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We introduce viscosity approximations by using the shrinking projection method established by
Takahashi, Takeuchi, and Kubota, for finding a common element of the set of solutions of the
generalized equilibrium problem and the set of fixed points of a quasi-nonexpansive mapping.
Furthermore, we also consider the viscosity shrinking projection method for finding a common
element of the set of solutions of the generalized equilibrium problem and the set of fixed points
of the super hybrid mappings in Hilbert spaces.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖ and C a nonempty closed
convex subset of H and let T be a mapping of C into H. Then, T : C → H is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping T : C → H is said to be
quasi-nonexpansive if ‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F(T) := {x ∈ C : Tx = x}.
Recall that a mapping Ψ : C → H is said to be δ-inverse strongly monotone if there exists a
positive real number δ such that

〈
Ψx −Ψy, x − y

〉 ≥ δ
∥∥Ψx −Ψy

∥∥2
, ∀x, y ∈ C. (1.1)

If Ψ is an δ-inverse strongly monotone mapping of C into H, then it is obvious that Ψ is
1/δ-Lipschitz continuous.
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Let F : C × C → R be a bifunction and Ψ : C → H be δ-inverse strongly monotone
mapping. The generalized equilibrium problem (for short, GEP) for F and Ψ is to find z ∈ C
such that

F
(
z, y

)
+
〈
Ψz, y − z

〉 ≥ 0, ∀y ∈ C. (1.2)

The problem (1.2) was studied by Moudafi [1]. The set of solutions for the problem (1.2) is
denoted by GEP(F,Ψ), that is,

GEP(F,Ψ) =
{
z ∈ C : F

(
z, y

)
+
〈
Ψz, y − z

〉 ≥ 0, ∀y ∈ C
}
. (1.3)

If Ψ ≡ 0 in (1.2), then GEP reduces to the classical equilibrium problem and GEP(F, 0) is
denoted by EP(F), that is,

EP(F) =
{
z ∈ C : F

(
z, y

) ≥ 0, ∀y ∈ C
}
. (1.4)

If F ≡ 0 in (1.2), then GEP reduces to the classical variational inequality and GEP(0,Ψ) is
denoted by VI(Ψ, C), that is,

VI(Ψ, C) =
{
z ∈ C :

〈
Ψz, y − z

〉 ≥ 0, ∀y ∈ C
}
. (1.5)

The problem (1.2) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, min-max problems, and the Nash equilibrium problems in
noncooperative games, see, for example, Blum and Oettli [2] and Moudafi [3].

In 2005, Combettes and Hirstoaga [4] introduced an iterative algorithm of finding the
best approximation to the initial data and proved a strong convergence theorem. In 2007, by
using the viscosity approximation method, S. Takahashi and W. Takahashi [5] introduced
another iterative scheme for finding a common element of the set of solutions of the
equilibrium problem and the set of fixed points of a nonexpansive mapping. Subsequently,
algorithms constructed for solving the equilibrium problems and fixed point problems have
further developed by some authors. In particular, Ceng and Yao [6] introduced an iterative
scheme for finding a common element of the set of solutions of the mixed equilibrium
problem and the set of common fixed points of finitely many nonexpansive mappings.
Maingé and Moudafi [7] introduced an iterative algorithm for equilibrium problems and
fixed point problems. Wangkeeree [8] introduced a new iterative scheme for finding the
common element of the set of common fixed points of nonexpansive mappings, the set of
solutions of an equilibrium problem, and the set of solutions of the variational inequality.
Wangkeeree and Kamraksa [9] introduced an iterative algorithm for finding a common
element of the set of solutions of a mixed equilibrium problem, the set of fixed points of
an infinite family of nonexpansive mappings, and the set of solutions of a general system of
variational inequalities for a cocoercive mapping in a real Hilbert space. Their results extend
and improve many results in the literature.

In 1953,Mann [10] introduced the following iterative procedure to approximate a fixed
point of a nonexpansive mapping T in a Hilbert space H as follows:

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.6)
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where the initial point x1 is taken in C arbitrarily and {αn} is a sequence in [0, 1]. Wittmann
[11] obtained the strong convergence results of the sequence {xn} defined by (1.6) to PFx1

under the following assumptions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn+1 − αn| < ∞,

where PF(T) is the metric projection of H onto F(T). In 2000, Moudafi [12] introduced
the viscosity approximation method for nonexpansive mappings (see [13] for further
developments in both Hilbert and Banach spaces). Let f be a contraction onH. Starting with
an arbitrary initial x1 ∈ H, define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 1, (1.7)

where {αn} is a sequence in (0, 1). It is proved [12, 13] that under conditions (C1), (C2), and
(C3) imposed on {αn}, the sequence {xn} generated by (1.7) strongly converges to the unique
fixed point x∗ of PF(T)f which is a unique solution of the variational inequality

〈(
I − f

)
x∗, x − x∗〉 ≥ 0, x ∈ C. (1.8)

Suzuki [14] considered the Meir-Keeler contractions, which is extended notion of contrac-
tions and studied equivalency of convergence of these approximation methods.

Using the viscosity approximation method, in 2007, S. Takahashi and W. Takahashi
[5] introduced an iterative scheme for finding a common element of the solution set of the
classical equilibrium problem and the set of fixed points of a nonexpansive mapping in a
Hilbert space. Let T : C → H be a nonexpansive mapping. Starting with arbitrary initial
x1 ∈ H, define sequences {xn} and {un} recursively by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Tun, ∀n ∈ N.

(1.9)

They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequences {xn} and {un} converge strongly to z ∈ F(T) ∩ EP(F), where z = PF(T)∩EP(F)f(z).

On the other hand, in 2008, Takahashi et al. [15] has adapted Nakajo and Takahashi’s
[16] idea to modify the process (1.6) so that strong convergence has been guaranteed. They
proposed the following modification for a family of nonexpansive mappings in a Hilbert
space: x0 ∈ H, C1 = C, u1 = PC1x0 and

yn = αnun + (1 − αn)Tnun,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖un − z‖},

un+1 = PCn+1x0, n ∈ N,

(1.10)
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where 0 ≤ αn ≤ a < 1 for all n ∈ N. They proved that if {Tn} satisfies the appropriate
conditions, then {un} generated by (1.10) converges strongly to a common fixed point of
Tn.

Very recently, Kimura and Nakajo [17] considered viscosity approximations by using
the shrinking projection method established by Takahashi et al. [15] and the modified
shrinking projection method proposed by Qin et al. [18], for finding a common fixed point of
countably many nonlinear mappings, and they obtained some strong convergence theorems.

Motivated by these results, we introduce the viscosity shrinking projection method for
finding a common element of the set of solutions of the generalized equilibrium problem and
the set of fixed points of a quasi-nonexpansive mapping. Furthermore, we also consider the
viscosity shrinking projection method for finding a common element of the set of solutions of
the generalized equilibrium problem and the set of fixed points of the super hybrid mappings
in Hilbert spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote
the strong convergence and the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x,
respectively. From [19], we know the following basic properties. For x, y ∈ H and λ ∈ R we
have

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 − λ(1 − λ)

∥∥x − y
∥∥2

. (2.1)

We also know that for u, v, x, y ∈ H, we have

2
〈
u − v, x − y

〉
=
∥∥u − y

∥∥2 + ‖v − x‖2 − ‖u − x‖2 − ∥∥v − y
∥∥2

. (2.2)

For every point x ∈ H, there exists a unique nearest point of C, denoted by PCx, such
that ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C. PC is called the metric projection from H onto C. It is
well known that z = PCx ⇔ 〈x − z, z − y〉 ≥ 0, for all x ∈ H and z, y ∈ C. We also know that
PC is firmly nonexpansive mapping fromH onto C, that is,

∥∥PCx − PCy
∥∥2 ≤ 〈

PCx − PCy, x − y
〉
, ∀x, y ∈ H, (2.3)

and so is nonexpansive mapping.
For solving the generalized equilibrium problem, let us assume that F satisfies the

following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

In order to prove our main results, we also need the following lemmas.
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Lemma 2.1 (see [2]). Let C be a nonempty closed convex subset ofH and let F be a bifunction from
C × C into R satisfying (A1), (A2), (A3), and (A4). Then, for any r > 0 and x ∈ H, there exists a
unique z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.4)

Lemma 2.2 (see [4]). Let C be a nonempty closed convex subset ofH and let F be a bifunction from
C ×C into R satisfying (A1), (A2), (A3), and (A4). Then, for any r > 0 and x ∈ H, define a mapping
Trx : H → C as follows:

Trx =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
∀x ∈ H, r ∈ R. (2.5)

Then the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is,

∥∥Trx − Try
∥∥2 ≤ 〈

Trx − Try, x − y
〉
, ∀x, y ∈ H; (2.6)

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

Remark 2.3 (see [20]). Using (ii) in Lemma 2.2 and (2.2), we have

2
∥∥Trx − Try

∥∥2 ≤ 2
〈
Trx − Try, x − y

〉

=
∥∥Trx − y

∥∥2 +
∥∥Try − x

∥∥2 − ‖Trx − x‖2 − ∥∥Try − y
∥∥2
.

(2.7)

So, for y ∈ F(Tr) and x ∈ H, we have

‖Trx − u‖2 + ‖Trx − x‖2 ≤ ‖x − u‖2. (2.8)

Remark 2.4. For any x ∈ H and r > 0, by Lemma 2.1, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.9)

Replacing x with x − rΨx ∈ H in (2.9), we have

F
(
z, y

)
+
〈
Ψx, y − z

〉
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C, (2.10)

where Ψ : C → H is an inverse-strongly monotone mapping.
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For a sequence {Cn} of nonempty closed convex subsets of a Hilbert space H, define
s − LinCn and w − LsnCn as follows.

x ∈ s − LinCn if and only if there exists {xn} ⊂ H such that xn → x and that xn ∈ Cn

for all n ∈ N.
x ∈ w −LsnCn if and only if there exists a subsequence {Cni} of {Cn} and a subsequence

{yi} ⊂ H such that yi ⇀ y and that yi ∈ Cni for all i ∈ N.
If C0 satisfies

C0 = s − LinCn = w − LsnCn, (2.11)

it is said that {Cn} converges to C0 in the sense of Mosco [21] and we write C0 = M −
limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion, then
{Cn} converges to

⋂∞
n=1 Cn in the sense of Mosco. For more details, see [21]. Tsukada [22]

proved the following theorem for the metric projection.

Theorem 2.5 (see Tsukada [22]). Let H be a Hilbert space. Let {Cn} be a sequence of nonempty
closed convex subsets of H. If C0 = M − limn→∞Cn exists and is nonempty, then for each x ∈ H,
{PCnx} converges strongly to PC0x, where PCn and PC0 are the metric projections of H onto Cn and
C0, respectively.

On the other hand, a mapping f of a complete metric space (X, d) into itself is said to
be a contraction with coefficient r ∈ (0, 1) if d(f(x), f(y)) ≤ rd(x, y) for all x, y ∈ C. It is well
known that f has a unique fixed point [23]. Meir-Keeler [24] defined the following mapping
called Meir-Keeler contraction. Let (X, d) be a complete metric space. A mapping f : X → X
is called aMeir-Keeler contraction if for all ε > 0, there exists δ > 0 such that ε ≤ d(x, y) < ε+δ
implies d(f(x), f(y)) < ε for all x, y ∈ X. It is well known that Meir-Keeler contraction is a
generalization of contraction and the following result is proved in [24].

Theorem 2.6 (see Meir-Keeler [24]). AMeir-Keeler contraction defined on a complete metric space
has a unique fixed point.

We have the following results for Meir-Keeler contractions defined on a Banach space
by Suzuki [14].

Theorem 2.7 (see Suzuki [14]). Let f be aMeir-Keeler contraction on a convex subsetC of a Banach
space E. Then, for every ε > 0, there exists r ∈ (0, 1) such that ‖x − y‖ ≥ ε implies ‖f(x) − f(y)‖ ≤
r‖x − y‖ for all x, y ∈ C.

Lemma 2.8 (see Suzuki [14]). LetC be a convex subset of a Banach space E. Let T be a nonexpansive
mapping on C, and let f be a Meir-Keeler contraction on C. Then the following hold.

(i) T ◦ f is a Meir-Keeler contraction on C.

(ii) For each α ∈ (0, 1), a mapping x �→ (1 − α)Tx + αfx is a Meir-Keeler contraction on C.
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3. Main Results

In this section, using the shrinking projection method by Takahashi et al. [15], we prove
a strong convergence theorem for a quasi-nonexpansive mapping with a generalized
equilibrium problem in a Hilbert space. Before proving it, we need the following lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and δ > 0 and let
Ψ : C → H be δ-inverse strongly monotone. If 0 < λ ≤ 2δ, then I − λΨ is a nonexpansive mapping.

Proof. For x, y ∈ C, we can calculate

∥
∥(I − λΨ)x − (I − λΨ)y

∥
∥2 =

∥
∥x − y − λ(Ψx −Ψy)

∥
∥2

=
∥
∥x − y

∥
∥2 − 2λ

〈
x − y,Ψx −Ψy

〉
+ λ2

∥
∥Ψx −Ψy

∥
∥2

≤ ∥∥x − y
∥∥2 − 2λδ

∥∥Ψx −Ψy
∥∥2 + λ2

∥∥Ψx −Ψy
∥∥2

=
∥∥x − y

∥∥2 + λ(λ − 2δ)
∥∥Ψx −Ψy

∥∥2

≤ ∥∥x − y
∥∥2

.

(3.1)

Therefore I − λΨ is nonexpansive. This completes the proof.

Lemma 3.2. Let C be a nonempty closed convex subset of H, and let T be a quasi-nonexpansive
mapping of C intoH. Then, F(T) is closed and convex.

Proof. We first show that F(T) is closed. Let {zn} be any sequence in F(T) with zn → z. We
claim that z ∈ F(T). Since C is closed, we have z ∈ C. We observe that

‖z − Tz‖ ≤ ‖z − zn‖ + ‖zn − Tz‖
≤ ‖z − zn‖ + ‖z − zn‖
= 2‖z − zn‖.

(3.2)

Since zn → z, we obtain that ‖z − Tz‖ ≤ 0 and hence z = Tz. This show that z ∈ F(T).
Next, we show that F(T) is convex. Let x, y ∈ F(T) and α ∈ [0, 1]. We claim that

αx + (1 − α)y ∈ F(T). Putting z = αx + (1 − α)y, we have

‖z − Tz‖2 = ∥∥αx + (1 − α)y − Tz
∥∥2

=
∥∥α(x − Tz) + (1 − α)

(
y − Tz

)∥∥2

= α‖x − Tz‖2 + (1 − α)
∥∥y − Tz

∥∥2 − α(1 − α)
∥∥x − y

∥∥2

≤ α‖x − z‖2 + (1 − α)
∥∥y − z

∥∥2 − α(1 − α)
∥∥x − y

∥∥2
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= α
∥
∥(1 − α)

(
x − y

)∥∥2 + (1 − α)
∥
∥α

(
y − x

)∥∥2 − α(1 − α)
∥
∥x − y

∥
∥2

=
{
α(1 − α)2 + α2(1 − α) − α(1 − α)

}∥
∥x − y

∥
∥2

= α(1 − α)(1 − α + α − 1)
∥
∥x − y

∥
∥2 = 0.

(3.3)

Hence F(T) is convex. This completes the proof.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and let Ψ be a δ-inverse
strongly monotone mapping from C intoH. Let T : C → C be a quasi-nonexpansive mapping which
is demiclosed on C, that is, if {wk} ⊂ C,wk ⇀ w and (I − T)wk → 0, then w ∈ F(T). Assume
that Ω := GEP(F,Ψ) ∩ F(T)/= ∅ and f is a Meir-Keeler contraction of C into itself. Let the sequence
{xn} ⊂ C be defined by

C1 = C, x1 = x ∈ C,

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1f(xn), ∀n ∈ N,

(3.4)

where PCn+1 is the metric projection of H onto Cn+1 and {αn} ⊂ [0, 1] and {λn} ⊂ (0, 2δ) are real
sequences satisfying

lim inf
n→∞

αn < 1, 0 < a ≤ λn ≤ b < 2δ, (3.5)

for some a, b ∈ R. Then, {xn} converges strongly to z0 ∈ Ω, which satisfies z0 = PΩf(z0).

Proof. Since Ω is a closed convex subset of C, we have that PΩ is well defined and
nonexpansive. Furthermore, we know that f is Meir-Keeler contraction and we know from
Lemma 2.8 (i) that PΩf of C onto Ω is a Meir-Keeler contraction on C. By Theorem 2.6,
there exists a unique fixed point z0 ∈ C such that z0 = PΩf(z0). Next, we observe that
zn = Tλn(xn − λnΨxn) for each n ∈ N and take z ∈ F(T) ∩ GEP(F,Ψ). From z = Tλn(z − λnΨz)
and Lemma 2.2, we have that for any n ∈ N,

‖zn − z‖2 = ‖Tλn(xn − λnΨxn) − Tλn(z − λnΨz)‖2

≤ ‖(xn − λnΨxn) − (z − λnΨz)‖2

≤ ‖xn − z‖2.

(3.6)

Next, we divide the proof into several steps.
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Step 1. Cn is closed convex and {xn} is well defined for every n ∈ N.
It is obvious from the assumption that C1 := C is closed convex and Ω ⊂ C1. For any

k ∈ N, suppose that Ck is closed and convex, and Ω ⊂ Ck. Note that for all z ∈ Ck,

∥
∥yk − z

∥
∥2 ≤ ‖xk − z‖2 ⇐⇒ ∥

∥yk − z
∥
∥2 − ‖xk − z‖2 ≤ 0

⇐⇒ ∥
∥yk

∥
∥2 + ‖z‖2 − 2〈yk, z〉 − ‖xk‖2 − ‖z‖2 + 2〈xk, z〉 ≤ 0

⇐⇒ ∥
∥yk

∥
∥2 − 2〈yk − xk, z〉 − ‖xk‖2 ≤ 0.

(3.7)

It is easy to see that Ck+1 is closed. Next, we prove that Ck+1 is convex. For any u, v ∈ Ck+1 and
α ∈ [0, 1], we claim that z := αu + (1 − α)v ∈ Ck+1. Since u ∈ Ck+1, we have ‖yk − u‖ ≤ ‖xk − u‖
and so ‖yk − u‖2 ≤ ‖xk − u‖2, that is, ‖yk‖2 − 2〈yk − xk, u〉 − ‖xk‖2 ≤ 0. Similarly, v ∈ Ck+1, we
get ‖yk‖2 − 2〈yk − xk, v〉 − ‖xk‖2 ≤ 0.

Thus,

α
∥∥yk

∥∥2 − 2
〈
yk − xk, αu

〉 − α‖xk‖2 ≤ 0,

(1 − α)
∥∥yk

∥∥2 − 2
〈
yk − xk, (1 − α)v

〉 − (1 − α)‖xk‖2 ≤ 0.
(3.8)

Combining the above inequalities, we obtain

∥∥yk

∥∥2 − 2
〈
yk − xk, αu + (1 − α)v

〉 − ‖xk‖2 ≤ 0. (3.9)

Therefore ‖yk − z‖ ≤ ‖xk − z‖. This shows that z ∈ Ck+1 and hence Ck+1 is convex. Therefore
Cn is closed and convex for all n ∈ N.

Next, we show that Ω ⊂ Cn, for all n ∈ N. For any k ∈ N, suppose that v ∈ Ω ⊂ Ck.
Since T is quasi-nonexpansive and from (3.6), we have

∥∥yk − v
∥∥2 = ‖αkxk + (1 − αk)Tzk − v‖2

= ‖αk(xk − v) + (1 − αk)(Tzk − v)‖2

≤ αk‖xk − v‖2 + (1 − αk)‖Tzk − v‖2

≤ αk‖xk − v‖2 + (1 − αk)‖zk − v‖2

≤ αk‖xk − v‖2 + (1 − αk)‖xk − v‖2

= ‖xk − v‖2.

(3.10)

So, we have v ∈ Ck+1. By principle of mathematical induction, we can conclude that Cn is
closed and convex, and Ω ⊂ Cn, for all n ∈ N. Hence, we have

∅ /= Ω ⊂ Cn+1 ⊂ Cn, (3.11)

for all n ∈ N. Therefore {xn} is well defined.
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Step 2. limn→∞‖xn − u‖ = 0 for some u ∈ ⋂∞
n=1 Cn and 〈f(u) − u, u − y〉 ≥ 0 for all y ∈ Ω.

Since
⋂∞

n=1 Cn is closed convex, we also have that P⋂∞
n=1 Cn

is well defined and so
P⋂∞

n=1 Cn
f is a Meir-Keeler contraction on C. By Theorem 2.6, there exists a unique fixed point

u ∈ ⋂∞
n=1 Cn of P⋂∞

n=1 Cn
f . Since Cn is a nonincreasing sequence of nonempty closed convex

subsets of H with respect to inclusion, it follows that

∅ /= Ω ⊂
∞⋂

n=1

Cn = M − lim
n→∞

Cn. (3.12)

Setting un := PCnf(u) and applying Theorem 2.5, we can conclude that

lim
n→∞

un = P⋂∞
n=1 Cn

f(u) = u. (3.13)

Next, we will prove that limn→∞‖xn−u‖ = 0. Assume to contrary that lim supn→∞‖xn−u‖/= 0,
there exists ε > 0 and a subsequence {‖xnj − u‖} of {‖xn − u‖} such that

∥∥∥xnj − u
∥∥∥ ≥ ε, ∀j ∈ N, (3.14)

which gives that

lim sup
j→∞

∥∥∥xnj − u
∥∥∥ ≥ ε > 0. (3.15)

We choose a positive number ε′ > 0 such that

lim sup
j→∞

∥∥∥xnj − u
∥∥∥ > ε′ > 0. (3.16)

For such ε′, by the definition of Meir-Keeler contraction, there exists δε′ > 0 with

ε′ + δε′ < lim sup
j→∞

∥∥∥xnj − u
∥∥∥, (3.17)

such that
∥∥x − y

∥∥ < ε′ + δε′ implies
∥∥f(x) − f

(
y
)∥∥ < ε′, (3.18)

for all x, y ∈ C. Again for such ε′, by Theorem 2.7, there exists rε′ ∈ (0, 1) such that

∥∥x − y
∥∥ ≥ ε′ + δε′ implies

∥∥f(x) − f
(
y
)∥∥ < rε′

∥∥x − y
∥∥. (3.19)

Since un → u, there exists n0 ∈ N such that

‖un − u‖ < δε′ , ∀n ≥ n0. (3.20)

By the idea of Suzuki [14] and Kimura and Nakajo [17], we consider the following two cases.
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Case I. Assume that there exists n1 ≥ n0 such that

‖xn1 − u‖ < ε′ + δε′ . (3.21)

Thus, we get

‖xn1+1 − u‖ ≤ ‖xn1+1 − un1+1‖ + ‖un1+1 − u‖

=
∥
∥
∥PCn1+1

f(xn1) − PCn1+1
f(u)

∥
∥
∥ + ‖un1+1 − u‖

≤ ∥
∥f(xn1) − f(u)

∥
∥ + ‖un1+1 − u‖

< ε′ + δε′ .

(3.22)

By induction on {n}, we can obtain that

‖xn − u‖ < ε′ + δε′ , (3.23)

for all n ≥ n0. In particular, for all j ≥ n0, we have nj ≥ j ≥ n0 and

∥∥∥xnj − u
∥∥∥ < ε′ + δε′ . (3.24)

This implies that

lim sup
j→∞

∥∥∥xnj − u
∥∥∥ ≤ ε′ + δε′ < lim sup

j→∞

∥∥∥xnj − u
∥∥∥, (3.25)

which is a contradiction. Therefore, we conclude that ‖xn − u‖ → 0 as n → ∞.
Case II. Assume that

‖xn − u‖ ≥ ε′ + δε′ , ∀n ≥ n0. (3.26)

By (3.19), we have

∥∥f(xn) − f(u)
∥∥ < rε′ ‖xn − u‖, ∀n ≥ n0. (3.27)

Thus, we have

‖xn+1 − un+1‖ =
∥∥PCn+1f(xn) − PCn+1f(u)

∥∥

≤ ∥∥f(xn) − f(u)
∥∥

≤ rε′ ‖xn − u‖
≤ rε′(‖xn − un‖ + ‖un − u‖),

(3.28)
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for every n ≥ n0. In particular, we have

∥
∥
∥xnj+1 − unj+1

∥
∥
∥ ≤ rε′

(∥∥
∥xnj − unj

∥
∥
∥ +

∥
∥
∥unj − u

∥
∥
∥
)
, (3.29)

for every j ≥ n0 (nj ≥ j ≥ n0). Let us consider

lim sup
n→∞

∥
∥
∥xnj − unj

∥
∥
∥ = lim sup

j→∞

∥
∥
∥xnj+1 − unj+1

∥
∥
∥

≤ rε′ lim sup
j→∞

(∥∥
∥xnj − unj

∥
∥
∥ +

∥
∥
∥unj − u

∥
∥
∥
)

≤ rε′ lim sup
j→∞

∥
∥
∥xnj − unj

∥
∥
∥ + rε′ lim sup

j→∞

∥
∥
∥unj − u

∥
∥
∥

= rε′ lim sup
j→∞

∥∥∥xnj − unj

∥∥∥

< lim sup
j→∞

∥∥∥xnj − unj

∥∥∥,

(3.30)

which gives a contradiction. Hence, we obtain that

lim
n→∞

‖xn − u‖ = 0, (3.31)

and therefore {xn} is bounded. Moreover, {f(xn)}, {zn}, and {yn} are also bounded. Since
xn+1 = PCn+1f(xn), we have

〈
f(xn) − xn+1, xn+1 − y

〉 ≥ 0, ∀y ∈ Cn+1. (3.32)

Since Ω ⊂ Cn+1, we get

〈
f(xn) − xn+1, xn+1 − y

〉 ≥ 0, ∀n ∈ N, y ∈ Ω. (3.33)

We have from xn → u that

〈
f(u) − u, u − y

〉 ≥ 0, ∀y ∈ Ω. (3.34)

Step 3. There exists a subsequence {‖xni − zni‖} of {‖xn − zn‖} such that ‖xni − zni‖ → 0 as
i → ∞.

We have from (3.13) and (3.31) that

‖xn − xn+1‖ ≤ ‖xn − u‖ + ‖u − un+1‖ + ‖un+1 − xn+1‖
= ‖xn − u‖ + ‖u − un+1‖ +

∥∥PCn+1f(xn) − PCn+1f(u)
∥∥

≤ ‖xn − u‖ + ‖u − un+1‖ +
∥∥f(xn) − f(u)

∥∥ −→ 0.

(3.35)
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From xn+1 ∈ Cn+1, we have that

∥
∥yn − xn+1

∥
∥ ≤ ‖xn − xn+1‖, (3.36)

and so ‖yn − xn+1‖ → 0. We also have

∥
∥yn − xn

∥
∥ ≤ ∥

∥yn − xn+1
∥
∥ + ‖xn+1 − xn‖ −→ 0. (3.37)

From lim infn→∞αn < 1, there exists a subsequence {αni} of {αn} and α0 with 0 ≤ α0 < 1 such
that αni → α0. Since ‖xn − yn‖ = ‖xn − αnxn − (1 − α)Tzn‖ = (1 − αn)‖xn − Tzn‖, we have

‖Tzni − xni‖ −→ 0 as i −→ ∞. (3.38)

Using Lemma 2.2 (ii) and (3.6), we have

‖zn − z‖2 = ‖Tλn(xn − λnΨxn) − Tλn(z − λnΨz)‖2

≤ 〈(xn − λnΨxn) − (z − λnΨz), zn − z〉
= − 〈(xn − λnΨxn) − (z − λnΨz), z − zn〉

=
1
2

(
‖(xn − λnΨxn) − (z − λnΨz)‖2 + ‖zn − z‖2

−‖(xn − λnΨxn) − (z − λnΨz) + (z − zn)‖2
)

≤ 1
2

(
‖xn − z‖2 + ‖zn − z‖2 − ‖(xn − zn) − λn(Ψxn −Ψz)‖2

)

=
1
2

(
‖xn − z‖2 + ‖zn − z‖2 − ‖xn − zn‖2 + 2λn〈xn − zn,Ψxn −Ψz〉 − λ2n‖Ψxn −Ψz‖2

)
.

(3.39)

So, we have

‖zn − z‖2 ≤ ‖xn − z‖2 − ‖xn − zn‖2 + 2λn〈xn − zn,Ψxn −Ψz〉 − λ2n‖Ψxn −Ψz‖2. (3.40)

Let us consider

∥∥yn − z
∥∥2 = ‖αn(xn − z) + (1 − αn)(Tzn − z)‖2

≤ αn‖xn − z‖2 + (1 − αn)‖Tzn − z‖2

≤ αn‖xn − z‖2 + (1 − αn)‖zn − z‖2

= αn‖xn − z‖2 + (1 − αn)‖Tλn(I − λnΨ)xn − Tλn(I − λnΨ)z‖2
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≤ αn‖xn − z‖2 + (1 − αn)‖(I − λnΨ)xn − (I − λnΨ)z‖2

= αn‖xn − z‖2 + (1 − αn)‖(xn − z) − λn(Ψxn −Ψz)‖2

= αn‖xn − z‖2 + (1 − αn)‖xn − z‖2 + (1 − αn)λ2n‖Ψxn −Ψz‖2

− 2(1 − αn)λn〈xn − z,Ψxn −Ψz〉

≤ ‖xn − z‖2 + (1 − αn)λ2n‖Ψxn −Ψz‖2 − 2(1 − αn)λnδ‖Ψxn −Ψz‖2

= ‖xn − z‖2 + (1 − αn)(λn − 2δ)λn‖Ψxn −Ψz‖2

≤ ‖xn − z‖2 + (1 − αn)(b − 2δ)b‖Ψxn −Ψz‖2.
(3.41)

In particular, we have

(1 − αni)(2δ − b)b‖Ψxni −Ψz‖2 ≤ ‖xni − z‖2 − ∥∥yni − z
∥∥2

≤ ∥∥xni − yni

∥∥2 + 2
∥∥xni − yni

∥∥∥∥yni − z
∥∥.

(3.42)

Since αni → α0 with α0 < 1 and ‖xni − yni‖ → 0, we obtain that

‖Ψxni −Ψz‖ −→ 0. (3.43)

Using (3.40), we have

∥∥yn − z
∥∥2 ≤ αn‖xn − z‖2 + (1 − αn)‖zn − z‖2

≤ αn‖xn − z‖2 + (1 − αn)

×
(
‖xn − z‖2 − ‖xn − zn‖2 + 2λn〈xn − zn,Ψxn −Ψz〉 − λ2n‖Ψxn −Ψz‖2

)

≤ αn‖xn − z‖2 + (1 − αn)
(
‖xn − z‖2 − ‖xn − zn‖2 + 2λn‖xn − zn‖‖Ψxn −Ψz‖

)

≤ ‖xn − z‖2 − (1 − αn)‖xn − zn‖2 + 2(1 − αn)λn(‖xn‖ + ‖zn‖)‖Ψxn −Ψz‖

≤ ‖xn − z‖2 − (1 − αn)‖xn − zn‖2 + 2(1 − αn)bM‖Ψxn −Ψz‖,
(3.44)

where M := sup{‖xn‖ + ‖yn‖ : n ∈ N}.
So, we have

(1 − αni)‖xni − zni‖2 ≤ ‖xni − z‖2 − ∥∥yni − z
∥∥2 + 2(1 − αni)bM‖Ψxni −Ψz‖

≤ ∥∥xni − yni

∥∥2 + 2
∥∥xni − yni

∥∥∥∥yni − z
∥∥ + 2(1 − αni)bM‖Ψxni −Ψz‖.

(3.45)
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We have from αni → α0, (3.37), and (3.43) that

‖xni − zni‖ −→ 0. (3.46)

Step 4. Finally, we prove that u ∈ Ω := F(T) ∩GEP(F,Ψ).
Since yn = αnxn + (1 − αn)Tzn, we have yn − Tzn = αn(xn − Tzn). So, from (3.38) we

have

∥
∥yni − Tzni

∥
∥ = αni‖xni − Tzni‖ −→ 0. (3.47)

Since ‖zni − Tzni‖ ≤ ‖zni − xni‖ + ‖xni − yni‖ + ‖yni − Tzni‖, from (3.37), (3.46), and (3.47) we
have

‖zni − Tzni‖ −→ 0. (3.48)

Since xni → u, we have zni → u. So, from (3.48) and the demiclosed property of T , we have

u ∈ F(T). (3.49)

We next show that u ∈ GEP(F,Ψ). Since zn = Tλn(xn − λnΨxn), for any y ∈ C we have

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
y − zn, zn − xn

〉 ≥ 0. (3.50)

From (A2), we have

−F(y, zn
)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
y − zn, zn − xn

〉 ≥ 0 (3.51)

and so

〈
Ψxn, y − zn

〉
+

1
λn

〈
y − zn, zn − xn

〉 ≥ F
(
y, zn

)
. (3.52)

Replacing n by ni, we have

〈
Ψxni , y − zni

〉
+
〈
y − zni ,

zni − xni

λni

〉
≥ F

(
y, zni

)
. (3.53)

Note that Ψ is 1/δ-Lipschitz continuous, and from (3.46), we have

‖Ψzni −Ψxni‖ −→ 0. (3.54)
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For t ∈ (0, 1] and y ∈ C, let z∗t = ty + (1 − t)u. Since C is convex, we have z∗t ∈ C. So, from
(3.53)we have

〈z∗t − zni ,Ψz∗t 〉 ≥ 〈z∗t − zni ,Ψz∗t 〉 − 〈z∗t − zni ,Ψxni〉 −
〈
z∗t − zni ,

zni − xni

λni

〉
+ F(z∗t , zni)

= 〈z∗t − zni ,Ψz∗t −Ψxni〉 −
〈
z∗t − zni ,

zni − xni

λni

〉
+ F(z∗t , zni)

= 〈z∗t − zni ,Ψz∗t −Ψzni〉 + 〈z∗t − zni ,Ψzni −Ψxni〉

−
〈
z∗t − zni ,

zni − xni

λni

〉
+ F(z∗t , zni).

(3.55)

From 〈z∗t − zni ,Ψz∗t −Ψzni〉 ≥ 0, we have

〈z∗t − zni ,Ψz∗t 〉 ≥ 〈z∗t − zni ,Ψzni −Ψxni〉 −
〈
z∗t − zni ,

zni − xni

λni

〉
+ F(z∗t , zni). (3.56)

Thus,

〈z∗t − zni ,Ψz∗t 〉 − ‖z∗t − zni‖‖Ψzni −Ψxni‖ ≥ −‖z∗t − zni‖
∥∥∥∥
zni − xni

λni

∥∥∥∥ + F(z∗t , zni). (3.57)

From Step 3 and (3.54), we obtain

〈z∗t − u,Ψz∗t 〉 ≥ F(z∗t , u). (3.58)

From (A1), (A4), and (3.58), we have

0 = F(z∗t , z
∗
t ) = F

(
z∗t , ty + (1 − t)u

)

≤ tF
(
z∗t , y

)
+ (1 − t)F(z∗t , u)

≤ tF
(
z∗t , y

)
+ (1 − t)〈z∗t − u,Ψz∗t 〉

≤ tF
(
z∗t , y

)
+ (1 − t)t〈y − u,Ψz∗t 〉,

(3.59)

and hence

0 ≤ F
(
z∗t , y

)
+ (1 − t)

〈
y − u,Ψz∗t

〉
. (3.60)
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Letting t ↓ 0 and from (A3), we have that for each y ∈ C,

0 ≤ lim
t↓0

(
F
(
z∗t , y

)
+ (1 − t)

〈
y − u,Ψz∗t

〉)

= lim
t↓0

(
F
(
ty + (1 − t)u, y

)
+ (1 − t)

〈
y − u, tΨy + (1 − t)Ψu

〉)

≤ F
(
u, y

)
+
〈
y − u,Ψu

〉
.

(3.61)

This implies that u ∈ GEP(F,Ψ). So, we have u ∈ F(T) ∩ GEP(F,Ψ). We obtain from (3.34)
that u = z0 and hence, {xn} converges strongly to z0. This completes the proof.

By Theorem 3.3, we can obtain some new and interesting strong convergence
theorems. Now we give some examples as follows.

Setting f(xn) = x, ∀n ∈ N in Theorem 3.3, we obtain the following result.

Corollary 3.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and let Ψ be a δ-inverse
strongly monotone mapping from C intoH. Let T : C → C be a quasi-nonexpansive mapping which
is demiclosed on C. Assume that Ω /= ∅ and let C1 = C and {xn} ⊂ C be a sequence generated by
x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x, ∀n ∈ N,

(3.62)

where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ [0, 1] and {λn} ⊂ [0, 2δ) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn ≤ b < 2δ, (3.63)

for some a ∈ R. Then {xn} converges strongly to z0 = PΩz0.

Setting Ψ ≡ 0 in Theorem 3.3, we obtain the following result.
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Corollary 3.5. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let T : C → C be a quasi-
nonexpansive mapping which is demiclosed on C. Assume that EP(F) ∩ F(T) /= ∅ and f is a Meir-
Keeler contraction of C into itself. Let C1 = C and {xn} ⊂ C be a sequence generated by x1 = x ∈ C
and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn+1 =
{
z ∈ Cn :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1f(xn), ∀n ∈ N,

(3.64)

where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ [0, 1] and {λn} ⊂ [0,∞) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn, (3.65)

for some a ∈ R. Then {xn} converges strongly to z0 ∈ F(T) ∩ EP(F).

Setting Ψ ≡ 0 and f(xn) = x for all n ∈ N in Theorem 3.3, we obtain the following
result.

Corollary 3.6. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let T : C → C be an quasi-
nonexpansive mapping which is demiclosed on C and assume that EP(F)∩F(T) /= ∅. Let C1 = C and
{xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x, ∀n ∈ N,

(3.66)

where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ [0, 1] and {λn} ⊂ [0,∞) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn, (3.67)

for some a ∈ R. Then {xn} converges strongly to z0 ∈ F(T) ∩ EP(F).

Next, using the CQ hybrid method introduced by Nakajo and Takahashi [16], we
prove a strong convergence theorem of a quasi-nonexpansive mapping for solving the
generalized equilibrium problem.
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Theorem 3.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H. Let T : C → C be an quasi-nonexpansive mapping which is
demiclosed on C. Assume that Ω /= ∅ and f is a Meir-Keeler contraction of C into itself. Let Q1 = C
and {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn =
{
z ∈ Qn−1 :

〈
f(xn−1) − xn, xn − z

〉 ≥ 0
}
,

xn+1 = PCn∩Qnf(xn), ∀n ∈ N,

(3.68)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn ≤ d < 2δ, (3.69)

for some b, c, d ∈ R. Then, {xn} converges strongly to z0 ∈ Ω, which satisfies z0 = PΩf(z0).

Proof. As in the proof of Theorem 3.3, we have that the mapping PΩf of C onto Ω is a Meir-
Keeler contraction on C. By Theorem 2.6, there exists a unique fixed point z0 ∈ C such that
z0 = PΩf(z0). Next, it is clear that Cn is closed and convex. Next, we will show that Qn is
closed and convex for all n ∈ N. For any n ∈ N, let {zk} be a sequence inQn such that zk → z.
For each k ∈ N, we observe that

0 ≤ 〈
xn − zk, f(xn−1) − xn

〉
=

1
2

(∥∥f(xn−1) − zk
∥∥2 − ‖xn − zk‖2 −

∥∥f(xn−1) − xn

∥∥2
)
. (3.70)

Taking k → ∞, we get 〈xn − z, f(xn−1) − xn〉 ≥ 0 and then z ∈ Qn. Therefore Qn is closed.
Next, we will show that Qn is convex. For any u, v ∈ Qn, and α ∈ [0, 1], put z =

αu + (1 − α)v. We claim that z ∈ Qn. Since u ∈ Qn, we have 〈αxn − αu, f(xn−1) − xn〉 ≥ 0.
Similarly, since v ∈ Qn, we have 〈(1 − α)xn − (1 − α)v, f(xn−1) − xn〉 ≥ 0. Thus,

0 ≤ 〈αxn − αu + (1 − α)xn − (1 − α)v, f(xn−1) − xn〉
= 〈xn − αu − (1 − α)v, f(xn−1) − xn〉
= 〈xn − z, f(xn−1) − xn〉.

(3.71)

It follows that z ∈ Qn, and therefore we have that Qn is convex. We obtain from both Cn and
Qn which are closed convex sets for every n ∈ N that Cn ∩Qn is closed and convex for every
n ∈ N.

Next, we will show that Cn ∩ Qn is nonempty. Let z ∈ F(T) ∩ GEP(F,Ψ). We will
show that z ∈ Cn for any n ∈ N. We notice that zn = Tλn(xn − λnΨxn) for each n ∈ N and
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z = Tλn(z − λnΨz). From Ψ which is an inverse strongly monotone mapping Lemma 2.2 (ii),
Lemma 3.1, we obtain

‖zn − z‖ ≤ ‖xn − z‖, for anyn ∈ N. (3.72)

Since T is quasi-nonexpansive with the fixed point z and from (3.72), we have

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2. (3.73)

So, we have z ∈ Cn. Therefore F(T) ∩GEP(F,Ψ) ⊂ Cn, for all n ∈ N.
Next, we will show that

F(T) ∩GEP(F,Ψ) ⊂ Cn ∩Qn, ∀n ∈ N. (3.74)

It is obvious that F(T) ∩GEP(F,Ψ) ⊂ C = Q1. Hence

F(T) ∩GEP(F,Ψ) ⊂ C1 ∩Q1. (3.75)

For any k ∈ N, suppose that

F(T) ∩GEP(F,Ψ) ⊂ Ck ∩Qk. (3.76)

Since xk+1 = PCk∩Qkf(xk), we have

〈
f(xk) − xk+1, xk+1 − z

〉 ≥ 0, ∀z ∈ Ck ∩Qk. (3.77)

In particular, for any z ∈ F(T) ∩GEP(F,Ψ), we obtain that

〈
f(xk) − xk+1, xk+1 − z

〉 ≥ 0. (3.78)

This shows that z ∈ Qk+1. Hence F(T) ∩GEP(F,Ψ) ⊂ Qk+1. Therefore, we conclude that

F(T) ∩GEP(F,Ψ) ⊂ Ck+1 ∩Qk+1. (3.79)

By principle of mathematical induction, we can conclude that

F(T) ∩GEP(F,Ψ) ⊂ Cn ∩Qn, ∀n ∈ N. (3.80)

Hence {xn} is well defined. Since P⋂∞
n=1 Qn

f is a Meir-Keeler contraction on C, there exists a
unique element u ∈ C such that u = P⋂∞

n=1 Qn
f(u). For each n, let un = PQnf(u). Since F(T) ∩

GEP(F,Ψ) ⊂ Qn+1 ⊂ Qn, we have from Theorem 2.5 that un → u. Notice that xn = PQnf(xn−1).
Thus, as in the proof of Theorem 3.3, we get xn → u and hence {xn} is bounded. Moreover,

lim
n→∞

‖xn − xn+1‖ = 0, lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.81)
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As the proof of Theorem 3.3, we have that

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + (1 − αn)(λn − 2δ)λn‖Ψxn −Ψz‖2. (3.82)

Thus,

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + (1 − a)(d − 2δ)d‖Ψxn −Ψz‖2 (3.83)

and so

(1 − a)(2δ − d)d‖Ψxn −Ψz‖2 ≤ ‖xn − z‖2 − ∥
∥yn − z

∥
∥2

≤ ∥
∥xn − yn

∥
∥2 + 2

∥
∥xn − yn

∥
∥
∥
∥yn − z

∥
∥.

(3.84)

Since (1 − a)(2δ − d)d > 0 and ‖xn − yn‖ → 0, we obtain that

‖Ψxn −Ψz‖ −→ 0. (3.85)

Using (3.40) in Theorem 3.3, we have

∥∥yn − z
∥∥2 ≤ ‖xn − z‖2 − (1 − b)‖xn − zn‖2 + 2(1 − a)dM‖Ψxn −Ψz‖, (3.86)

where M := sup{‖xn‖ + ‖yn‖}. So, we have

(1 − b)‖xn − zn‖2 ≤ ‖xn − z‖2 − ∥∥yn − z
∥∥2 + 2(1 − a)dM‖Ψxn −Ψz‖

≤ ∥∥xn − yn

∥∥2 + 2
∥∥xn − yn

∥∥∥∥yn − z
∥∥ + 2(1 − a)dM‖Ψxn −Ψz‖.

(3.87)

We have from 1 − b > 0, ‖xn − yn‖ → 0 and (3.85) that

‖xn − zn‖ −→ 0, (3.88)

which implies that

zn −→ u. (3.89)

Notice that

∥∥xn − yn

∥∥ = ‖xn − αnxn − (1 − α)Tzn‖ = (1 − αn)‖xn − Tzn‖, (3.90)

and from lim supn→∞αn ≤ b < 1, we have

‖Tzn − xn‖ −→ 0. (3.91)
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Since yn = αnxn + (1 − αn)Tzn, we have yn − Tzn = αn(xn − Tzn). So, from 0 < a ≤ αn ≤ b < 1
and (3.91), we obtain

∥
∥yn − Tzn

∥
∥ −→ 0 (3.92)

and hence

‖zn − Tzn‖ −→ 0. (3.93)

From (3.89), (3.93), and the demiclosed property of T , we have u ∈ F(T). As in the proof of
Theorem 3.3 we have that u ∈ F(T) ∩GEP(F,Ψ). Since F(T) ∩GEP(F,Ψ) ⊂ Qn+1, we get

〈
f(xn) − xn+1, xn+1 − y

〉 ≥ 0, (3.94)

for all n ∈ N and y ∈ F(T) ∩GEP(F,Ψ). We have from xn → u that

〈
f(u) − u, u − y

〉 ≥ 0, (3.95)

for all y ∈ F(T) ∩ GEP(F,Ψ), which implies that u = PΩf(u). It follows that u = z0, since
z0 ∈ F(T) ∩ GEP(F,Ψ) of PΩf is unique. Hence, {xn} converges strongly to z0. This completes
the proof.

Setting f(xn) = x, for all n ∈ N in Theorem 3.7, we obtain the following result.

Corollary 3.8. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H and let T : C → C be a quasi-nonexpansive mapping which is
demiclosed on C. Assume thatΩ := GEP(F,Ψ) ∩ F(T) /= ∅. LetQ1 = C and {xn} ⊂ C be a sequence
generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ Qn−1 : 〈x − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(3.96)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn ≤ d < 2δ, (3.97)

for some a, b, c, d ∈ R. Then {xn} converges strongly to z0 = PΩf(z0).

Setting Ψ ≡ 0 in Theorem 3.7, we obtain the following result.
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Corollary 3.9. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and let T : C → C be
an quasi-nonexpansive mapping which is demiclosed on C. Assume that EP(F) ∩ F(T) /= ∅ and f
is a Meir-Keeler contraction of C into itself. Let Q1 = C and {xn} ⊂ C be a sequence generated by
x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn =
{
z ∈ Qn−1 :

〈
f(xn−1) − xn, xn − z

〉 ≥ 0
}
,

xn+1 = PCn∩Qnf(xn), ∀n ∈ N,

(3.98)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn, (3.99)

for some a, b, c ∈ R. Then {xn} converges strongly to z0 ∈ F(T) ∩ EP(F).

Setting Ψ ≡ 0 and f(xn) = x, ∀n ∈ N in Theorem 3.7, we obtain the following result.

Corollary 3.10. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and let T : C → C be a
quasi-nonexpansive mapping which is demiclosed on H. Assume that EP(F) ∩ F(T)/= ∅. Let Q1 = C
and {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈zn − xn, y − zn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Tzn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ Qn−1 : 〈x − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(3.100)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 < a ≤ αn ≤ b < 1, 0 < c ≤ λn, (3.101)

for some a, b, c ∈ R. Then {xn} converges strongly to z0 ∈ F(T) ∩ EP(F).
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4. Applications

In this section, we present some convergence theorems deduced from the results in the
previous section. Recall that a mapping T : C → H is said to be nonspreading if

2
∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥Tx − y
∥
∥2 +

∥
∥Ty − x

∥
∥2 (4.1)

for all x, y ∈ C. Further, a mapping T : C → H is said to be hybrid if

3
∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥x − y
∥
∥2 +

∥
∥Tx − y

∥
∥2 +

∥
∥Ty − x

∥
∥2
, (4.2)

for all x, y ∈ C. These mappings are deduced from a firmly nonexpansive mapping in a
Hilbert space.

A mapping F : C → H is said to be firmly nonexpansive if

∥∥Fx − Fy
∥∥2 ≤ 〈

x − y, Fx − Fy
〉
, (4.3)

for all x, y ∈ C; see, for instance, Browder [25] and Goebel and Kirk [26]. We also know that
a firmly nonexpansive mapping F can be deduced from an equilibrium problem in a Hilbert
space.

Recently, Kocourek et al. [27] introduced a more broad class of nonlinear mappings
called generalized hybrid if there are α, β ∈ R such that

α
∥∥Tx − Ty

∥∥2 + (1 − α)
∥∥x − Ty

∥∥2 ≤ β
∥∥Tx − y

∥∥2 +
(
1 − β

)∥∥x − y
∥∥2

, (4.4)

for all x, y ∈ C. Very recently, they defined a more broad class of mappings than the class
of generalized hybrid mappings in a Hilbert space. A mapping S : C → H is called super
hybrid if there are α, β, γ ∈ R such that

α
∥∥Sx − Sy

∥∥2 +
(
1 − α + γ

)∥∥x − Sy
∥∥2

≤ (
β +

(
β − α

)
γ
)∥∥Sx − y

∥∥2 +
(
1 − β − (

β − α − 1
)
γ
)∥∥x − y

∥∥2

+
(
α − β

)
γ‖x − Sx‖2 + γ

∥∥y − Sy
∥∥2

,

(4.5)

for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. We notice that
an (α, β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So, the class of super hybrid
mappings contains the class of generalized hybrid mappings. A super hybrid mapping is
not quasi-nonexpansive generally. For more details, see [20]. Before proving, we need the
following lemmas.

Lemma 4.1 (see [20]). Let C be a nonempty subset of a Hilbert space H and let α, β, and γ be real
numbers with γ /= −1. Let S and T be mappings ofC intoH such that T = (1/(1+γ))S+(γ/(1+γ))I.
Then, S is (α, β, γ)-super hybrid if and only if T is (α, β)-generalized hybrid. In this case, F(S) =
F(T).

Lemma 4.2 (see [20]). LetH be a Hilbert space and let C be a nonempty closed convex subset ofH.
Let T : C → H be a generalized hybrid mapping. Then T is demiclosed on C.
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Setting T := (1/(1 + γ))S + (γ/(1 + γ))I in Theorem 3.3, where S is a super hybrid
mapping and γ is a real number, we obtain the following result.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H. Let α, β and γ be real numbers with γ /= − 1 and let S : C → H
be an (α, β, γ)-super hybrid mapping such that GEP(F,Ψ) ∩ F(S)/= ∅ and let f be a Meir-Keeler
contraction of C into itself. Let C1 = C and {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1f(xn), ∀n ∈ N,

(4.6)

where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn ≤ b < 2δ, (4.7)

for some a, b ∈ R. Then {xn} converges strongly to z0 = PF(S)∩GEP(F,Ψ)f(z0).

Proof. Put T = (1/(1 + γ))S + (γ/(1 + γ))I; we have from Lemma 4.1 that T is a generalized
hybrid mapping and F(T) = F(S). Since F(T) /= ∅, we have that T is quasi-nonexpansive.
Following the proof of Theorem 3.3 and applying Lemma 4.2, we have the following result.

Setting f(xn) = x, ∀n ∈ N in Theorem 4.3, we obtain the following result.

Corollary 4.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H. Let α, β, and γ be real numbers with γ /= − 1 and let S : C → H
be an (α, β, γ)-super hybrid mapping such that GEP(F,Ψ) ∩ F(S)/= ∅. Let C1 = C and {xn} ⊂ C be a
sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x, ∀n ∈ N,

(4.8)
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where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn ≤ b < 2δ, (4.9)

for some a, b ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩GEP(F,Ψ).

Setting Ψ ≡ 0 in Theorem 4.3, we obtain the following result.

Corollary 4.5. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C ×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let α, β, and γ be real numbers
with γ /= −1 and let S : C → H be an (α, β, γ)-super hybrid mapping such that EP(F)∩F(S)/= ∅ and
let f be a Meir-Keeler contraction of C into itself. Let C1 = C and {xn} ⊂ C be a sequence generated
by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈zn − xn, y − zn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1f(xn), ∀n ∈ N,

(4.10)

where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are sequences
such that

lim inf
n→∞

αn < 1, 0 < a ≤ λn, (4.11)

for some a ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩ EP(F).

Setting Ψ ≡ 0 and f(xn) = x, for all n ∈ N in Theorem 4.3, we obtain the following
result.

Corollary 4.6 (see [20], Theorem 5.2). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let
α, β, and γ be real numbers with γ /= − 1 and let S : C → H be an (α, β, γ)-super hybrid mapping
such that EP(F) ∩ F(S)/= ∅. Let C1 = C and let {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x, ∀n ∈ N,

(4.12)
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where PCn+1 is the metric projection ofH ontoCn+1 and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are sequences
such that

lim inf
n→∞

αn < 1, 0 ≤ λn, (4.13)

for some a ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩ EP(F).

Setting T := (1/(1 + γ))S + (γ/(1 + γ))I in Theorem 3.7, where S is an super hybrid
mapping and γ is a real number, we obtain the following result.

Theorem 4.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H. Let α, β, and γ be real numbers with γ /= − 1 and let S : C → H
be an (α, β, γ)-super hybrid mapping such that GEP(F,Ψ) ∩ F(S) /= ∅ and let f be a Meir-Keeler
contraction of C into itself. Let Q1 = C and {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn =
{
z ∈ Qn−1 :

〈
f(xn−1) − xn, xn − z

〉 ≥ 0
}
,

xn+1 = PCn∩Qnf(xn), ∀n ∈ N,

(4.14)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn ≤ d < 2δ, (4.15)

for some b, c, d ∈ R. Then {xn} converges strongly to z0 = PF(S)∩GEP(F,Ψ)f(z0).

Proof. Put T = (1/(1 + γ))S + (γ/(1 + γ))I; we have from Lemma 4.1 that T is a generalized
hybrid mapping and F(T) = F(S). Since F(T)/= ∅, we have that T is quasi-nonexpansive.
Following the proof of Theorem 3.7 and applying Lemma 4.2, we obtain the following result.

Setting f(xn) = x, ∀n ∈ N in Theorem 4.7, we obtains the following result.

Corollary 4.8. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4) and letΨ be a δ-inverse strongly
monotone mapping from C into H. Let α, β, and γ be real numbers with γ /= − 1 and let S : C → H
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be an (α, β, γ)-super hybrid mapping such that GEP(F,Ψ) ∩ F(S) /= ∅ and let f be a Meir-Keeler
contraction of C into itself. Let {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+
〈
Ψxn, y − zn

〉
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈x − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(4.16)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2δ) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn ≤ d < 2δ, (4.17)

for some b, c, d ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩GEP(F,Ψ).

Setting Ψ ≡ 0 in Theorem 4.7, we obtain the following result.

Corollary 4.9. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let
F : C ×C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let α, β, and γ be real numbers
with γ /= −1 and let S : C → H be an (α, β, γ)-super hybrid mapping such that EP(F)∩F(S) /= ∅ and
let f be a Meir-Keeler contraction of C into itself. Let Q1 = C and {xn} ⊂ C be a sequence generated
by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn =
{
z ∈ Qn−1 :

〈
f(xn−1) − xn, xn − z

〉 ≥ 0
}
,

xn+1 = PCn∩Qnf(xn), ∀n ∈ N,

(4.18)

where PCn∩Qn is the metric projection ofH onto Cn ∩Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn, (4.19)

for some b, c ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩ EP(F).

Setting Ψ ≡ 0 and f(xn) = x, ∀n ∈ N in Theorem 4.7, we obtain the following result.
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Corollary 4.10 (see [20], Theorem 5.1). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let F : C × C → R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let
α, β, and γ be real numbers with γ /= − 1 and let S : C → H be an (α, β, γ)-super hybrid mapping
such that EP(F) ∩ F(S) /= ∅. Let {xn} ⊂ C be a sequence generated by x1 = x ∈ C and

F
(
zn, y

)
+

1
λn

〈
zn − xn, y − zn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)
(

1
1 + γ

Szn +
γ

1 + γ
zn

)
,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x − zn〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(4.20)

where PCn∩Qn is the metric projection ofH onto Cn ∩ Qn and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

0 ≤ αn ≤ b < 1, 0 < c ≤ λn, (4.21)

for some b, c ∈ R. Then {xn} converges strongly to z0 ∈ F(S) ∩ EP(F).
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