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A multichannel noise reduction and equalization approach for distributed microphones is presented. The speech enhancement is
based on a blind-matched filtering algorithm that combines the microphone signals such that the output SNR is maximized. The
algorithm is developed for spatially uncorrelated but nonuniform noise fields, that is, the noise signals at the different microphones
are uncorrelated, but the noise power spectral densities can vary. However, no assumptions on the array geometry are made. The
proposed method will be compared to the speech distortion-weighted multichannel Wiener filter (SDW-MWF). Similar to the
SDW-MWF, the new algorithm requires only estimates of the input signal to noise ratios and the input cross-correlations. Hence,
no explicit channel knowledge is necessary. A new version of the SDW-MWF for spatially uncorrelated noise is developed which has
a reduced computational complexity, because matrix inversions can be omitted. The presented blind-matched filtering approach
is similar to this SDW-MWF for spatially uncorrelated noise but additionally achieves some improvements in the speech quality
due to a partial equalization of the acoustic system.

1. Introduction

In many speech communication systems, like hands-free
car kits, teleconferencing systems, and speech recognition
systems, the desired speech signal is linearly distorted by the
room acoustics and also corrupted by undesired background
noise. Therefore, efficient speech processing techniques are
required to enhance the speech signal under the constraint
of a small speech distortion. The use of multiple micro-
phones can improve the performance compared to single
microphone systems [1]. The most common way to place the
microphones is beamformer arrays with designed array
geometry. Beamforming algorithms exploit the spatial direc-
tivity effects by a proper combining, like the Frost beam-
former [2] or the generalized sidelobe canceler (GSC) [3].
Usually, the microphones are located in close proximity and
the same signal conditions at the microphone positions are
assumed.

Alternatively, multimicrophone setups have been pro-
posed that combine the processed signals of two or more
distributed microphones. The microphones are positioned

separately in order to ensure incoherent recording of noise
[4–6]. Basically, all these approaches exploit the fact that
speech components in the microphone signals are strongly
correlated while the noise components are only weakly cor-
related if the distance between the microphones is sufficiently
large.

For immersive communication, future communication
devices must be able to collect the desired speech signal as
naturally as possible. But the speech signal quality depends
on the speaker’s distance to the microphone (array). There-
fore, we propose the use of a setup with distributed micro-
phones, where the user can place the microphones arbitrarily.
Hence, the array geometry is arbitrary and not a priori
known.

In this paper, we discuss schemes for an optimal speech
signal combining in real-world acoustic scenarios with dis-
tributed microphones. With distributed arrays, the transfer
functions to the different microphones vary and these vari-
ations have to be taking into account providing an optimal
signal combining. Often when the room acoustic is taken
into account in a beamformer design, one microphone is
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taken as a reference channel, for example, the speech dis-
tortion weighted-multichannel Wiener filter (SDW-MWF)
[7, 8] or the general transfer function GSC (TF-GSC) [9, 10].
For microphone arrays with close proximities and similar
transfer functions, this, is a suitable solution. However,
for distributed microphones, the a priori chosen reference
channel is not necessarily the ideal choice. Moreover, possible
equalization capabilities are often neglected.

The matched filter (MF) [11] and the special case of the
MF, the minimum variance distortionless response (MVDR)
beamformer, provide a signal combining that maximizes
the signal-to-noise ratio (SNR) in the presence of additive
noise. A direct implementation of matched filtering requires
knowledge of the acoustic transfer functions. With perfect
channel knowledge, the MVDR beamformer also provides
perfect equalization. However, with speech applications, the
acoustic transfer functions are unknown and we have no
means to directly measure the room impulse responses.
There exist several blind approaches to estimate the acoustic
transfer functions (see, e.g., [12–14]) which were successfully
applied to dereverberation. However, the proposed esti-
mation methods are computationally demanding. In [15],
an iterative procedure was proposed where the matched
filter was utilized in combination with a least-mean-squares
(LMSs) adaptive algorithm for blind identification of the
required room impulse responses.

In general, a signal combining for distributed micro-
phones is desirable which does not require explicit knowl-
edge of the channel characteristics. In a previous work,
we have developed a matched-filter approach under the
assumption of a uniform incoherent noise field [16]. The
optimal weighting of the matched filter can be estimated by
an approximation of the input SNR values and a phase esti-
mate. Similarly, a scaled version of the MVDR-beamformer
coefficients can be found by maximizing the beamformer
output SNR [17]. In the frequency domain, these coefficients
can be obtained by estimating the dominating generalized
eigenvector (GEV) of the noise covariance matrix and the
input signal covariance matrix. For instance, an adaptive
variant for estimating a GEV was proposed by Doclo and
Moonen [18], and later by Warsitz and Haeb-Umbach [19].
Furthermore, it can be shown that the SDW-MWF also
provides an optimal signal combining that maximizes the
signal-to-noise ratio [20]. The SDW-MWF requires only
estimates of the input and noise correlation matrices. Hence,
no explicit channel knowledge is required. However, the
SDW-MWF does not equalize the speech signal.

In this work, we consider speech enhancement with
distributed microphones. In Section 3, we present some
measurement results that motivate a distributed microphone
array. In particular, we consider two different acoustic situ-
ations: a conference room where the noise level is typically
low, but the speech signal is distorted due to reverberation,
and a car environment where the reverberation time is low,
but the strong background noise occurs.

The basic idea of the presented approach is to apply the
well-known matched-filter technique for a blind equalization
of the acoustic system in the presence of additive background
noise. This concept is strongly related to the SDW-MWF.

Therefore, we discuss different matched-filtering techniques
and their relation to the multichannel Wiener filter in
Section 4.

In many speech applications, a diffuse noise field can be
assumed [21]. With a diffuse noise field, the correlation of
the noise signals depends on the frequency and the distance
between the microphones. Typically, for small microphone
distances, the low-frequency band is highly correlated
whereas the correlation is low for higher frequencies. With
a larger microphone spacing, the noise correlation is further
decreased and the noise components can be assumed to be
spatially uncorrelated. In Sections 5 and 6, we demonstrate
that this fact can be exploited to reduce the complexity of the
SDW-MWF algorithm as well as to improve the equalization
capabilities.

The calculation of the MWF requires the inversion
of the correlation matrix of the input signals. This is a
computationally demanding and also numerically sensitive
task. In Section 5, we show that for a scenario with a
single speech source and with spatially uncorrelated noise
the matrix inversion can be omitted. Using the matrix
inversion lemma [22] the equation of the MWF filter weights
can be rewritten to an equation that only depends on the
correlations of the input signals and the input noise power
spectral densities at the different microphones.

In Section 7, we present a blind-matched filtering
approach for speech recording in spatially uncorrelated noise
where no assumption on the geometrical adjustment of
the microphones is made. The approach presented in [16]
is limited to uncorrelated noise signals where the noise
power spectral densities are equal for all microphone inputs.
In this work, we extend these results to situations where
the noise signals are spatially uncorrelated, but the noise
power spectral densities can vary. Furthermore, we show
that combined with a single channel Wiener filter, this new
structure is equivalent with the SDW-MWF with respect
to noise suppression. However, the new approach provides
a partial equalization of the acoustic transfer functions
between the local speaker and the microphone positions.

Finally, we demonstrate in Section 8 that the presented
filter structure can be utilized for blind system identification.
For equal noise power spectral densities at all microphone
inputs, the matched filter is equal to the vector of transfer
function coefficients up to a common factor. Hence, by
estimating the ideal matched filter, we estimate the linear
acoustic system up to a common filter. Note that many
known approaches for blind system identification can only
infer the different channels up to a common filter [15].
Similarly, with the proposed system, all filters are biased.
We derive the transfer function of the common filter and
demonstrate that the biased acoustic transfer functions
can be reliably estimated even in the presence of strong
background noise.

2. Signal Model

In this section, we briefly introduce the notation. In general,
we consider M microphones and assume that the acoustic
system is linear and time invariant. Hence, the microphone
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signals yi(k) can be modeled by the convolution of the speech
signal x(k) with the impulse response hi(k) of the acoustic
system plus an additive noise term ni(k). The M microphone
signals yi(k) can be expressed in the frequency domain as

Yi(κ, ν) = Hi(ν)X(κ, ν) + Ni(κ, ν), (1)

where Yi(κ, ν), X(κ, ν), and Ni(κ, ν) denote the correspond-
ing short-time spectra and Hi(ν) the acoustic transfer
functions. Si(κ, ν) = Hi(ν)X(κ, ν) is the speech component
of the ith microphone signal. The subsampled time index
and the frequency bin index are denoted by κ and ν,
respectively. In the following, the dependencies on κ and ν
are often omitted for lucidity. Hence, we can define the M-
dimensional vectors S, N, and Y, in which the signals are
stacked as follows:

S =
[
S1 S2 · · · SM

]T
,

N =
[
N1 N2 · · · NM

]T
,

Y = S + N.

(2)

Note that T denotes the transpose of a vector or matrix,
whereas the conjugate transpose is denoted by † and
conjugation by ∗, respectively. H denotes the vector of
channel coefficients:

H =
[
H1 H2 · · · HM

]T
. (3)

In the following, we assume that the noise signals are zero-
mean random processes with the variances σ2

N1
, . . . , σ2

NM
. We

denote the signal-to-noise ratio (SNR) at the microphone i
by

γi = σ2
X |Hi|2
σ2
Ni

, (4)

where σ2
X is the speech power at the speaker’s mouth.

3. Measurement and Simulation Setup

Throughout the paper, we will illustrate the proposed
method with measurement and simulation results for two
different acoustic situations: a conference room where the
noise level is typically low, but the speech signal is distorted
due to reverberation, and a car environment where the
reverberation time is low, but the strong background noise
may lead to very low input SNR values. In this section,
we first present some measurement results that motivate a
distributed microphone array. Then, we describe the setup
for the simulations.

The basic idea of the presented approach is to apply the
well-known matched filter technique for a blind equalization
of the acoustic system in the presence of additive background
noise. We first discuss some measurement results obtained in
a conference room with a size of 4.7 × 4.8 × 3.0 m. For these
measurements, we used three omnidirectional microphones
which are placed on a table in the conference room as shown
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Figure 1: Measurement setup for the conference scenario.
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Figure 2: Magnitudes of the transfer functions for speaker three.

in Figure 1. The microphone distance was chosen 1.2 m for
mic. 1 and mic. 3, and 1 m between the other microphone
pairs (see Figure 1). This results in distances in the range
from 0.5 m to 1.3 m between the local speakers and the
microphones.

With an artificial head, we measured the room impulse
responses for five local teleconference participants. For this
scenario, Figure 2 shows the magnitudes of the acoustic
transfer functions. The influence of the room acoustic is
clearly visible. For some frequencies, the magnitudes of the
acoustic transfer functions show differences of more than
20 dB. It can also be stated that the microphone with the
best transfer function is not obvious, because for some
frequencies H1(ν), H2(ν), and for others H3(ν) has less
attenuation.

Figure 3 depicts the SNR versus frequency for a situation
with background noise which arises from a fan of a video
projector. From this figure, we observe that the SNR values
for frequencies above 1.5 kHz are quite distinct for these
three microphone positions with differences of up to 10 dB
depending on the particular frequency. Again, the best
microphone position is not obvious in this case, because the
SNR curves across several times.

Theoretically, if we assume spatially uncorrelated noise
signals, a matched filter combining these input signals would
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Figure 3: Input SNR for a conference scenario with background
noise.

result in an output SNR equal to the sum of the input SNR
values. With three inputs, a matched filter array achieves a
maximum gain of 4.8 dB for equal input SNR values. In the
case of varying input SNR values, the sum is dominated by
the maximum value. Hence, for the curves in Figure 3, the
output SNR would essentially be the envelope of the three
curves. This is also shown in Figure 3, where the output SNR
of an optimal signal combining is plotted (solid line).

For the simulation results presented throughout the
paper the following setup was used: all processed signals are
sampled at a sampling rate of fs = 16000 Hz. For the short-
time Fourier transform (STFT), we used a length of L = 512
and an overlap of K = 384 samples, while an overlap-add
processing for the signal synthesis was performed. As clean
speech signals we used two male and two female speech
samples, each of a length of 8 seconds. Therefore, we took the
German-speaking test samples from the recommendation
P.501 of the International Telecommunication Union (ITU)
[23]. To generate the speech signals si at the microphones,
the clean speech was convolved with the corresponding
room impulse responses. The reverberation time for the
conference scenario was T60 = 0.25 s. We also show results
for a conference scenario with T60 = 0.5 s, but for this
scenario the impulse responses are generated using the image
method [24]. Most presented algorithms require estimates of
the noise power spectral density (PSD) and a voice activity
detection (VAD), here we used the methods described in [16]
throughout the paper.

For the measurements in the car environment, one
microphone was installed close to the inside mirror, while
the second microphone was mounted at the A-pillar (the
A-pillar of a vehicle is the first pillar of the passenger com-
partment, usually surrounding the windscreen). This micro-
phone setup leads to a distance of 0.6 m between the two
microphones. We consider three different background noise
situations for noise recordings: driving noise at 100 km/h
and 140 km/h, and the noise arising from an electric fan
(defroster, car in standstill). For a comparison with typical
beamformer constellations, we installed a second pair of
microphones at the inside mirror, such that the microphone
distance between these two microphone was 0.04 m. This
microphone setup is evaluated later in Section 5. Figure 4
shows the measured setup for the in-car environment. For all
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Figure 4: Illustration of the measured in-car scenario.

measurements in the car, we used cardioid microphones,
which are often used for automotive applications. For the
measurements of the room impulse responses also the
artificial head was used. The reverberation time for this
scenario was T60 = 0.05 s.

4. Optimal Signal Combining

In this section, we discuss combining schemes which are
optimal in a certain manner. For such a combining of the
microphone signals, each input Yi is processed by a linear
filter Gi before the signals are added. Stacking these filter
functions into the vector G, we have

G =
[
G1 G2 · · · GM

]T
. (5)

Therefore, the processed signal at the output of the combin-
ing system can be expressed as follows:

X̂ = G†Y,

X̂ = G†HX + G†N.
(6)

The SNR at the system output is defined as the ratio:

γ =
E
{∣∣G†HX

∣∣2
}

E
{
|G†N|2

} ,

= σ2
XG†HH†G

G†RNG
,

(7)

where

RN = E
{

NN†
}

(8)

is the correlation matrix of the noise signals.

4.1. Maximization of the SNR. Our aim is now to find
the filter functions G, which are optimal in the sense of a
maximal output SNR of the combining system. Hence, the
maximization problem can be stated as

GMF = arg max
G

{
σ2
XG†HH†G

G†RNG

}
. (9)

This maximization problem leads to an eigenvalue problem
with the matched filter (MF) solution [25]:

GMF = c · R−1
N H, (10)
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where c is a nonzero constant value. Hence, one has to weight
the input signals according to the acoustic transfer functions
and the inverse of the noise correlation matrix. This weight-
ing is also known as maximum SNR (MSNR) beamformer.

Applying a constant factor to R−1
N H does not affect

the SNR at the filter output. Therefore, the matched filter
can also be utilized for equalization to get a flat frequency

response according to the source speech position (GMF†H =
1). In this case, the following form is used:

GMVDR = R−1
N H

H†R−1
N H

. (11)

This algorithm is also called the minimum variance distor-
tionless response (MVDR) beamformer and was described
by Cox et al. [26]. For this technique, knowledge about the
room impulse responses and the noise correlation matrix
is needed. For an estimation of the noise power density
and the cross-power density, several approaches exist in
the literature [21, 27–30]. But the estimation of the room
impulse responses is a blind estimation problem [12–14]. A
reliable estimation of the room impulse responses in realtime
is still an open issue. Often only a linear-phase compensation
is done, by applying a sufficient time delay for the signals,
thus the transfer functions are replaced by the steering vector:

d(ν) =
[

1, e− jΔ2(ν), . . . , e− jΔM(ν)
]T

, (12)

where Δi(ν) denotes the phase difference between the first
and ith microphone. This corresponds to the classical Frost
beamformer [2]. Thus, an estimate of the time delay of
arrival (TDOA) is required. Note that for a known array
geometry this information is equivalent to the direction of
arrival (DOA).

4.2. Multichannel MMSE Criterion. Another related crite-
rion is the minimization of the mean square error (MSE)
between the output signal and a reference signal. This can
also be used to find an optimal combining strategy for
the microphone signals. To calculate the minimum mean
squared error (MMSE) estimate of the clean speech signal
X at the speaker’s mouth, one has to minimize the following
cost function:

GMWF = arg min
G
E
{∣∣∣G†Y− X

∣∣∣2
}
. (13)

By setting the complex derivative with respect to G∗ to zero,
one obtains the solution of this minimization problem as

GMWF = RY
−1RYx, (14)

where RYx = E{YX∗} is the cross-correlation vector between
the clean speech and the microphone input signal and
RY = E{YY†} is the correlation matrix of the microphone
input signal, respectively. In the literature, this is often
referred as the multichannel Wiener filter (MWF), which can
be used for signal combining and noise reduction.

To overcome the problem of the required but unavailable
cross-correlation vector RYx in the definition of the MWF,

cf. (14), one can define an MWF that minimizes the mean
squared error with respect to the speech signal of a reference
microphone signal Sref. In [7], the SDW-MWF was proposed,
while a tradeoff parameter was introduced to the MWF. With
this parameter, it is possible to adjust the noise reduction
capabilities of the MWF with respect to the speech signal
distortion at the output. Thus, the signal distortion is taken
into account in the optimization. Therefore, the distortion
is measured as the distance between the speech component
of the output signal and the speech component of an input
channel. This reference channel is selected arbitrarily in
advance.

The error signal ε for the minimization is then defined as
the difference between the output signal G†Y and the speech
component of the signal Yref:

ε = G†Y− uTS

=
(

G† − uT
)

S + G†N

= εs + εn.

(15)

The column vector u selects the reference channel, that is,
the corresponding entry is set to one and the others are set to
zero. Using the two MSE cost functions:

Jn(G) = E
{
|εn|2

}
,

Js(G) = E
{
|εs|2

}
,

(16)

the unconstraint minimization criterion for the SDW-MWF
is defined by

GSDW = arg min
G

Jn(G) +
1
μW

Js(G), (17)

where 1/μW is a Lagrange multiplier. This results in the
solution:

GSDW = (RS + μWRN
)−1RSu, (18)

where RS is the speech correlation matrix and μW is a param-
eter which allows a trade-off between speech distortion and
noise reduction (for details cf. [7]).

For further analyses, we assume that the single speaker
speech signal is a zero-mean random proces with the PSD σ2

X

and a time-invariant acoustic system. The correlation matrix
of the speech signal can be written as

RS = E
{

SS†
}

= σ2
XHH†.

(19)

Using the matrix inversion lemma [22], the SDW-MWF
can be decomposed as

GSDW = σ2
X

σ2
X + μW

(
H†R−1

N H
)−1

R−1
N H

H†R−1
N H

H†u,

GSDW = GWFGMVDRH∗
ref,

(20)
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Figure 5: Comparison of the overall transfer function of the SDW-
MWF and the ideal MVDR beamformer.

where (H†R−1
N H)−1 is the noise variance at the output of

GMVDR:
(

H†R−1
N H

)−1 = GMVDR†RNGMVDR,

= σ2
NMVDR .

(21)

Appendix A provides a derivation of this decomposition.
Thus the SDW-MWF is decomposed in an MVDR

beamformer and a filter that is equal to the acoustic
transfer function of the reference channel (H∗

ref = H†u).
Furthermore, the noise reduction is achieved by a single
channel Wiener filter

GWF = σ2
X

σ2
X + μWσ2

NMVDR

, (22)

where μW can be interpreted as a noise overestimation factor
[31].

From this decomposition, it can be seen that the SDW-
MWF provides an optimal signal combining with respect to
the output SNR. Yet, it is not able to equalize the acoustic
transfer functions. This is also obvious in Figure 5, where
the overall system transfer function is depicted (dashed line).
Here, the first microphone with the transfer function H1(ν)
was used as reference channel. For this plot, the Wiener
filter part GWF(ν) of the transfer function was neglected. We
observe that the overall transfer function of the SDW-MWF
(dashed line) is equivalent to the transfer function of the
reference channel (semidashed line). Note that we measured
the transfer function between the speaker’s mouth and the
output of the SDW-MWF. Also, the flat transfer function of
the MVDR beamformer is plotted for a comparison (dotted
line).

5. The SDW-MWF for Spatially
Uncorrelated Noise

The calculation of the MWF in (18) requires the inversion
of the correlation matrix of the input signals. This is a
computationally demanding and also numerically sensitive
task. In this section, we show that for a scenario with a
single speech source and with spatially uncorrelated noise,
the matrix inversion can be omitted. Using the matrix

inversion lemma [22], the equation of the MWF filter weights
can be rewritten to an equation that only depends on the
correlations of the input signals and the input noise PSDs
at the different microphones.

Consider the speech-distortion-weighted multichannel
Wiener filter according to (18). We can rewrite the inverse
(RS + μWRN )−1 using the result in (A.1):

(
μWRN + RS

)−1 = 1
μW

R−1
N − R−1

N RSR−1
N

μ2
W

(
1 + μ−1

W σ2
XH†R−1

N H
) .
(23)

Furthermore, using (21), we have

σ2
XH†R−1

N H = σ2
X

σ2
NMVDR

= γ,

(24)

which is the signal-to-noise ratio at the output of the MVDR
beamformer.

Using the inverse of (μWRN + RS) from (23) and the
definition of the SDW-MWF in (18), we have

GSDW =
(

1
μW

R−1
N − R−1

N RSR−1
N

μ2
W

(
1 + μ−1

W σ2
XH†R−1

N H
)
)

RSu

=
(

1− γ

μW + γ

)
1
μW

R−1
N RSu

= R−1
N RSu
μW + γ

.

(25)

Because speech and noise are independent, we can estimate
RS by RS = RY − RN . Therefore, we obtain

GSDW = R−1
N (RY − RN )u

μW + γ

=
(

R−1
N RY − I

)
u

μW + γ

= R−1
N RYu− u
μW + γ

.

(26)

Note that the column vector u selects the reference channel,
that is, the corresponding entry is set to one and the others
are set to zero.

Because we assume that the noise signals at the different
microphones are uncorrelated, RN is a diagonal matrix, and
the elements of the main diagonal are the noise variances
σ2
N1

, . . . , σ2
NM

. Therefore, we obtain the inverse

R−1
N =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
σ2
N1

0 · · · 0

. . .

0 0 · · · 1
σ2
NM

⎞
⎟⎟⎟⎟⎟⎟⎠
. (27)
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Let ref be the index of the one in the vector u. R−1
N RYu

results in the column vector:

wref = R−1
N RYu

=
[
E
{
Y1Y

∗
ref

}

σ2
N1

, . . . ,
E
{
YMY

∗
ref

}

σ2
NM

]T

.
(28)

Therefore, we obtain the following expression for the SDW-
MWF for spatially uncorrelated noise signals:

GSDW = wref − u
μW + γ

. (29)

This representation of the speech distortion weighted mul-
tichannel Wiener filter omits the inversion of the matrix
(RS + μWRN ). For spatially uncorrelated noise signals, the
SNR γ can be calculated as the sum of the input signal-to-
noise ratios:

γ = σ2
XH†R−1

N H

=
M∑

i=1

σ2
X |Hi|2
σ2
Ni

.
(30)

6. The SDW-MWF for Diffuse Noise

In the literature, many investigations on the spatial cor-
relation properties of noise fields have been made. The
assumption of spatially uncorrelated noise is rarely fulfilled
in real-world scenarios, but it has been found, for example,
by Martin and Vary in [21], that many noise fields can be
assumed to be diffuse, like the noise in a car environment
[32], office noise [21], or, for example, babble noise [33].
For diffuse noise, the spatial correlation depends on the
intermicrophone distance and is dominant especially in the
lower-frequency bands. Typically, the low-frequency band is
highly correlated whereas the correlation is low for higher
frequencies. This fact can be exploited by omitting the matrix
inversion for higher frequencies.

To evaluate the correlation between the noise signals at
different positions, the coherence function of the noise sig-
nals from different intermicrophone distances can be com-
puted. The magnitude squared coherence (MSC) between
two signals ni and nj is defined as follows:

CNiNj (ν) =
∣∣∣σNiNj (ν)

∣∣∣2

σ2
Ni

(ν)σ2
Nj

(ν)
, (31)

where σNiNj (ν) and σ2
Ni

are the cross-power spectral density
(CPSD) and the power spectral densities (PSDs) of the
signals ni and nj , respectively. The values of the coherence
function are between 0 and 1, where 0 means no correlation
between the two signals at that frequency point. For highly
correlated signals, the MSC will become close to 1 for all
frequencies.

In [34], Armbrüster et al. have shown that the coherence
of an ideal diffuse sound field recorded with omnidirectional
microphones can be computed as follows:

Ctheo(ν) = sin2(2πνdmic fs/(Lc)
)

(2πνdmic/c)
2 , (32)

where L denotes the length of the short-time Fourier trans-
form (STFT) and fs is the sampling frequency. The speed of
sound is denoted by c, and dmic represents the microphone
distance. The zeros of the theoretical coherence function in
(32) can by calculated by the following expression:

νzero,m = mLc

2dmic fs
, m = 1, 2, 3, . . . . (33)

In the following, we consider the coherence for the noise
signals of the in-car scenario for the driving situation at
100 km/h (see Section 3). Figure 6(a) shows the coherence
functions of the noise for the microphone pair with an inter-
microphone spacing of dmic = 0.04 m. Also, the theoretical
coherence function computed according to (32) is shown.
Obviously, there is a high correlation of the noise signals at
frequencies below 2 kHz. Note that the coherence of the noise
signals is closely approximated by the theoretical coherence
function Ctheo, although cardioid microphones were used for
this measurement. In Figure 6(b), the coherence function
of the noise for the microphone pair with a 0.6 m spacing
is depicted. In this constellation, the noise signals at the
two microphones are highly correlated for frequencies below
150 Hz only.

From (33) and Figure 6, it is obvious that the correlation
of the diffuse noise signals depends on the intermicrophone
distance. Therefore, the noise has only a high correlation
at low frequencies and especially the high frequencies are
only weakly correlated. Thus, the assumption of spatially
uncorrelated noise is fulfilled for the higher frequency bands.
Therefore, we propose to calculate the filter weights depend-
ing on the theoretical coherence Ctheo(ν); for frequencies
with a high coherence, we calculate the filter weights using
the matrix inversion (see (18)), while for frequencies with a
low coherence, we assume uncorrelated noise and thus the
weights are computed according to (29). Hence, the filter
function is calculated according to

GSDW(ν)

=

⎧⎪⎪⎨
⎪⎪⎩

(
RS(ν) + μWRN (ν)

)−1RS(ν)u, Ctheo(ν) ≥ Clim,

wref(ν)− u
μW + γ(ν)

, otherwise,

(34)

where Clim is a parameter that allows a trade-off between
accuracy and computing time.

The simulation results for the in-car microphone sce-
nario with the two different microphone setups are given
in Table 1. Each scenario (microphone setup and noise
condition) was simulated twice. The first time it was simu-
lated using the fullband matrix inversion according to (18)
(denoted by fullband MWF). These results can be seen as an
upper bound for the performance evaluation of the proposed
method. The second time we used the proposed approach of
the SDW-MWF with the partially inversion of the correlation
matrix (partial MWF). Therefore, the inversion was omitted
for all frequency bins with a theoretical coherence Ctheo less
than 0.7. This leads in our simulation setup to the threshold
frequencies flim = 1500 Hz for the closed spaced microphone
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Figure 6: Comparison of the magnitude squared coherence.

Table 1: Comparison of the fullband (according to (18)) and partial MWF (according to (34)).

dmic [m]
0.04 0.6

100 km/h 140 km/h defrost 100 km/h 140 km/h defrost

SSNR ch.1 [dB] −2.7 −7.1 −0.8 −2.7 −7.7 −0.2

SSNR ch.2 [dB] −3.8 −8.2 −1.3 −1.1 −5.8 0.6

Fullband MWF

SSNR [dB] 4.4 −0.8 5.3 5.4 −0.1 7.6

S-MOS 4.6 4.7 4.7 4.7 4.7 4.8

N-MOS 3.2 2.6 3.0 3.1 2.6 3.0

G-MOS 3.8 3.5 3.8 3.8 3.5 3.8

Partial MWF

SSNR [dB] 4.6 −0.6 4.9 5.4 −0.1 7.3

S-MOS 4.6 4.7 4.7 4.6 4.7 4.7

N-MOS 3.2 2.6 3.0 3.1 2.6 3.0

G-MOS 3.8 3.5 3.8 3.7 3.5 3.7

pair and flim = 100 Hz for the setup with the microphone
spacing of 0.6 m. As an objective evaluation criterion, we
calculated the segmental signal-to-noise ratio (SSNR) of the
output signal. Therefore, a voice activity detection according
to the ITU P.56 was used [35]. Furthermore, we show results
from an instrumental quality analysis in Table 1. The speech
quality and noise reduction were evaluated according to the
ETSI standard EG 202 396-3 [36]. This algorithm calculates
three objective quality measures (according to the mean
opinion score (MOS) scale): Speech-MOS (S-MOS), Noise-
MOS (N-MOS), and Global-MOS (G-MOS). From these
results, we observe that the partial MWF algorithm obtains
nearly the same performance as the fullband SDW-MWF.

7. Matched Filtering for Spatially
Uncorrelated Noise

We have seen in Section 4.2 that the SDW-MWF provides
an optimal signal combining with respect to the output
SNR, where the SDW-MWF does not require explicit channel
knowledge to obtain this result. For spatially uncorrelated
noise the SDW-MWF according to (29) requires only
estimates of the input SNR values and the input cross-
correlation with respect to the reference channel. However,

in contrast to the MVDR beamformer, the SDW-MWF does
not equalize the acoustic system.

In the following, we show that knowledge of the input
SNR values and the input cross-correlation with respect to
the reference channel is sufficient to provide at least a partial
channel equalization. We consider the matched filter for
spatially uncorrelated noise signals. If we assume that the
noise signals at the different microphones are uncorrelated,
RN is a diagonal matrix, and the elements of the main
diagonal are the noise variances σ2

N1
, . . . , σ2

NM
. Therefore,

we obtain the inverse R−1
N as in (27). In this case, the

filter coefficients of the matched filter can be determined
independently and we obtain

GMF
i = Hi

σ2
Ni

(35)

as ith coefficient of the matched filter according to (10) and

GMVDR
i = Hi

σ2
Ni

(
|H1|2/σ2

N1
+ |H2|2/σ2

N2
+ · · ·

) (36)

according to (11).

7.1. Filter Design. In [16], we have demonstrated that under
the assumption of a uniform and spatially uncorrelated noise
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field, this optimal MF weighting can be obtained by the
following filter:

Gi =
√

γi
γ
=
√

γi
γ1 + γ2 + · · · + γM

(37)

and an additional phase synchronization. γ denotes the sum
of all input SNR values. Hence, this filter requires only
estimates of the input SNRs. In the following, we extend this
concept to nonuniform noise fields. In this case, the optimal
weighting depends also on the noise power densities σ2

Ni
.

Consider now the following filter:

Gi =
√√√√γiσ̃

2
N

σ2
Ni
γ
=
√√√√ γiσ̃

2
N

σ2
Ni

(
γ1 + γ2 + · · · + γM

) , (38)

where σ̃2
N is the mean of the noise power spectral densities at

the different microphones, defined by

σ̃2
N =

1
M

M∑

i=1

σ2
Ni
. (39)

This filter depends on the noise power density σ2
Ni

and all
input SNR values. Using (4), we obtain

Gi =
√√√√√

|Hi|2σ̃2
N(

σ2
Ni

)2(|H1|2/σ2
N1

+ |H2|2/σ2
N2

+ · · ·
)

= |Hi|
σ2
Ni

√(
1/σ̃2

N

)(|H1|2/σ2
N1

+ |H2|2/σ2
N2

+ · · ·
) .

(40)

Note that the term (1/σ̃2
N )(|H1|2/σ2

N1
+ |H2|2/σ2

N2
+ · · · ) is

common to all filter coefficients. Hence, the filter according
to (38) is proportional to the magnitude of the matched filter
according to (35).

The proposed filter in (38) is real valued. To ensure
cophasal signal combining, we require some additional
system components for phase estimation.

7.2. Phase Estimation. For a coherent combining of the
speech signals, we have to compensate the phase difference
between the speech signals at each microphone. Therefore it
is sufficient to estimate the phase differences to a reference
microphone. Let φi(ν) be the phase of the complex channel
coefficient Hi(ν). We consider the phase differences to the a
reference microphone Δi(ν) = φref(ν) − φi(ν), for all i /= ref
and Δref(ν) = 0. Cophasal addition is then achieved by

X̂ =
M∑

i=1

Gie
jΔiYi. (41)

For multimicrophone systems with spatially separated
microphones a reliable phase estimation is a challenging task.
A coarse estimate of the phase difference can also be obtained
from the time-shift τi between the speech components in the
microphone signals, for example, using the generalized cor-
relation method [37]. However, for distributed microphone
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Figure 7: Actual phase of the reference channel (a) determined
from the impulse response, actual phase difference and estimated
phase difference for channel 2.

arrays in reverberant environments this phase compensation
leads to a poor estimate of the actual phase differences.
This can be observed in Figure 7 which depicts the phase
φ1(ν) of the reference channel for the in car scenario with
intermicrophone spacing of 0.6 m (see Section 3). In an
anechoic environment, the phase of the reference channel as
well as the phase difference Δ2 for the second microphone
would be linear functions of the frequency. Hence, we could
expect ideal sawtooth functions if we consider the phase in
the interval [−π,π]. From Figure 7, we observe that this is
only a rough estimate of the actual phase values.

In order to ensure a cophasal addition of the signals, we
employ a phase estimation similar to the approach presented
in [16]. We use a frequency domain least-squares (FLMS)
algorithm to estimate the required phase difference. Using
Yref as reference signal, the filter GANG

i (κ, ν) is updated
according to

GANG
i (κ + 1, ν) = GANG

i (κ, ν) + μY∗i (κ, ν)Ei(κ, ν), (42)

with

Ei(κ, ν) = Yref(κ, ν)− Yi(κ, ν)GANG
i (κ, ν). (43)

Note that the filter is only adapted if voice activity is detected,
where we used the VAD method described in [16]. The FLMS
algorithm minimizes the expected value:

E
{∣∣∣Yref(κ, ν)− Yi(κ, ν)GANG

i (κ, ν)
∣∣∣2
}
. (44)



10 Journal of Electrical and Computer Engineering

For stationary signals the adaptation converts to a filter
transfer function:

GANG
i = E

{
Y∗i Yref

}

E
{
|Yi|2

} , (45)

where E{Y∗i Yref} is the cross-power spectrum of the two
microphone signals and E{|Yi|2} is the power spectrum of
the ith microphone signal. Assuming that the speech signal
and the noise signals are spatially uncorrelated, (45) can be
written as

GANG
i =

E
{
|X|2

}
H∗

i Href + E
{
N∗

i Nj

}

E
{
|X|2

}
|Hi|2 + E

{
|Ni|2

} . (46)

For frequencies where the noise components are uncorre-
lated, that is, E{N∗

i N1} = 0, this formula is reduced to

GANG
i =

E
{
|X|2

}
H∗

i Href

E
{
|X|2

}
|Hi|2 + E

{
|Ni|2

} . (47)

The phase of the filter GANG
i is determined by the two

complex channel coefficients Hi and Href where the product
H∗

i Href has the sought phase Δi(ν) = φref(ν) − φi(ν). Hence,
for the coherent signal combining, we use the phase of the
filter GANG

i :

Δ̂i(κ, ν) = arg
(
GANG
i (κ, ν)

)
. (48)

According to (28) and (29), the phase of the filter GSDW

is determined by the cross-correlation of the input signals.
Comparing (28) and (45), we note that the proposed
approach leads to the same phase compensation as with the
SDW-MWF. Note that the output signal of the SDW-MWF is

computed as X̂ = GSDW†
Y.

With the estimated phase, we can now express the
complex filter as

G̃i =
√√√√γiσ̃

2
N

σ2
Ni
γ
e jΔ̂i . (49)

Figure 7 presents simulation results for this phase estima-
tion, where Δ2 denotes the actual phase difference computed
from the measured impulse responses and est. Δ2 is the
estimated phase difference. The presented results correspond
to the driving situation with a car speed of 140 km/h and an
intermicrophone distance of 0.6 m, as described in Section 3.

7.3. Residual Transfer Function. Next, we derive the residual
transfer function of the proposed signal combining. Using
(40), the complex filter transfer function can be expressed as

G̃i = |Hi|e jΔ̂i

σ2
Ni

√(
1/σ̃2

N

)(|H1|2/σ2
N1

+ |H2|2/σ2
N2

+ · · ·
) . (50)

Assuming ideal knowledge of the SNR values and a perfect
phase estimation, we can derive the overall transfer function.

Comparing the MVDR beamformer in (36) with (50), we
observe that the proposed system has a resulting transfer
function:

H̃ = e jφref

√√√√σ̃2
N

(
|H1|2
σ2
N1

+
|H2|2
σ2
N2

+ · · ·
)
. (51)

That is,

G̃i = GMVDR
i H̃. (52)

Hence, the proposed system does not provide perfect
equalization. However, the filter provides partial derever-
beration, where the dips of the acoustic transfer functions
are smoothed if the dips occur not in all transfer functions.
Moreover, if the noise is uniform and stationary, the number
of channels M is sufficiently high and in case of spatially
uncorrelated channel coefficients, the sum (|H1|2/σ2

N1
+

|H2|2/σ2
N2

+ · · · ) tends to a constant value independent of
the frequency (cf. [15]).

7.4. Noise Reduction. As shown by the decomposition of
the speech-distortion-weighted multichannel Wiener filter in
(20), the noise reduction of the MWF is achieved by a single-
channel Wiener filter. Therefore, we combine the proposed
matched filter approach with a single channel Wiener filter.
In the reminder of this section, we discuss the integration of
the Wiener postfilter to the blind-matched filter approach.
The considered system is shown in Figure 8.

The single channel Wiener filter in (20) can be rewritten
to an equation which only depends on the output SNR γ:

GWF = γ

γ + μW
. (53)

It is possible to integrate the Wiener filter function from
(53) in the filter functions of the proposed blind-matched
filter (38). This leads to the filter function GMFWF

i , which
consists of a blind matched filter (MF) with a single-channel
Wiener postfilter (WF):

GMFWF
i = GWFG̃i

= γ

γ + μW

√√√√γiσ̃
2
N

σ2
Ni
γ
e jΔ̂i

=
√√√√γiγσ̃

2
N

σ2
Ni

e jΔ̂i

γ + μW
,

(54)

thus the MSE with respect to the speech component of the
combined signal is minimized.

7.5. Simulation Results. In this section, we present some
simulation results for the proposed combining system with
additional noise suppression. Therefore, we used the simula-
tion setup described in Section 3. Table 2 presents the results
for the simulated in-car environment using the configuration
with the intermicrophone distance of 0.6 m. As an objective
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Table 2: Simulation results for the proposed system in the car
environment, cf. results on the right of Table 1.

dmic [m]
0.6

100 km/h 140 km/h defrost

SSNR ch.1 [dB] −2.7 −7.7 −0.2

SSNR ch.2 [dB] −1.1 −5.8 −0.6

SSNR [dB] 10.3 4.8 12.1

S-MOS 4.6 4.5 4.7

N-MOS 3.8 3.2 3.8

G-MOS 4.0 3.7 4.0

evaluation criterion, we calculated also the segmental SNR
of the output signal. Also the input signal-to-noise ratios
are shown in Table 2. Furthermore, we show results from
an instrumental quality analysis in Table 1. Comparing these
values with the results shown in Table 1, we observe that
the proposed algorithm outperforms the SDW-MWF for this
scenario. For this simulation, a higher noise overestimation
factor μW can be used, while the S-MOS results are nearly
the same in comparison to the results of SDW-MWF. This is
because the proposed combining system partial equalizes the
acoustic system and, therefore, the speech signal components
are equalized with respect to the speech signal X at the
speaker’s mouth. Thus, the system can achieve a higher
output SNR at the same level of speech distortion.

For the conference scenario, Table 3 shows the results of
the performed simulations. It can be seen that the output
SNR of the system as well as the MOS values is nearly the
same for all speaker positions. This is a result of the proposed
combining scheme.

The effect of the partial equalization is obvious by a
comparison of the individual acoustic transfer functions with
the overall system transfer function H̃(ν). This is shown
in Figure 9(a) for the speaker at position three, where the
transfer functions between the speaker’s mouth and the
microphones are plotted as dashed and dotted lines. The
overall system transfer function (including the system and
the acoustic signal path) is plotted as solid line. It can be
seen that the deep dips of the individual transfer functions
are equalized. The overall transfer function follows the
envelope of all transfer functions (which may include also
the microphone characteristic). In Figure 9(b), the transfer

Table 3: Simulation results for the system in the conference
environment with with T60 = 0.25 s.

Speaker pos. 1 2 3 4 5

SSNR ch.1 [dB] 8.8 8.3 8.5 10.1 13.2

SSNR ch.2 [dB] 8.3 10.1 10.2 9.9 7.8

SSNR ch.3 [dB] 13.6 10.1 9.9 8.0 9.3

GMFWF SSNR [dB] 21.3 19.8 19.8 19.6 20.8

S-MOS 4.7 4.7 4.7 4.8 4.8

N-MOS 4.6 4.5 4.5 4.6 4.6

G-MOS 4.3 4.3 4.3 4.4 4.4

GSDW SSNR [dB] 16.8 15.9 15.7 16.6 18.8

S-MOS 4.8 4.8 4.8 4.8 4.8

N-MOS 3.9 3.9 4.9 4.1 4.4

G-MOS 4.2 4.1 4.1 4.2 4.4

functions of the SDW-MWF without the Wiener filter part
and of the MVDR beamformer are plotted in comparison
with the proposed blind-matched filter approach.

To show the applicability of the proposed system also
in more reverberant environments, we used a simulated
conference scenario with a reverberation time T60 = 0.5 s.
For the generation of the room impulse responses, we used
the image method described by Allen and Berkley in [24].
The results are presented in Table 4, again the output SNRs
for the different speaker positions are in the same range.
Also, simulation results for the SDW-MWF are given for a
comparison of these two techniques.

8. Blind System Identification

In order to demonstrate that the filter G̃i approximates
the matched filter, we show that the structure in Figure 10
can be used for blind system identification. The SNR values
for speech signals are fast time-varying. Hence, we use again
FLMS filters GLMS

i to estimate the average filter transfer
functions. Note that if we have equal noise power spectral
densities at all microphone inputs, the matched filter GMF

is equal to the vector of transfer function coefficients H
up to a common factor. This factor can vary with the
frequency. Hence, by estimating the ideal matched filter, we
estimate the linear acoustic system up to a common filter.
Furthermore, note that many known approaches for blind
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Figure 9: Comparison of the system transfer functions.
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Figure 10: Basic system structure for the system identification approach for two channels.

Table 4: Simulation results for the system in a simulated conference
environment with T60 = 0.5 s.

Speaker pos. 1 2 3 4 5

SSNR ch.1 [dB] 9.8 8.8 9.7 9.1 12.0

SSNR ch.2 [dB] 10.1 11.2 12.2 12.2 11.2

SSNR ch.3 [dB] 12.4 9.9 8.3 8.8 8.8

GMFWF SSNR [dB] 21.5 21.0 21.5 20.8 21.6

S-MOS 4.7 4.7 4.7 4.7 4.7

N-MOS 4.5 4.4 4.5 4.5 4.6

G-MOS 4.3 4.3 4.3 4.3 4.3

GSDW SSNR [dB] 17.8 17.0 17.1 16.9 19.0

S-MOS 4.8 4.7 4.7 4.8 4.8

N-MOS 3.8 3.7 3.7 3.7 4.1

G-MOS 4.1 4.0 4.1 4.1 4.2

system identification can only infer the M different channels
up to a common filter [15]. Similarly, with the proposed
system, all filters Gi are biased by a common factor. For equal
noise power spectral densities, this common filter has the
transfer function:

H̃ = e jφref

√
|H1|2 + |H2|2 + · · · + |HM|2 (55)

and the LMS filters should converge to

GLMS
i = H∗

i

H̃
. (56)

For simulations, we use the two microphone in-car setup
with an intermicrophone distance of 0.6 m. We consider
the driving situation with a car speed of 140 km/h. The
magnitude of the actual transfer functions Hi and the
magnitude of the corrected filter transfer function GLMS

i H̃ are
depicted in Figure 11. We observe that the transfer functions
are well approximated. As a quality measure, we use the
distance

Di = 10log10

⎛
⎜⎝
∑

ν

∣∣∣GLMS
i H̃ −H∗

i

∣∣∣2

∑
ν |Hi|2

⎞
⎟⎠ (57)

and obtain values of D1 = −16.4 dB and D2 = −11 dB after
5 seconds of speech activity. For a driving situation with a
car speed of 100 km/h, we obtain D1 = −17.9 dB and D2 =
−11.9 dB, respectively.

9. Conclusions

In this paper, we have presented a speech enhancement sys-
tem with distributed microphones, where the array geometry
is arbitrary and not a priori known. The system is based
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Figure 11: Estimated (dashed line) and actual transfer functions for the two channels.

on a blind-matched filtering approach where the filter
coefficients depend only on the input signal-to-noise ratios
and the correlation between the input signals. For spatially
uncorrelated but not necessarily uniform noise, the system
provides an optimal signal combining that maximizes the
output SNR.

Moreover, the presented approach achieves a partial
equalization of the acoustic system up to a common filter. To
demonstrate that the ideal filter coefficients can be reliably
estimated, we have presented an application for blind system
identification. The system is able to identify the M different
channels up to a common filter. The presented simulation
results indicate that this identification is robust against
background noise. To provide a perfect equalization, the
remaining filter ambiguity needs to be resolved separately.
However, the presented system could also be combined
with other speech dereverberation algorithms, for example,
the single channel reverberation suppression algorithms
presented in [38, 39]. The system assumes a single speech
source, but a situation with more than one active speaker
cannot be avoided in real conference scenarios, so further
investigations are needed to evaluate the concept for such
scenarios.

Appendix

A. Decomposition of the SDW-MWF

Let A and B be two square matrices, where A has full rank
and B has rank one. In this case, we can rewrite the inverse of
the sum A + B using of the matrix inversion lemma [22]:

(A + B)−1 = A−1 − 1
1 + g

A−1BA−1, (A.1)

where g is the trace of A−1B.
Now, consider the term (RS + μWRN )−1 in the definition

of the SDW-MWF in (18). RS = σ2
XHH† has rank one due

to the structure of the matrix HH† (see, e.g., [40]), and
if we assume that the noise variances at all microphones
are nonzero, RN will have full rank. Using (A.1) the inverse
(μWRN + RS)−1 in (18) can be rewritten as

(
μWRN + RS

)−1 = 1
μW

R−1
N − R−1

N RSR−1
N

μ2
W

(
1 + μ−1

W σ2
x H†R−1

N H
) .
(A.2)

Hence, we can decompose the SDW-MWF as follows [20]:

GSDW =
(

1
μW

R−1
N − R−1

N RSR−1
N

μ2
W

(
1 + μ−1

W σ2
XH†R−1

N H
)
)

RSu

= 1
μW

R−1
N

(
I− σ2

XHH†R−1
N

μW + σ2
XH†R−1

N H

)
σ2
XHH†u

= 1
μW

R−1
N

(
H− σ2

XHH†R−1
N H

μW + σ2
XH†R−1

N H

)
σ2
XH†u

= 1
μW

R−1
N

(
1− σ2

XH†R−1
N H

μW + σ2
XH†R−1

N H

)
σ2
XHH†u

=
(

1− σ2
XH†R−1

N H
μW + σ2

XH†R−1
N H

)
1
μW

R−1
N σ2

XHH†u

= σ2
X

μW + σ2
XH†R−1

N H
R−1
N HH†u

= σ2
X

σ2
X + μW

(
H†R−1

N H
)−1

R−1
N H

H†R−1
N H

H†u

= σ2
X

σ2
X + μWσ2

NMVDR

R−1
N H

H†R−1
N H

H†u

= γ

γ + μW

R−1
N H

H†R−1
N H

H†u

= GWFGMVDRH∗
ref,

(A.3)

where σ2
NMVDR is the noise variance at the output of GMVDR

σ2
NMVDR = GMVDR†RNGMVDR

= H†R−1
N H

(
H†R−1

N H
)2

=
(

H†R−1
N H

)−1
.

(A.4)
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