map data.

Initialization data includes sizing parameters (e.g.,
number of nodes and number of elements), optional
quality assurance information (names of codes that
have operated on the data) and optional informational
text.

The model data is static (does not change through
time). This data includes block and set definitions;
nodal coordinates; element, face and/or edge connec-
tivity which consists of node lists for each element,
face and/or edge; attributes; and maps which are used
to assign an arbitrary integer value to an entity, for ex-
ample, a global id.

The results data are optional and include several
types of variables – block and set data on nodes, edges,
faces and elements; sideset; and global – each of which
is stored through time. Variables are output at each
time step for all entities in the specific set or block.
For example, the “node block” consists of all nodes
in the model so a node block result variable would be
output for all nodes in the model. Examples of a node
block variable include displacement in the X direction;
an element block variable example is element stress
for all “hexahedral” elements in an element block. An-

other use of element variables is to record element sta-
tus, a binary flag indicating whether each element is
“active” or “inactive”, through time. Global results are
output at each time step for a single element or node
or for a single property. Kinetic energy of a structure
and the acceleration at a particular point are both exam-
ples of global variables. Although these examples cor-
respond to typical finite element applications, the data
format is flexible enough to accommodate a spectrum
of uses.

Exodus files can be written and read by application
codes written in C, C++, Python or Fortran via calls
to functions in the application programming interface
(API). Functions within the API are categorized as data
file utilities, model description functions or results data
functions.

In general, the following pattern is followed for writ-
ing data objects to a file using the C API.

(1) create the file with ex_create;
(2) define global parameters using ex_put_init;
(3) write out specific data object parameters; for

example, define element block parameters with
ex_put_block;

(4) write out the data object; for example, out-
put the connectivity for an element block with
ex_put_conn;

(5) close the file with ex_close.

Steps 3 and 4 are repeated within this pattern for
each data object (e.g., nodal coordinates, element
blocks, node sets, side sets and results variables). For
some data object types, steps 3 and 4 are combined in a
single call. During the database writing process, there
are a few order dependencies (e.g., an element block
must be defined before element variables for that ele-
ment block are written) that are documented in the de-
scription of each library function.

For more details on the APIs and the Exodus data
model, as well as application examples, see [29].

2.2. Nemesis

The analysis process for most application codes us-
ing Exodus mesh and results data on multi-processor
parallel systems is that the original mesh database is
“spread” into multiple databases – one per-process.
The application code on each processor reads and
writes its individual file and then the files are joined
back together at the end of execution.

Nemesis [11] is an addition to the Exodus finite el-
ement database model that adds communication and

184 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

partitioning information to the Exodus data model to
facility this parallel analysis process. The SEACAS
package includes applications that read Exodus data
defining the model topology and then create a database
containing structures that facilitate the partitioning of
a single, scalar Exodus file into a set of files, read in-
dependently by each process in a parallel job. Nemesis
takes advantage of the extensibility of Exodus to add
additional information to an existing Exodus database,
thus, any existing software that reads Exodus files can
also read files that contain Nemesis information.

Figure 3 provides a conceptual description of how
a finite-element application would generate and use
EXODUS/Nemesis files. A Nemesis data set consists
of a scalar “load-balance” file and a set of N “par-
allel geometry” files that contain the partition infor-
mation for the parallel execution on each of the N
processes used by the finite element code. The load-
balance file contains information about the association
of elements to processes and how processes exchange
data with each other to obtain required boundary infor-
mation. The load-balance file does not generally con-
tain geometry information, such as element connec-
tivity, nodal coordinates or boundary-condition infor-
mation. This information remains in the original Exo-
dus database. The SEACAS nem_slice application
uses the Chaco [10] and Zoltan [7] graph-partitioning
libraries to create the Nemesis load-balance file.

Fig. 3. Conceptual description of how EXODUS/Nemesis files are
generated and used by a parallel finite element application.

Given the original Exodus file and the load-balance
file, an application has all the information required
to execute a parallel finite element code. However,
as mentioned previously, typically an additional ap-
plication nem_spread is used to read the load-
balance file and the original Exodus database and
to create the N individual geometry files, each con-
taining the portion of the original model for analy-
sis by a specific processes. The geometry files are ba-
sically a standard Exodus file plus some additional
data structures that indicate which nodes are shared
with other processes, which element boundaries are
shared with other processes, and for which process
this file is intended. Each process in a parallel analy-
sis then reads the mesh information from the specific
Exodus database for the process that contains the mesh
geometry and topology for that process and the com-
munication information specifying with which pro-
cess(es) this process communicates. The output results
file(s) are treated similarly with each process writing
data to its own Exodus database. At the end of the anal-
ysis, the individual databases can be joined together us-
ing the SEACAS application epu while some visual-
ization packages can handle the multiple files without
joining.

For a more complete description of the Nemesis C
and C++ APIs, see [11].

2.3. Sierra I/O system

The Sierra I/O system is a collection of C++ classes
with a focused API designed to provide an abstract
high-level interface to multiple finite-element database
formats. Currently, Exodus, XDMF [6], embedded vi-
sualization, heartbeat, and history database formats are
supported. The application accesses data at the ab-
stract Ioss::DatabaseIO level, which is indepen-
dent of the database format. Concrete DatabaseIO
classes provide access to the data for each database
type. In the context of this paper, we discuss the
Ioss::DatabaseIO class.

The root of the Ioss generic mesh model is a Re-
gion managing a collection of ElementBlock,
FaceBlock, EdgeBlock, NodeBlock, Ele-
mentSet, FaceSet, EdgeSet and NodeSet
which together define the finite element mesh struc-
ture. Each of these entities define one or more Field
objects that are used to represent model, attribute, and
transient field data and Property classes that are
used to store properties of the entity, for example, the

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 185

node count of a node block; and the element topology
for an element block.

The Ioss interface provides I/O capabilities for fi-
nite element applications so application developers can
focus on the physics details of the application with-
out concerning themselves with low-level program-
ming details of getting the data to and from disk ef-
ficiently and robustly. Once the mesh structure is de-
scribed in terms of the Ioss classes, data input and out-
put is accomplished via high-level access through the
Ioss field interface.

While there are a number of details missing from
this description, these classes form the basis of the
finite-element database I/O capabilities in the Sierra
system and are also used in several of the SEACAS
database manipulation applications. The Ioss library is
emerging as a viable C++-based API for the Exodus
library.

3. Data services in Trios

The research platform portion of Trios includes
emerging I/O techniques. One such technique is pro-
viding data services. Simply put, a data service is a
separate (possibly parallel) application that performs
operations on behalf of an actively running scientific
application.

This data service architecture uses remote direct-
memory access (RDMA) to move data from memory
to memory between the application and the service(s).
Figure 4 illustrates the organization of an application
using data services. On current capability-class HPC
systems, services execute on compute nodes or service
nodes and provide the application the ability to “of-

Fig. 4. A data service uses additional compute resources to per-
form operations on behalf of an HPC application. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2012-0345.)

fload” operations that present scalability challenges for
the scientific code. One commonly used example for
data services is data staging, or caching data between
the application and the storage system [21,22,26]. Sec-
tion 3.3 describes such a service. Other examples in-
clude proxies for database operations [25] and in-situ
data analysis [9,18,32].

This section provides descriptions of the data ser-
vice support libraries as well as examples of data ser-
vices currently in use or in development. The data-
transfer service, described in Section 3.2, is the canon-
ical example on how to develop a data service using
Nessie, the PnetCDF service from Section 3.3 is an
example of link-time replacement I/O library that per-
forms data staging for bursty I/O operations, and the
CTH in-transit analysis service in Section 4.1 demon-
strates how we use a data service to perform real-time
fragment detection for the CTH shock physics code.

3.1. Data service support libraries

The primary library to support data services is the
Network Scalable Service Interface (Nessie). It is used
on all platforms and provides a basic framework for
developing new services.

3.1.1. Nessie
The NEtwork Scalable Service Interface, or Nessie,

is a framework for developing parallel client-server
data services for large-scale HPC systems [18,24].

Nessie was originally developed out of necessity for
the Lightweight File Systems (LWFS) project [23],
a joint effort between researchers at Sandia National
Laboratories and the University of New Mexico. The
LWFS project followed the same philosophy of “sim-
plicity enables scalability”, the foundation of earlier
work on lightweight operating system kernels at San-
dia [28]. The LWFS approach was to provide a core
set of fundamental capabilities for security, data move-
ment, and storage and afford extensibility through
the development of additional services. For exam-
ple, systems that require data consistency and persis-
tence might create services for transactional semantics
and naming to satisfy these requirements. The Nessie
framework was designed to be the vehicle to enable the
rapid development of such services.

Because Nessie was originally designed for I/O sys-
tems, it includes a number of features that address scal-
ability, efficient data movement and support for het-
erogeneous architectures. Features of particular note
include (1) using asynchronous methods for most of

186 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

the interface to prevent client blocking while the ser-
vice processes a request; (2) using a server-directed ap-
proach to efficiently manage network bandwidth be-
tween the client and servers; (3) using separate chan-
nels for control and data traffic; and (4) using XDR
encoding for the control messages (i.e., requests and
results) to support heterogeneous systems of compute
and service nodes.

A Nessie service consists of one or more processes
that execute as a serial or parallel job on the compute
nodes or service nodes of an HPC system. We have
demonstrated Nessie services on the Cray XT3 at San-
dia National Laboratories (SNL), the Cray XT4/5 sys-
tems at Oak Ridge National Laboratory, and a large
InfiniBand cluster at SNL. The Nessie RPC layer
has direct support of Cray’s SeaStar interconnect [2],
through the Portals API [3]; Cray’s Gemini intercon-
nect [1]; and InfiniBand [15].

The Nessie API follows a remote procedure call
(RPC) model, where the client (i.e., the scientific ap-
plication) tells the server(s) to execute a function on its
behalf. Nessie relies on client and server stub functions
to encode/decode (i.e., marshal) procedure call param-
eters to/from a machine-independent format. This ap-
proach is portable because it allows access to services
on heterogeneous systems, but it is not efficient for I/O
requests that contain raw buffers that do not need en-
coding. It also employs a ‘push’ model for data trans-
port that puts tremendous stress on servers when the re-
quests are large and unexpected, as is the case for most
I/O requests.

To address the issue of efficient transport for bulk
data, Nessie uses separate communication channels for
control and data messages. In this model, a “control”
message, also known as a request, is typically small. It
identifies the operation to perform, where to get argu-
ments, the structure of the arguments, and perhaps the
data itself (if the data is small enough to fit in the fixed-
sized request). In contrast, a data message is typically
large and consists of “raw” bytes that, in most cases,
do not need to be encoded/decoded by the server. For
example, Fig. 5 shows the transport protocol for an I/O
server executing a write request.

The Nessie client uses the RPC-like interface to
push control messages to the servers, but the Nessie
server uses a different, one-sided API to push or pull
data to/from the client. This protocol allows interac-
tions with heterogeneous servers and benefits from
allowing the server to control the transport of bulk
data [17,30]. The server can thus manage large vol-
umes of requests with minimal resource requirements.

Fig. 5. Conceptual network protocol for a Nessie storage server ex-
ecuting a write request. The initial request tells the server the op-
eration and the location of the client buffers. The server fetches
the data through RDMA get commands until it has satisfied the
request. After completing the data transfers, the server sends a
small “result” object back to the client indicating success or
failure. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0345.)

Furthermore, since servers are expected to be a criti-
cal bottleneck in the system, a server directed approach
affords the server optimizing request processing for
efficient use of underlying network and storage de-
vices – for example, re-ordering requests to a storage
device [17].

The implementation of Nessie uses the low-level
RDMA transport for all operations. The client sends
a request to the server using an RDMA PUT opera-
tion into a known buffer on the server. Each request fits
in a fixed-size header (configurable at compile time)
that includes space for the operation code, memory de-
scriptors for the data portion (if needed), an address
for the result, and space for arguments. If the size of
arguments exceed the size of the header, the server
implements a two-phase protocol, fetching the rest of
the arguments with an RDMA GET after receiving
the header. If the request requires the transfer of bulk
data, the server initiates an RDMA PUT for read re-
quests, and an RDMA GET for write requests to/from
the remote memory descriptor provided in the request
header. Finally, the server executes an RDMA PUT
command to the remote memory descriptor for the re-
sult when the operation is complete. Figure 6 shows
the data structures and protocols used for the Portals
implementation of Nessie. Other implementations vary

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 187

Fig. 6. The figure illustrates the required data structures and network protocol used for the Portals implementation of the write operation.

slightly based on the requirements of the transport soft-
ware.

While it is not strictly necessary on systems that
have homogenous clients and servers, we use XDR en-
coding to provide portable serialization of arguments
for the request arguments. This was a design decision
made early in the project that allow the client to send
arbitrary C-like data structures to the server with min-
imal development effort. At the time, we were imple-
menting file services for a system where the service
nodes were a different architecture (and had different
endianness) than the compute nodes. In this case, byte-
swaps were necessary for the control structures. Since
rpcgen, the function that generates the serialization
code is pervasive in Unix environments and has been in
use for more than a decade, it was the logical choice for
argument marshaling. In addition, as shown in the Sec-
tion 3.2.4, the overhead of XDR is minimal for imple-
mentations that make extensive use of the data channel
for bulk data.

3.1.2. CommSplitter
The CommSplitter library was designed to over-

come a security model limitation in the Gemini inter-
connect. On current Gemini systems, user-space appli-
cations are not allowed to communicate, even if both
applications are owned by the same user. We requested
this feature and at the time of this writing, Cray is ad-
dressing this issue to better support data services in fu-
ture versions of Gemini. In the mean time, we over-
came that limitation by launching our jobs in Multi-
ple Program, Multiple Data (MPMD) mode. MPMD
mode enables a set of applications to execute concur-

rently, sharing a single MPI Communicator. The prob-
lem with this approach is that legacy applications were
not designed to share a communicator with other appli-
cations. In fact, most HPC codes assume they have ex-
clusive use of the MPI_COMM_WORLD communicator.
When this is not the case, a global barrier, such as an
MPI_Barrier function will hang because the other
applications did not call the MPI_Barrier function.

To address this issue, we developed the CommSplit-
ter library to allow applications to run in MPMD mode
while still maintaining exclusive access to a virtual
MPI_COMM_WORLD global communicator.

The CommSplitter library identifies the processes
that belong to each application, then “split” the real
MPI_COMM_WORLD into separate communicators.
The library then uses the MPI profiling interface to in-
tercept MPI operations, enforcing the appropriate use
of communicators for collective operations.

No changes are required to the application source
code to enable this functionality. The user simply
links the CommSplitter library to the executable before
launching the job. The library has no effect on applica-
tions that are not run in MPMD mode.

3.2. A simple data-transfer service

The data-transfer service is included in the “exam-
ples/xfer-service/” directory of the Trios package. This
example demonstrates how to construct a simple client
and server that transfer an array of 16-byte data struc-
tures from a parallel application to a set of servers. The
code serves three purposes: it is the primary example

188 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

for how to develop a data service, it is used to test cor-
rectness of the Nessie APIs, and we use it to evaluate
network performance of the Nessie protocols.

Creating the transfer-service requires the following
three steps:

(1) Define the functions and their arguments.
(2) Implement the client stubs.
(3) Implement the server.

3.2.1. Defining the service API
To properly evaluate the correctness of Nessie, we

created procedures to transfer data to/from a remote
server using both the control channel (through the
function arguments or the result structure) and the data
channel (using the RDMA put/get commands). We de-
fined client and server stubs for the following proce-
dures:

xfer_write_encode Transfer an array of data
structures to the server through the procedure ar-
guments, forcing the client to encode the array
before sending and the server to decode the ar-
ray when receiving. We use this method to eval-
uate the performance of the encoding/decoding
the arguments. For large arrays, this method also
tests our two-phase transfer protocol in which
the client pushes a small header of arguments
and lets the server pull the remaining arguments
on demand.

xfer_write_rdma Transfer an array of data struc-
tures to the server using the data channel. This
procedure passes the length of the array in the ar-
guments. The server then “pulls” the unencoded
data from the client using the nssi_get func-
tion. This method evaluates the RDMA transfer
performance for the nssi_get_data func-
tion.

xfer_read_encode Transfer an array of data
structures to the client using the control channel.
This method tells the server to send the data ar-
ray to the client through the result data structure,
forcing the server to encode the array before
sending and the client to decode the array when
receiving. This procedure evaluates the perfor-
mance of the encoding/decoding the arguments.
For large arrays, this method also tests our two-
phase transfer protocol for the result structure in
which the server pushes a small header of the re-
sult and lets the client pull the remaining result
on demand (at the nssi_wait function).

/* Data structure to transfer */
struct data_t {

int int_val; /* 4 bytes */
float float_val; /* 4 bytes */
double double_val; /* 8 bytes */

};

/* Array of data structures */
typedef data_t data_array_t<>;

/* Arguments for xfer_write_encode */
struct xfer_write_encode_args {

data_array_t array;
};

/* Arguments for xfer_write_rdma */
struct xfer_write_rdma_args {

int len;
};

...

Fig. 7. Portion of the XDR file used for a data-transfer service.

xfer_read_rdma Transfer an array of data struc-
tures to the client using the data channel. This
procedure passes the length of the array in the
arguments. The server then “puts” the unen-
coded data into the client memory using the
nssi_put_data function. This method eval-
uates the RDMA transfer performance for the
nssi_put_data function.

Since the service needs to encode and decode re-
mote procedure arguments, the service-developer has
to define these data structures in an XDR file. Fig-
ure 7 shows a portion of the XDR file used for the
data-transfer example. XDR data structures definitions
are very similar to C data structure definitions. Dur-
ing build time, a macro called “TriosProcessXDR”
converts the XDR file into a header and source file that
call the XDR library to encode the defined data struc-
tures. TriosProcessXDR executes the UNIX tool
“rpcgen” the remote procedure call protocol compiler
to generate the source and header files.

3.2.2. Implementing the client stubs
The client stubs provide an interface between the

client application and the remote service. In most
cases, the client stubs do nothing more than initialize
the RPC arguments, and call the nssi_call_rpc
method. For RDMA operations, the client also has to
provide pointers to the appropriate data buffers so the
RDMA operations know where to put or get the data
for the transfer operation. The details of converting the

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 189

int xfer_write_rdma(
const nssi_service *svc,
const data_array_t *arr,
nssi_request *req)

{
xfer_write_rdma_args args;
int nbytes;

/* the only arg is size of array */
args.len = arr->data_array_t_len;

/* the RDMA buffer */
const data_t *buf=array->data_array_t_val;

/* size of the RDMA buffer */
nbytes = args.len*sizeof(data_t);

/* call the remote methods */
nssi_call_rpc(svc, XFER_WRITE_RDMA_OP,
&args, (char *)buf, nbytes,
NULL, req);

}

Fig. 8. Client stub for the xfer_write_rdmamethod of the trans-
fer service.

buffer pointers to memory descriptors for a specific
data transport (e.g., InfiniBand, Portals, Gemini) are
hidden from the user.

Figure 8 shows the client stub for the xfer_
write_rdma method. Since the nssi_call_rpc
method is asynchronous, the client has to check for
completion of the operation by calling the nssi_
wait or nssi_test method with the nssi_
request as an argument.

3.2.3. Implementing the server
The server consists of some initialization code along

with the server-side API stubs for any expected re-
quests. Each server-side stub has the form described
in Fig. 9. The API includes a request identifier, a peer
identifier for the caller, decoded arguments for the
method, and RDMA addresses for the data and result.
The RDMA addresses allow the server stub to write to
or read from the memory on the client. In the case of
the xfer_write_rdma_srvr, the stub has to pull
the data from the client using the data_addr param-
eter and send a result (success or failure) back to the
client using the res_addr parameter.

For complete details on how to create the transfer
service code, refer to the online documentation or the
source code in the trios/examples directory.

3.2.4. Performance of the transfer service
As mentioned earlier in the text, the transfer service

is also a tool for evaluating the correctness and perfor-

int xfer_write_rdma_srvr(
const unsigned long request_id,
const NNTI_peer_t *caller,
const xfer_pull_args *args,
const NNTI_buffer_t *data_addr,
const NNTI_buffer_t *res_addr)

{
const int len = args->len;
int nbytes = len*sizeof(data_t);

/* allocate space for the buffer */
data_t *buf = (data_t *)malloc(nbytes);

/* fetch the data from the client */
nssi_get_data(caller,buf,nbytes,

data_addr);

/* send the result to the client */
rc = nssi_send_result(caller,request_id,

NSSI_OK, NULL, res_addr);

/* free buffer */
free(buf);

}

Fig. 9. Server stub for the xfer_write_rdma method of the
transfer service.

mance of the network protocols. Here we present per-
formance results from three different HPC platforms:
the Red Storm system at Sandia [4], a Cray XT3 that
uses the Seastar interconnect [2] interfaced through the
Portals API [3]; RedSky, a cluster of Oracle/Sun Blade
Servers on an InfiniBand network; and the Cielo super-
computer, a Cray XE6 system that uses the new Gem-
ini interconnect [1].

Figure 10 shows a comparison of using the xfer-
write-rdma and xfer-write-encode methods
to transfer an array of data_t data structures from
Fig. 7. The objective is to evaluate the overhead of
the XDR encoding scheme. The xfer_write_rdma
method has very little encoding overhead–just the cost
of encoding the request. These results clearly demon-
strate the value of having separate control and data
channels for bulk data, and while it is possible to trans-
fer all data through the control channel, it is clearly not
an efficient way to implement a bulk data-transfer op-
eration.

The Gemini port of Nessie is our latest port and
still requires quite a bit of tuning to achieve reasonable
performance. To demonstrate the efficiency of a well-
tuned implementation, Fig. 11(a)–(c) shows xfer-
write-rdma performance for the SeaStar (Portals),
InfiniBand, and Gemini interconnects as the number
of clients per server ranges from 1–64. The Portals

190 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

Fig. 10. Comparison of xfer-write-encode and xfer-
-write-rdma on the Cray XE6 platform using the Gemini net-
work transport. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0345.)

implementation achieves near peak performance with
only slight interference effects when using 64 clients.
The InfiniBand port performs at near 75% of peak for
large transfers. Our Gemini implementation is still go-
ing through some performance tuning tests.

3.3. PnetCDF staging service

Demonstrating the performance and functionality
advantages Nessie provides, the NetCDF/PnetCDF
link-time replacement library offers a transparent way
to use a staging area with hosted data services without
disturbing the application source code and not impact-
ing the ultimate data storage format. At a simple level,
the library is inserted into the I/O path affording redi-
recting the NetCDF API calls into the staging area for
further processing prior to calling the native NetCDF
APIs for the ultimate movement of data to storage. This
structure is illustrated in Fig. 12.

At a minimum, this architecture affords reducing the
number of processes participating in collective coordi-
nation operations enhancing scalability [18]. Overall,
it affords changing or processing the data prior to writ-
ing to storage without impacting the application source
code.

The staging functionality can be hosted over any
number of processes and nodes as memory and pro-
cessing capabilities demand. Those processes are capa-
ble of coordinating among themselves in order to ma-
nipulate the data. Currently there are five data process-
ing modes for the data staging area:

(a)

(b)

(c)

Fig. 11. Comparison of Nessie data-transfer performance for Portals,
InfiniBand, and Gemini as the number of clients per server ranges
from 1–64. (a) RedStorm (Portals), (b) RedSky (InfiniBand) and
(c) Cielo (Gemini). (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2012-0345.)

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 191

(a)

(b)

Fig. 12. System architecture. (a) Native PnetCDF. (b) PnetCDF stag-
ing.

(1) Direct. Immediately use the PnetCDF library to
execute the request synchronously with the file
system.

(2) Caching independent. Caches the write calls in
the staging area until either no more buffer space
is available or the file close call is made. At that
time, the data is written using an independent
I/O mode rather than collective I/O. This avoids
both coordination among the staging processes
and any additional data rearrangement prior to
movement to storage.

(3) Aggregate independent. Similar to caching inde-
pendent except that the data is aggregated into
larger, contiguous chunks as much as possible
within all of the server processes on a single
compute node prior to writing to storage. That
is, to optimize the data rearrangement perfor-
mance, the movement is restricted to stay within
the same node avoiding any network communi-
cation overhead.

(4) Caching collective. Works like the caching in-
dependent mode, except that it attempts to use
as many collective I/O calls as possible to write
the data to storage. If the data payloads are not
evenly distributed across all of the staging pro-
cesses, a number of collective calls correspond-
ing to the number of smallest number of data pay-
loads in any staging process followed by a series
of independent calls to complete writing the data.

(5) Aggregate collective. Operates as a blend of
the caching collective in that it tries to use as
many collective I/O calls as possible to write the
data, but uses the aggregation data pre-processing

steps to reduce the number of data packets writ-
ten.

Unlike many asynchronous staging approaches, the
PnetCDF staging service ultimately performs syn-
chronously. The call to the file close function blocks
until the data has been flushed to storage.

Using the staging service at run time is a 4 step pro-
cess. First, the staging area is launched generating a
list of contact strings. Each string contains the infor-
mation necessary to reach a single staging process. The
client (science application) can choose which client
process communicates with which staging service pro-
cess. Second, these strings are processed to generate a
standard XML-based format making client processing
simpler and environment variables are set exposing the
contact file filename in a standard way. Third, the sci-
ence application is launched. Finally, as part of the
PnetCDF initialization, the re-implementation of the
PnetCDF reads the environment variable to determine
the connection information file filename, reads the file,
and broadcasts the connection information to all of
the client processes. These processes select one of the
server processes with which to communicate based on
a load-balancing calculation.

The current functionality of increasing the perfor-
mance of PnetCDF collective operations is just a first
step. The current architecture offer the ability to have
any parallel or serial processing engine installed in the
staging area application. The scaling of this applica-
tion is independent of scaling of the science applica-
tion. This decoupling of concerns simplifies program-
ming of the integrated work flow of the simulation gen-
erating raw data and the analysis routines distilling the
data into the desired processed form.

Ultimately, this technique of reimplementing the
API for accessing staging offers a way to enhance the
functionality of online scientific data processing with-
out requiring changing the application source code. As
in the case of the PnetCDF service, these analysis or
other data processing routines can be inserted as part of
the I/O path with the data ultimately hitting the storage
in the format prescribed by the original API.

3.3.1. PnetCDF staging service performance analysis
Evaluating the performance of the service is per-

formed in two parts. First, an examination of IOR [16]
performance is evaluated followed by an I/O kernel for
Sandia’s S3D [5] combustion code.

192 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

IOR performance. To evaluate the potential of
PnetCDF staging, we measured the performance of our
PnetCDF staging library when used by the IOR bench-
mark code. IOR (Interleave-or-random) [16] is a highly
configurable benchmark code from Lawrence Liver-
more National Laboratory. IOR is often used to find
the peak measurable throughput of an I/O system. In
this case, IOR provides a tool for evaluating the impact
of offloading the management overhead of the netCDF
and PnetCDF libraries onto staging nodes.

Figure 13 shows measured throughput of three dif-
ferent experiments: writing a single shared file using
PnetCDF directly, writing a file-per-process using stan-
dard netCDF3, and writing a single shared file us-
ing the PnetCDF staging service. In every experiment,
each client wrote 25% of its compute-node memory, so
we allocated one staging node for each four compute
nodes to provide enough memory in the staging area to
handle an I/O “dump”.

Results on Red Storm show terrible performance for
both the PnetCDF and netCDF file-per-process case
when using the library directly. The netCDF file-per-
process experiments achieve a maximum write perfor-
mance of about 7 GB/s and get noticibly worse beyond
1024 core. Using PnetCDF to shared file achieved a
peak throughput of 5.3 GB/s after only 10 s of clients.
The PnetCDF staging service, however, achieved an
“effective” I/O rate of 40 GB/s to a single shared file.
This is the rate observed by the application as the time

Fig. 13. Measured throughput of the IOR benchmark code on Thun-
derbird. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0345.)

to transfer the data from the application to the set of
staging nodes. The staging nodes still have to write the
data to storage, but for applications with “bursty” I/O
patterns, staging is very effective.

S3D performance. In the final set of experiments, we
evaluate the performance of the PnetCDF staging li-
brary when used by Sandia’s S3D simulation code [5],
a flow solver for performing direct numerical simula-
tion of turbulent combustion.

All experiments take place on the JaguarPF system
at Oak Ridge National Laboratory. JaguarPF is a Cray
XT5 with 18,688 compute nodes in addition to dedi-
cated login and service nodes. Each compute node has
dual hex-core AMD Opteron 2435 processors running
at 2.6 GHz, 16 GB RAM and a SeaStar 2+ router. The
PnetCDF version is 1.2.0 and uses the default Cray
MPT MPI implementation. The file system, called Spi-
der, is a Lustre 1.6 system with 672 object storage tar-
gets and a total of 5 PB of disk space. It has a demon-
strated maximum bandwidth of 120 GB/s. We config-
ured the file system to stripe using the default 1 MB
stripe size across 160 storage targets for each file for
all tests.

In our test configuration, we use ten, 32 cubes (32 ×
32 × 32) of doubles per process across a shared, global
space. The data size is 2.7 GB per 1024 processes. We
write the whole dataset at a single time and measure
the time from the file open through the file close. We
use five tests for each process count and show the best
performance for each size. In this set of tests, we use a
single node for staging. To maximize the parallel band-
width to the storage system, one staging process per
core is used (12 staging processes). Additional testing
with a single staging process did not show significant
performance differences. The client processes are split
as evenly as possible across the staging processes in an
attempt to balance the load.

Figure 14 shows the results of S3D using the
PnetCDF library directly with the four different con-
figurations of our PnetCDF staging library described in
Section 3.3. In all cases measured, the base PnetCDF
performance was no better than any other technique
at any process count. The biggest difference between
the base performance and one of the techniques is for
1024 processes using the caching independent mode at
only 32% as much time spent performing I/O. The di-
rect technique starts at about 50% less time spent and
steadily increases until it reached parity at 7168 pro-
cesses. Both cache independent and aggregate inde-
pendent advantages steadily decrease as the scale in-

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 193

Fig. 14. Writing performance on JaguarPF one staging node (12
processes). (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0345.)

creases, but still have a 20% advantage at 8192 pro-
cesses.

In spite of there only being 12 staging processes with
a total gross of 16 GB of RAM, the performance im-
provement is still significant. The lesser performance
of the direct writing method is not very surprising.
By making the broadly distributed calls synchronous
through just 12 processes, the calling application must
wait for the staging area to complete the write call be-
fore the next process will attempt to write. The ad-
vantage shown for smaller scales shows the disadvan-
tage of the communication to rearrange the data com-
pared to just writing the data. Ultimately, the advantage
is overwhelmed by the number of requests being per-
formed synchronously through the limited resources.

The advantage of the caching and aggregating over
the direct and base techniques shows that by queue-
ing all of the requests and letting them execute without
interruption and delay of returning back to the com-
pute area offers a non-trivial advantage over the syn-
chronous approach. Somewhat surprisingly, the aggre-
gation approach that reduces the number of I/O calls
via data aggregation did not yield performance advan-
tages over just caching the requests. This suggests that
for the configuration of the Spider file system at least,
reducing the number of concurrent clients to the I/O
system is the advantageous approach. Additional ef-
forts to reduce the number of I/O calls do not yield
benefits.

3.4. CTH in-transit analysis

As an example of using Nessie for in-transit anal-
ysis, we implemented an in-transit analysis capabil-
ity for the CTH shock physics code [14]. For export-
control issues, the code is not available in the Trilinos

(a)

(b)

Fig. 15. Comparison of in-situ (a) and in-transit (b) fragment detec-
tion for the CTH shock physics code. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2012-0345.)

repository. It is included in this document merely as an
example.

Much like the PnetCDF staging service, the in-
transit CTH analysis service is a drop-in replacement
for an already used library. In this case, we imple-
mented client and server stubs for the PVSPY library –
an API for performing in-situ analysis using the Para-
View coProcessing libraries [19]. The difference be-
tween the in-situ approach and the in-transit approach
is that in-situ, meaning “in place”, executes the analy-
sis on the same compute nodes as the scientific code.
Instead of performing the analysis on the CTH com-
pute nodes, our PVSPY client marshals requests, sends
data to the staging nodes, and performs the analysis on
the staging nodes. Figure 15 illustrates this process for
analysis that does fragment detection.

There are a couple of trade-offs to consider when de-
ciding whether to perform the analysis in-transit or in-
situ. First, the in-transit approach allows fragment de-
tection to execute in parallel with CTH, unlike the in-
situ approach that requires CTH to wait for the analy-
sis to complete. If the time to execute the analysis code
is substantially larger than the time to transfer the raw
data to the service, there is a performance advantage to
using the in-transit approach.

A second consideration is library scalability. While
significant effort has gone into making the CTH code
scale to extremely large core counts, not as much ef-
fort has gone into scalability of the analysis code. For

194 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

example, the ParaView coProcessing libraries have not
successfully run on more than 32 thousand cores. Link-
ing CTH to ParaView for in-situ analysis also limits the
scalability of the CTH run. In contrast, the data service
will likely use a much smaller number of cores, putting
no limitation on the scale of CTH.

Another often overlooked consideration is the mem-
ory required to link a large analysis library into a pro-
duction scientific code. In the in-situ case, CTH has to
link ParaView. Since many HPC systems do not effi-
ciently support dynamic libraries,1 the entire static Par-
aView library has to be linked. On the Cray XE6, the
in-situ binary for CTH is 330 MB, where the in-transit
binary for CTH is 30 MB. That is a substantial differ-
ence, especially on systems that are memory limited –
as is the case for most multi-core HPC platforms.

For efficiency reasons, our PVSPY client implemen-
tation does not simply forward all the functions to the
service. In many cases, the client maintains metadata
to avoid unnecessary data transfers. For example, the
PVSPY API includes “setup” functions for initializing
data structures, assigning cell and material field names,
and setting cell and material fields pointers. Not all of
these functions require an immediate interaction with
the data service. In fact, the only operation that requires
a bulk data transport is the function to initiate the anal-
ysis.

Development and testing of the CTH in-transit ser-
vice is ongoing. We expect to publish a more complete
description along with performance results in the near
future.

4. Future work

4.1. Exodus

The current Exodus database format has some limi-
tations that will be addressed in the near future:

• The Exodus data model uses 32-bit integers for all
ids and offsets which limits the model size to ap-
proximately 2.1 billion entities of each type. This
limitation is being eliminated in a backwardly-
compatible manner which will allow existing
databases to be accessed by applications using the
new API.

1Support for dynamic libraries is currently being evaluated for the
Cray XE6.

• The Exodus data model currently only stores sca-
lar data (X-displacement at a node) and higher-
order data structures (vector, tensor, quaternion)
are implied via naming conventions. For exam-
ple, the variables d_x, d_y, d_z would be inter-
preted by some applications as a 3D vector “d”.
Native support for higher-order vector, tensor, and
quaternion data is planned.

• The current Exodus model is a flat array of named
element blocks, sidesets, and nodesets. As mod-
els become more complicated, it is necessary to
reflect the geometric model assembly structure in
the mesh to facilitate visualization and analysis.
Changes to the Exodus data model are being in-
vestigated that would allow storing the model hi-
erarchy/part structure, arbitrary grouping of enti-
ties, and storing transient data on the parts and as-
semblies.

• The current Exodus requires generating a com-
pletely new file every time the model topology
changes, for example element creation or deletion
or the addition of new output fields. This can re-
sult in hundreds of “topology-change” files during
a routine analysis which can overwhelm filesys-
tems, and more importantly, the analyst. The Exo-
dus data model needs to be modified to efficiently
handle changing model topology. In the short-
term, there is the need to develop tools to make
the handling of lots of files more efficient for the
analyst.

• The file-per-processor mode currently used by
Exodus does not scale efficiently to analyses us-
ing thousands or tens of thousands of processors.
Exodus needs to provide better support for Paral-
lel I/O using the parallel capabilities of NetCDF
and/or Parallel NetCDF.

The Exodus library is expected to evolve to sup-
port the ever-increasing data demands of finite element
analysis models and codes.

4.2. I/O libraries for sparse and dense matrices

Of particular value to existing Trilinos users are
I/O libraries that directly interface with data structures
from the Epetra [13] and Tpetra packages. As part
of the EpetraEXT package, there are a set of existing
I/O libraries that require substantial tuning, updating,
and porting to other data formats. The Trios team will
commit a portion of time over the next year to update
and provide improved versions of these libraries to the
Trilinos community.

R.A. Oldfield et al. / Trilinos I/O Support (Trios) 195

4.3. Comparing in-transit with in-situ

Since there are a number of research projects inves-
tigating both in-situ and in-transit approaches, we are
interested in doing a thorough performance evaluation
between the two approaches. Our decision to develop
drop-in replacements for existing libraries makes this
type of investigation relatively easy, particularly for the
CTH example. In the next year, we expect to perform
a detailed performance comparison of CTH in-transit
verses in-situ.

5. Summary

This paper describes the new capability area for
Trilinos called Trios. By providing two sets of func-
tionality, both production quality and experimental,
Trios addresses both immediate needs of the Trilinos
community and provides a platform for experimenta-
tion with new I/O techniques and technologies in a har-
monious form with the Trilinos packages.

The inclusion of the Exodus foundational API, the
Nemesis extensions, and the Sierra C++ wrappers,
a variety of interfaces to a standardized NetCDF file
format are offered. Much of this technology has been
in productive use for a decade or longer proving it is a
mature and useful product.

The more recent developments of the Nessie frame-
work affords experimentation with new I/O techniques
including easier access to staging as well as a trans-
parent way to incorporate “in flight” data processing
between the science application and storage.

In combination, these technologies provide both a
mature, proven API and file format in use by many
science codes as well as interesting technology that is
proving to provide ways to enhance the scalability and
richness of the I/O path.

Continuing developments in both the mature tools
and the experimental platforms will continue to en-
hance both the usability and usefulness of Trios to the
greater Trilinos community.

Acknowledgements and disclaimer

Primary funding for this work came from the Na-
tional Nuclear Security Administration (NNSA) office
for Advanced Simulation and Computing (ASC), and
the Department of Energy, Laboratory Directed Re-
search and Development funding, under contract DE-
AC02-76SF00515.

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract
DE-AC04-94AL85000.

This research used resources of the Oak Ridge Lead-
ership Computing Facility (OLCF), located in the Na-
tional Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office
of Science of the Department of Energy under Contract
DE-AC05-00OR22725. An award of computer time
at the OLCF provided by the Innovative and Novel
Computational Impact on Theory and Experiment (IN-
CITE) program.

This work of authorship was prepared as an account
of work sponsored by an agency of the United States
Government. Accordingly, the United States Govern-
ment retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this con-
tribution, or allow others to do so for United States
Government purposes. Neither Sandia Corporation, the
United States Government, nor any agency thereof, nor
any of their employees makes any warranty, express
or implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness or usefulness
of any information, apparatus, product or process dis-
closed, or represents that its use would not infringe
privately-owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by Sandia Corporation, the
United States Government, or any agency thereof. The
views and opinions expressed herein do not necessarily
state or reflect those of Sandia Corporation, the United
States Government or any agency thereof.

References

[1] R. Alverson, D. Roweth and L. Kaplan, The Gemini system in-
terconnect, in: Proceedings of the 18th Annual Symposium on
High Performance Interconnects, Mountain View, CA, IEEE
Computer Society Press, 2010, pp. 83–87.

[2] R. Brightwell, K. Pedretti, K. Underwood and T. Hudson,
SeaStar interconnect: balanced bandwidth for scalable perfor-
mance, IEEE Micro 26(3) (2006), 41–57.

[3] R. Brightwell, R. Riesen, B. Lawry and A.B. Maccabe, Portals
3.0: protocol building blocks for low overhead communication,
in: Proceedings of the International Parallel and Distributed
Processing Symposium, Fort Lauderdale, FL, IEEE Computer
Society Press, 2002, p. 268.

[4] W.J. Camp and J.L. Tomkins, The red storm computer archi-
tecture and its implementation, in: The Conference on High-
Speed Computing: LANL/LLNL/SNL, Glenedon Beach, OR,
April 2003.

196 R.A. Oldfield et al. / Trilinos I/O Support (Trios)

[5] J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries,
E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-
Crummey, N. Podhorszki, R. Sankaran, S. Shende and
C.S. Yoo, Terascale direct numerical simulations of turbulent
combustion using S3D, Computational Science & Discovery
2(1) (2009), 1–31.

[6] J.A. Clarke and E.R. Mark, Enhancements to the eXtensible
Data Model and format (XDMF), in: Proceedings of the DoD
High Performance Computing Modernization Program Users
Group Conference, Pittsburgh, PA, IEEE Computer Society
Press, 2007, pp. 322–327.

[7] K. Devine, E. Boman, R. Heaphy, B. Hendrickson and
C. Vaughan, Zoltan data management services for parallel dy-
namic applications, Computing in Science and Engineering
4(2) (2002), 90–97.

[8] I. Foster, D. Kohr Jr., R. Krishnaiyer and J. Mogill, Remote
I/O: fast access to distant storage, in: Proceedings of the 5th
Workshop on Input/Output in Parallel and Distributed Systems,
San Jose, CA, ACM Press, 1997, pp. 14–25.

[9] J. Fu, N. Liu, O. Sahni, K.E. Jansen, M.S. Shephard and
C.D. Carothers, Scalable parallel I/O alternatives for massively
parallel partitioned solver systems, in: Proc. International Par-
allel and Distributed Processing Symposium, Workshops and
PhD Forum, Atlanta, GA, April 2010.

[10] B. Hendrickson and R. Leland, The Chaco user’s guide: ver-
sion 2.0, Technical Report SAND94-2692, Sandia National
Laboratories, Albuquerque, NM, 1994.

[11] G.L. Hennigan and J.N. Shadid, NEMESIS I: a set of func-
tions for describing unstructured finite-element data on paral-
lel computers, Technical report, Sandia National Laboratories,
December 1998.

[12] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger,
H. Thornquist, R. Tuminaro, J. Willenbring and A. Williams,
An overview of the Trilinos project, ACM Trans. Math. Soft-
ware 31(3) (2005), 397–423.

[13] M.A. Heroux, Epetra performance optimization guide, Tech-
nical Report SAND2005-1668, Sandia National Laboratories,
Albuquerque, NM, March 2005.

[14] E.S. Hertel Jr., R.L. Bell, M.G. Elrick, A.V. Farnsworth,
G.I. Kerley, J.M. McGlaun, S.V. Petney, S.A. Silling, P.A. Tay-
lor and L. Yarrington, CTH: a software family for multi-
dimensional shock physics analysis, in: Proceedings of the
19th International Symposium on Shock Physics, Marseille,
R. Brun and L.D. Dumitrescu, eds, Vol. 1, Springer-Verlag,
Berlin, 1993, pp. 377–382.

[15] InfiniBand Trade Association, InfiniBand architecture specifi-
cation, Release 1.2, October 2004.

[16] IOR interleaved or random HPC benchmark, available at:
http://sourceforge.net/projects/ior-sio/.

[17] D. Kotz, Disk-directed I/O for MIMD multiprocessors, in:
High Performance Mass Storage and Parallel I/O: Technolo-
gies and Applications, H. Jin, T. Cortes and R. Buyya, eds,
IEEE Computer Society Press and Wiley, New York, NY, 2001,
pp. 513–535 (Chapter 35).

[18] J. Lofstead, R. Oldfield, T. Kordenbrock and C. Reiss, Extend-
ing scalability of collective I/O through Nessie and staging, in:
Proceedings of the 6th Parallel Data Storage Workshop, Seat-
tle, WA, November 2011.

[19] K. Moreland, N. Fabian, P. Marion and B. Geveci, Visual-
ization on supercomputing platform level II ASC milestone

(3537-1b) results from Sandia, Technical Report SAND2010-
6118, Sandia National Laboratories, September 2010.

[20] K. Moreland, R. Oldfield, P. Marion, S. Joudain, N. Pod-
horszki, V. Vishwanath, N. Fabian, C. Docan, M. Parashar,
M. Hereld, M.E. Papka and S. Klasky, Examples of in transit
visualization, in: Proceedings of the PDAC: 2nd International
Workshop on Petascale Data Analytics: Challenges and Op-
portunities, Seattle, WA, November 2011.

[21] R.A. Oldfield, Lightweight storage and overlay networks for
fault tolerance, Technical Report SAND2010-0040, Sandia
National Laboratories, Albuquerque, NM, January 2010.

[22] R.A. Oldfield, S. Arunagiri, P.J. Teller, S. Seelam, R. Riesen,
M.R. Varela and P.C. Roth, Modeling the impact of check-
points on next-generation systems, in: Proceedings of the 24th
IEEE Conference on Mass Storage Systems and Technologies,
San Diego, CA, September 2007.

[23] R.A. Oldfield, A.B. Maccabe, S. Arunagiri, T. Kordenbrock,
R. Riesen, L. Ward and P. Widener, Lightweight I/O for
scientific applications, in: Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, Barcelona, Septem-
ber 2006.

[24] R.A. Oldfield, P. Widener, A.B. Maccabe, L. Ward and T. Ko-
rdenbrock, Efficient data-movement for lightweight I/O, in:
Proceedings of the International Workshop on High Perfor-
mance I/O Techniques and Deployment of Very Large Scale I/O
Systems, Barcelona, September 2006.

[25] R.A. Oldfield, A. Wilson, G. Davidson and C. Ulmer, Access to
external resources using service-node proxies, in: Proceedings
of the Cray User Group Meeting, Atlanta, GA, May 2009.

[26] C. Reiss, G. Lofstead and R. Oldfield, Implementation and
evaluation of a staging proxy for checkpoint I/O, Technical re-
port, Sandia National Laboratories, Albuquerque, NM, August
2008.

[27] R. Rew, G. Davis, S. Emmerson and H. Davies, The NetCDF
users guide: data model, programming interfaces, and format
for self-describing, portable data, Unidata Program Center,
version 4.1.3 edn, June 2011.

[28] R. Riesen, R. Brightwell, P. Bridges, T. Hudson, A. Mac-
cabe, P. Widener and K. Ferreira, Designing and implement-
ing lightweight kernels for capability computing, Concurrency
and Computation: Practice and Experience 21(6) (2008), 793–
817.

[29] L.A. Schoof and V.R. Yarberry, EXODUS II: a finite element
data model, Technical Report SAND92-2137, Sandia National
Laboratories, Albuquerque, NM, 1992.

[30] K.E. Seamons, Y. Chen, P. Jones, J. Jozwiak and M. Winslett,
Server-directed collective I/O in Panda, in: Proceedings of Su-
percomputing’95, San Diego, CA, IEEE Computer Society
Press, 1995, p. 57.

[31] G.D. Sjaardema, Overview of the Sandia National Laborato-
ries engineering analysis code access system (SEACAS), Tech-
nical Report SAND92-2292, Sandia National Laboratories, Al-
buquerque, NM and Livermore, CA, January 1993.

[32] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan and M. Wolf, PreDatA
– preparatory data analytics on peta-scale machines, in: Pro-
ceedings of the International Parallel and Distributed Process-
ing Symposium, Atlanta, GA, April 2010, pp. 1–12.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

