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This article presents an analytical procedure for solution of the dynamic interaction problem of
a vibrating framed structure connected to a bidimensional cavity, containing an acoustic fluid.
Initially the pressure solution for the fluid domain is developed, using the separation of variables
technique. In a next step, this solution is applied to an entirely open cavity and to a closed cavity
in the transversal direction, both containing a vibrating boundary with an arbitrary deformation.
The generalized parameters of the structure (mass, rigidity, and force) are obtained by means
of the virtual work principle, with the generalized force represented by the dynamic pressures
acting on the interface. The dynamic equilibrium equation of the system is established for an
imposed deformation, making a parametric study of the involved variables possible. Finally, it
is demonstrated that this procedure can be generalized, allowing the construction of practical
abacuses for other boundary conditions of both the structure and the cavity, and that these results
allow a reasonable interpretation of the coupling regions, including the prediction of added mass
and added stiffness effects, as well as corresponding frequencies and mode shapes of the coupled
problem.

1. Introduction

The problems of dynamic fluid-structure interactions are of great interest to a wide range of
research fields in engineering. In these cases, the movement of these two subsystems is not
independent and is governed by dynamic contact conditions. According to Bathe [1], among
the categories of coupled problems, the interaction between a structure and an acoustic fluid
is distinguished for its simplicity. The inevitable contact of the structures with the acoustic
medium (air, water, etc.) makes the acoustic-structural interaction relevant in the analysis of
many physical systems [2].
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The problems of fluid contained in enclosures are common in many practical
applications. Great interest has been devoted to the acoustic comfort of passengers in aircraft
or automobile cabins, for example. Additionally the case of water cooled nuclear reactors,
rocket propeller tanks, submerged sonar domes, and reservoirs can also be cited as relevant
examples of this category of problem [3].

Fluid-structure interaction problems involving acoustic cavities have already been
solved by various methods, including analytical, semianalytical, and numerical approaches
[4–9]. In the majority of these works the acoustic medium was represented by the air. Among
the studies involving fluid contained in tanks or reservoirs, one can cite the studies of [10–13],
which evaluated the interaction effects between the fluid and a vibrating column, and [14–
16], which established the coupling effects between a plate and the surrounding fluid. In some
of these works the problem was solved analytically, with the determination of frequencies
and mode shapes of the coupled problem. However, little attention has been given to the
development of abacus and graphical representations that allows the interpretation of such
phenomena, including the identification of added mass and added stiffness regions, as well
as physical interpretation of the corresponding mode shapes and its relation with the cavity
modes.

One of the greatest advantages of the analytical treatment of coupled problems is the
analysis of dimensionless parameters, which allow physical interpretation of the solutions.
However, for more complex models, such set of solutions is often not possible. These are
applied only to some specific cases, while numerical procedures can handle mode general
problems. However, the implementation of numerical solutions is time consuming both in
construction and in computer processing. According to Amabili and Kwak [15], analytical
procedures show its importance in the solution of simple cases and can be used in the
validation of numerical solutions.

In this paper an analytical procedure applied to a framed structure coupled to a
bidimensional acoustic cavity is developed for solution of frequencies and mode shapes
of the coupled problem. The separation of variables technique is employed, resulting
in a general pressure solution, which is then applied to specific cases of an entirely
open cavity and a closed cavity in the transversal direction, both containing a vibrating
boundary. The association of this movement with the related structural vibration function,
and the introduction of the dynamic fluid pressures as external forces, enables the
construction of the dynamic equilibrium equation of the coupled structure, which is solved
for frequencies of the equivalent system. While this procedure presents the limitation of
prior knowledge of the boundary deformation, the mathematical simplicity of the solution
justifies its application, resulting in equations represented with clear and well-defined
parameters that allow the construction of abacuses for interpretation of frequencies and mode
shapes.

2. Fluid Domain General Solution

The basic assumptions of this problem are the corresponding to treatment of this medium
as an acoustic fluid. With these considerations, it is assumed that the fluid transmits only
pressure waves. Some applications of this theory include propagation of pressure waves
in pipes and sound waves propagating through fluid-solid media. The following basic
assumptions are made for the solution of this problem (based on the propositions of Chopra
[17] and Rashed [18]).
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(i) The fluid is homogeneous, inviscid, and linearly compressible.

(ii) The flow is irrotational.

(iii) Displacements and their derivatives are small.

(iv) Surface wave effects are neglected.

(v) The movement of the fluid-structure interface is bidimensional (the same for any
vertical plane perpendicular to the structural axis).

(vi) The fluid-structure interface is vertical.

(vii) Interface displacements are represented by an arbitrary deformation function.

The previous assumptions lead to a dynamic pressure distribution p(x, y, t), in excess of the
static pressure, given by

∇2p =
1
c2

∂2p

∂t2
, (2.1)

which corresponds to the bidimensional wave equation, where

∇2 =
∂2

∂x2
+

∂2

∂y2
(2.2)

is the bidimensional Laplacian operator and c =
√
K/ρf represents the fluid sound velocity,

where K indicates the fluid bulk modulus and ρf its density. For an incompressible fluid
K → ∞, and therefore c → ∞, thus (2.1) is reduced to

∇2p = 0. (2.3)

This indicates Laplace’s equation governing the dynamic pressures in an incompressible
fluid. It is evident that this expression is a particular case of (2.1).

Solution of (2.1) is achieved using the separation of variables technique. Therefore it
is assumed that this expression can be separated, resulting in

p
(
x, y, t

)
= F(x)G

(
y
)
T(t). (2.4)

Substitution of (2.4) in (2.1) provides

F ′′(x)G
(
y
)
T(t) + F(x)G′′

(
y
)
T(t) =

1
c2
F(x)G

(
y
)
T ′′(t), (2.5)

where the tiles indicate derivatives related to the corresponding variable. Division of (2.5) by
F(x)G(y)T(t) results in

−
G′′
(
y
)

G
(
y
) =

F ′′(x)
F(x)

− 1
c2

T ′′(t)
T(t)

. (2.6)
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Analysis of expression (2.6) indicates that the left-hand side of this equation depends only on
y, while the right-hand side depends on x and t. Since this equation must be satisfied for any
values of x, y, and t, it is necessary that both sides are equivalent to an arbitrary constant β,
which can assume positive, negative, or null values. Thus,

−
G′′
(
y
)

G
(
y
) =

F ′′(x)
F(x)

− 1
c2

T ′′(t)
T(t)

= β. (2.7)

This last expression provides three ordinary differential equations:

−
G′′
(
y
)

G
(
y
) = β, (2.8)

F ′′(x)
F(x)

= β +
1
c2

T ′′(t)
T(t)

= α, (2.9)

T ′′(t)
T(t)

= c2
[
F ′′(x)
F(x)

− β
]
= δ, (2.10)

where α and δ represent arbitrary separation constants. Equations (2.9) and (2.10) provide
the following relation:

α = β +
1
c2
δ. (2.11)

The combined solutions of the differential equations (2.8) to (2.10) provide the complete
solution of (2.1). However, it is important to notice that each one of these expressions requires
two constants, resulting in a total of six unknown constants. A simple and time independent
solution for this problem can be achieved with the hypothesis of time harmonic vibrations,
with frequency ω. Thus it is assumed that the time-related function is given by

T(t) = e−iωt. (2.12)

The hypothesis of time harmonic travelling waves establishes an important relation between
the separation constants in the x and y directions. Substitution of (2.12) in (2.10) provides

T ′′(t)
T(t)

= −ω2 = δ. (2.13)

Substitution of (2.13) in (2.7) gives

−
G′′
(
y
)

G
(
y
) =

F ′′(x)
F(x)

+
ω2

c2
= β. (2.14)
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Table 1: Resume of possible solutions according to β.

α G(y) F(x)

β = 0
ω

c
C1 + C2y

C3 · eiαx + C4 · e−iαx

or∗

A · cos(α · x) + B · sin(α · x)

β = −κ2

√
κ2 +

ω2

c2
C1e

κ·y + C2e
−κ·y same for β = 0

β = κ2 ω2

c2
− κ2

C1e
iκ·y + C2e

−iκ·y C3 · ei
√
αx + C4 · e−i

√
αx

or ∗ or ∗

A · cos(κ · y) + B · sin(κ · y) C · cos(
√
α · x) +D · sin(

√
α · x)

∗Valid only for nonnull constants forming a complex conjugated pair.

Thus

F ′′(x)
F(x)

= β − ω
2

c2
. (2.15)

From this last expression it can be concluded that

α = β − ω
2

c2
. (2.16)

Equation (2.16) indicates that the hypothesis of time harmonic travelling waves results in a
separation constant in the x direction that depends on the following parameters: frequency
(ω), fluid sound velocity (c), and y direction separation constant (β).

The solution of (2.1) can be established with the solution of the two ordinary
differential equations given by (2.14) and (2.15). The separation constant β can assume
positive, negative, or null values. However, it should be noticed that depending on the
problem, some of these solutions may result in expressions that are either trivial or without
physical meaning.

Table 1 presents a resume of the possible solutions in both x and y directions according
to the value of β. Values of α are also included.

3. Solution of Rectangular Cavities with a Vibrating Boundary

3.1. Entirely Open Cavity

In this case it is assumed that the cavity has the following pair of boundary conditions in
the x and y directions, respectively: vibrating boundary-open and open-open. The vibrating
boundary condition is related to the fluid-structure interaction at the interface, while the
open condition implies at zero pressure at the contour. It will be shown later that this cavity,
despite the lack of physical meaning, presents mathematical simplications that justify the use
of such conditions, providing a useful interpretation of the phenomena. Figure 1 illustrates
the analyzed domain as well as the boundary conditions.
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φ(y)

S1
y
x

Lx

Ly

S3
p = 0

S4
p = 0

S2
p = 0

Vibrating boundary
∂p/∂x = −ρf ü

ü(y, t) = φ(y)Ae−iωt

Cavity

Figure 1: Analyzed domain scheme including boundary conditions.

It is assumed that the vibrating boundary horizontal acceleration is governed by a time
harmonic function, related to an arbitrary shape function φ(y) and a maximum amplitude A.
Thus, for a given point at the interface the corresponding horizontal acceleration will be given
by

ü
(
y, t
)
= φ

(
y
)
Ae−iωt. (3.1)

Equations (2.16) and (3.1) can be substituted at the interface boundary condition S1. Thus

S1 −→
∂p

∂x

∣∣∣∣
x=0

= −ρf ü. (3.2)

Therefore

S1 −→ ∂P

∂x

∣∣∣∣
x=0

= −ρfφ
(
y
)
A. (3.3)

The remaining boundary conditions are easily established, indicating a zero pressure at the
contour. Therefore, in order to avoid the trivial solution, P(x, y) = F(x)G(y) must be null at
these locations. Thus

S2 −→ p
(
Lx, y, t

)
= 0 ∴ F(Lx)G

(
y
)
= 0 ∴ F(Lx) = 0,

S3 −→ p(x, 0, t) = 0 ∴ F(x)G(0) = 0 ∴ G(0) = 0,

S4 −→ p
(
x, Ly, t

)
= 0 ∴ F(x)G

(
Ly
)
= 0 ∴ G

(
Ly
)
= 0.

(3.4)

Equations (3.3) and (3.4) define the four boundary conditions needed for the solution of this
problem. Table 1 will be used as guide for selection of the corresponding longitudinal F(x)
and transversal G(y) solutions. Nontrivial solutions occur only when β = κ2. For this value
the transversal solution G(y) is given by

G
(
y
)
= B · sin

(
κ · y

)
, (3.5)



Mathematical Problems in Engineering 7

where,

κ =
nπ

Ly
, n = 1, 2, 3 . . . . (3.6)

The corresponding longitudinal solution for this value of β is given by

F(x) = D ·
[
sin
(√

α · x
)
− tan

(√
α · Lx

)
· cos

(√
α · x

)]
, (3.7)

where the separation constant α is defined by

αn =
(
ω

c

)2

−
(
nπ

Ly

)2

, n = 1, 2, 3 . . . . (3.8)

The complete solution is given by the sum of every possible solution of Pn(x, y). Thus

P
(
x, y

)
=
∞∑
n=1

En · [sin(
√
αn · x) − tan(

√
αn · Lx) · cos(

√
αn · x)] sin

(
κn · y

)
. (3.9)

The remaining constant En is obtained with application of boundary condition (3.3), using
the sine function orthogonality property. Thus

En = −
2ρfA
Ly
√
αn

∫Ly
0
φ
(
y
)

sin
(
κn · y

)
dy. (3.10)

Equation (3.10) can be substituted in (3.9) resulting in

P
(
x, y

)
= −

2ρfA
Ly

∞∑
n=1

1
√
αn

∫Ly
0
φ
(
y
)

sin
(
κn · y

)
dy

· [sin(
√
αn · x) − tan(

√
αn · Lx) · cos(

√
αn · x)] sin

(
κn · y

)
.

(3.11)

This last expression represents the dynamic pressure field solution for an open bidimensional
cavity containing a vibrating boundary subjected to a harmonic motion, described by an
arbitrary shape function φ(y).

Application of Sinusoidal Deformation Functions on S1 Boundary

The sine function orthogonality property can be applied once again, if it is assumed that the
vibrating boundary S1 has the following shape function:

φ
(
y
)
= sin

(
jπy

Ly

)
, j = 1, 2, 3, . . . , (3.12)
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which could be associated (in the case where the vibrating boundary represents deformations
of a framed structure) to the corresponding mode shapes of a simple beam. In this case, (3.11)
will result in

P
(
x, y

)
= −

ρfA
√
αj
·

sin
[√

αj(x−Lx)
]

cos
(√

αj · Lx
) · sin

(
jπy

Ly

)
. (3.13)

Defining ω = χπc/Ly, where χ is an arbitrary value, and substituting this expression in (3.8)

αj =

(
χπ

Ly

)2

−
(
jπ

Ly

)2

=

(
π

Ly

)2

·
(
χ2 − j2

)
. (3.14)

Therefore, applying (3.14) in (3.13) gives

P
(
ξx, ξy

)
= −

ρfALy

π
·

sin
[
π
√
χ2 − j2 · (ξx − 1) · r

]

√
χ2 − j2 · cos

(
π
√
χ2 − j2 · r

) · sin
(
jπξy

)
, (3.15)

where

ξx =
x

Lx
, ξy =

y

Ly
, r =

Lx
Ly
. (3.16)

This last expression can be rewritten in terms of a longitudinal function f1, a transversal
function s1, and an amplitude factor q. Thus

P = −
ρfALy

π
·
f1
(
j, χ, ξx, r

)

q
(
j, χ, r

) · s1
(
j, ξy

)
. (3.17)

It is important to notice the presence of a cosine function in q. This term will lead expression
(3.17) to infinite results whenever the value of this trigonometric function approaches zero.
This condition establishes critical points that result in resonance responses of the acoustic
cavity. These points are defined by

χcritical =

√(
m

2r

)2

+ j2, m = 1, 3, 5 . . . . (3.18)

This last expression indicates that every value of j is associated with infinite critical values
that will lead the pressure response to infinity. These values will always occur for χ > j. The
limit of f1s1/q when χ → χcritical is given by

lim
χ→χcritical

f1s1

q
=
[
−2r
m
· tan

(mπ
2

)]
· cos

(
mπξx

2

)
· sin

(
jπξy

)
. (3.19)
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Equations (3.18) and (3.19) are equivalent, respectively, to the frequencies and mode shapes
of an acoustic cavity, closed-opened in the longitudinal direction x, and opened-opened in
the transversal direction y. Therefore, it can be concluded that critical values represent a set
of frequencies that will lead to the mode shapes of the associated cavity, with the vibrating
boundary condition at S1 replaced by a rigid wall. Table 2 indicates the first seven uncoupled
modes for cavities with r = 1/2, 1, and 2. The corresponding mode shapes of the vibrating
boundary for a given value of j are also indicated.

Analysis of Table 2 results indicates that a given mode with an arbitrary value of j
will produce only j circular zones in the transversal direction. For example, solutions with
two circular regions in y are always associated to j = 2. In the longitudinal direction the
corresponding relation is given by m/2. Thus, for m = 3, for example, only one and a half
circular regions are expected at the x direction. Cavities with a greater value of r will present
mode sequences with lower values of j,while smaller values of r will provide sequences with
higher values of this parameter.

3.2. Closed Cavity in the Transversal Direction

In this case boundary conditions at S3 and S4 are replaced by

S3 −→
∂p

∂x

∣∣∣∣
y = 0

= 0, S4 −→
∂p

∂x

∣∣∣∣
y =Ly

= 0. (3.20)

Nontrivial solutions are defined by the following values of G(y):

G′(0) = 0, G′
(
Ly
)
= 0. (3.21)

For β = 0 boundary conditions given by (3.21) provide a valid solution, given by Table 1.
Thus

G
(
y
)
= C1. (3.22)

Table 1 provides the correspondent longitudinal solution, defined by

F(x) = B[sin(αx) − tan(αLx) cos(αx)]. (3.23)

Therefore, the complete solution for β = 0 is given by

P(x) = C[sin(αx) − tan(αLx) cos(αx)], (3.24)

where C indicates a remaining constant. Another valid solution is provided by β = κ2. In this
case the transversal solution is given by

G
(
y
)
= A · cos

(
κ · y

)
, (3.25)
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Table 2: Uncoupled mode shapes sequence for the associated cavity.

χcritical j m

1
2

√
8 1 1

1
2

√
20 2 1

1
2

√
40 1 3

1
2

√
40 3 1

1
2

√
52 2 3

1
2

√
68 4 1

1
2

√
72 3 3

1
2

√
5 1 1

1
2

√
13 1 3

1
2

√
17 2 1

1
2

√
25 2 3

1
2

√
29 1 5

1
2

√
37 3 1

1
2

√
41 2 5

1
4

√
17 1 1

1
4

√
25 1 3

1
4

√
41 1 5

1
4

√
65 1 7

1
4

√
65 2 1

1
4

√
73 2 3

1
4

√
89 2 5

r = 1/2

φ(y)
f1s1

q
χcritical j m φ(y)

f1s1

q
φ(y)

f1s1

q
χcritical j m

r = 1 r = 2

where

κ =
nπ

Ly
n = 0, 1, 2, 3 . . . . (3.26)
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It is important to notice that κ = 0 in (3.25) provide a valid solution, given by (3.22). Therefore,
solutions for β = 0 are included in these last expressions, when n = 0. The correspondent
longitudinal solution is defined by

F(x) = D ·
[
sin
(√

α · x
)
− tan

(√
α · Lx

)
· cos

(√
α · x

)]
, (3.27)

where the separation constant α is defined by

αn =
(
ω

c

)2

−
(
nπ

Ly

)2

, n = 0, 1, 2, 3 . . . . (3.28)

The complete solution for β = κ2 is given by

P
(
x, y

)
=
∞∑
n=0

En · [sin(
√
αn · x) − tan(

√
αn · Lx) · cos(

√
αn · x)] cos

(
κn · y

)
. (3.29)

The remaining constant En is obtained with application of boundary condition (3.3), using
the cosine function orthogonality property. Thus,

E0 = −
ρfA

Ly
√
α0

∫Ly
0
φ
(
y
)
dy, n = 0,

En = −
2ρfA
Ly
√
αn

∫Ly
0
φ
(
y
)

cos
(
κn · y

)
dy, n = 1, 2, 3 . . . .

(3.30)

Application of Sinusoidal Deformation Functions on S1 Boundary

Assuming that the vibrating boundary S1 is governed by (3.12) the following conditions are
established by (3.30) integrals:

∫Ly
0

sin

(
jπy

Ly

)
dy = −

Ly

jπ
·
[
cos
(
jπ
)
− 1
]
⎧
⎪⎨
⎪⎩

0 −→ j = even,

2Ly
jπ
−→ j = odd,

(3.31)

∫Ly
0

sin

(
jπy

Ly

)
cos

(
nπy

Ly

)
dy = Ly ·

j
[
1 − cos

(
jπ
)

cos(nπ)
]

π
(
j2 − n2

) , j /=n. (3.32)

In expression (3.32) it must be observed that even values of j result in nonzero solutions only
for n = 1, 3, 5 . . . . If j is an odd number, nontrivial solutions are expected only for n = 2, 4, 6 . . . .
Therefore, it can be concluded that summation, indicated on (3.29), does not vanish on this
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case (probably the greatest disadvantage when compared to an entirely open cavity), with
remaining values of n providing valid solutions. Dynamic pressure solution is defined by

P0(ξx) =
ρfALy

jπ2
·

sin
[
πχ(ξx − 1) · r

]
·
[
cos
(
jπ
)
− 1
]

χ · cos
(
πχ · r

) , n = 0, (3.33)

Pn
(
ξx, ξy

)
= −

2ρfALy
π

∞∑
n=1

sin
[
π
√
χ2 − n2(ξx − 1) · r

]

√
χ2 − n2 · cos

(
π
√
χ2 − n2 · r

)

·
j
[
1 − cos

(
jπ
)

cos(nπ)
]

π
(
j2 − n2

) · cos
(
nπξy

)
, n = 1, 2, 3 . . . .

(3.34)

The complete solution is given by sum of expressions (3.33) and (3.34). For even values of
j expression (3.33) vanishes and solution is defined only by (3.34), which assumes nonzero
values for n = 1, 3, 5 . . . . For odd values of j expressions (3.33) and (3.34) are present, with
this last one assuming nontrivial solutions for n = 2, 4, 6 . . . .

As in the previous case (entirely open cavity), critical values are also present in
expressions (3.33) and (3.34), which are equivalent to the uncoupled cavity frequencies, with
S1 replaced by a rigid wall. These are defined by

χcritical =

√(
m

2r

)2

+ n2, n = 0, 1, 2, . . . , m = 1, 3, 5 . . . . (3.35)

Limiting configurations (equivalent to the associated cavity modes) are established in
expressions (3.33) and (3.34), when χ → χcritical. Table 3 presents these results for r = 1, with
corresponding values of n and m. It is important to notice that odd values of j are related to
symmetrical distributions with respect to ξy = 1/2. The opposite occurs for even values of j.
Thus it can be concluded that symmetrical structural modes lead to symmetrical distributions
of cavity pressures with respect to the vertical mid section.

4. Fluid-Structure Coupled Solution for an Imposed Deformation

The analyzed problem is illustrated on Figure 2. It consists of a general structure with a
constant cross-section subjected to an external load. The dynamic response of this system can
be represented by a generalized coordinate X(t), allowing the construction of generalized
parameters (mass, stiffness, and loading) for any arbitrary mode shape, related to φ(y). This
type of solution will be very useful for the introduction of fluid pressures, since the previous
developed approach for the fluid domain is also dependent on the shape function.

For the mathematical development of this problem the following considerations are
assumed: mass per unit length μ(y), flexural rigidity EI(y), length Ly, external distributed
loading F(y, t), and unitary width perpendicular to the xy plane. The deflections are
represented by v(y, t), related to an arbitrary coordinate X(t), and a mode shape function
φ(y), normalized at the generalized coordinate location. Therefore,

v
(
y, t
)
= φ

(
y
)
X(t). (4.1)
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Table 3: Uncoupled mode shapes sequence for the associated cavity (r = 1).

1
2

√
5 1 1

1
2

√
13 1 3

1
2

√
29 1 5

1
2

√
37 3 1

1
2

√
53 1 7

1
2

0 1

3
2

0 3

1
2

√
17 2 1

5
2

0 5

5
2

2 3

χcritical n m
f1s1

q

f1s1

q

Even values of j Odd values of j

χcriticaln m
f1s1

q

The system’s dynamic equilibrium equation is obtained with the virtual work principle,
equaling the work done by internal and external forces. Thus,

∫Ly
0
F
(
y, t
)
φ
(
y
)
dy = Ẍ

∫Ly
0
μ
(
y
)[
φ
(
y
)]2

dy +X
∫Ly

0
EI
(
y
)[d2φ

(
y
)

dy2

]2

dy. (4.2)

Finally, introducing the following notations:

M̃ =
∫Ly

0
μ
(
y
)[
φ
(
y
)]2

dy, (4.3)

K̃ =
∫Ly

0
EI
(
y
)[d2φ

(
y
)

dy2

]2

dy, (4.4)

F̃ =
∫Ly

0
F
(
y, t
)
φ
(
y
)
dy, (4.5)
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Figure 2: Representation scheme of the structural model.

and substitution of these last expressions in (4.2) provide

M̃Ẍ + K̃X = F̃(t), (4.6)

which represents the system’s dynamic equilibrium equation of motion in terms of a
generalized coordinate X(t), where M̃, K̃, and F̃ are related, respectively, to generalized
mass, generalized stiffness, and generalized loading. It should be noticed that the generalized
stiffness term includes only bending deformation effects. Additional contributions could be
included by means of modification of this parameter. Damping could also be included, and
in this case it would be more convenient to express this effect using a damping ratio (ξ). Thus

C̃ = 2ξ M̃ω. (4.7)

4.1. Application of Fluid Pressures at the Interface

The previous solution depends on an external loading. In the case of a coupled system this
loading is represented by the dynamic pressures acting at the interface. Therefore

F
(
y, t
)
= p
(
0, y, t

)
× 1 = P

(
0, y

)
e−iωt, (4.8)

where the function P(0, y) is related to the corresponding cavity (associated to the framed
structure), with boundary conditions depending on the analyzed solution for the fluid
domain. For a harmonic vibrating contour accelerations at the interface are given by

ü
(
y, t
)
= φ

(
y
)
Ae−iωt. (4.9)



Mathematical Problems in Engineering 15

Accelerations at the interface are equivalent for both the structure and the fluid. Therefore,

ü
(
y, t
)
= v̈

(
y, t
)
= φ

(
y
)
Ẍ(t). (4.10)

Analysis of (4.9) and (4.10) provides

Ẍ(t) = Ae−iωt. (4.11)

Substitution of (4.5) and (4.8) in (4.6) gives

M̃Ẍ + K̃X + e−iωt
∫Ly

0
P
(
0, y

)
φ
(
y
)
dy = 0. (4.12)

In the above expression the generalized force is located at the left-hand side, because
physically the dynamic pressure acts in the same direction of inertia and elastic forces.
Equation (4.11) can be applied in (4.12) leading to a simplified expression given by

[
M̃ +

∫Ly
0

P
(
0, y

)

A
φ
(
y
)
dy

]
Ẍ + K̃X =

[
M̃ + M̃fluid

]
Ẍ + K̃X = 0. (4.13)

Equation (4.13) represents the free vibration of the structural model, with a generalized mass
produced by the interaction between fluid-solid domains. This expression can be simplified
with the inclusion of a generalized added mass term, which corresponds to sum of the
structural and fluid dislocated masses. Thus,

M̃totalẌ + K̃X = 0. (4.14)

Expression (4.11) provides

X(t) = −Ae
−iωt

ω2
−→ Ẍ(t) = −ω2X(t). (4.15)

Substitution of (4.15) in (4.14) results in

(
K̃ −ω2M̃total

)
X = 0. (4.16)

For a nontrivial solution the term in brackets of (4.16) must be null. Therefore,

K̃ −ω2M̃total = 0. (4.17)

Solution of the above expression provides frequencies of the coupled problem. It should
be noticed that the generalized stiffness depends on φ(y). And the total generalized mass
is composed of two parts. The first one is structure related, being dependent on φ(y). The
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second one is associated to the fluid dislocated mass and depends on φ(y) and ω, which are
unknown parameters of the problem, corresponding to the structural coupled mode shape
and the coupled system frequency, respectively. Therefore, this type of solution establishes
only one equation and two unknown variables. A simplified solution is possible with the
introduction of an imposed deformation function at the interface. Thus, a frequency equation
for a corresponding mode shape is constructed and the corresponding set of solutions is
obtained. Latter these values can be applied in the total generalized added mass expression,
resulting in the system’s dynamic equilibrium equation of motion, which can be solved for
an arbitrary excitation. Or, they can be substituted in the pressure field solution, resulting in
the cavity coupled mode shapes.

4.2. Frequency Equation for an Open Cavity with
a Sinusoidal Vibrating Boundary

In this specific case fluid pressure solution is given by (3.15). At the interface ξx = 0 of a
square cavity (r = 1) this expression is reduced to

P
(
0, ξy

)
=
ρfALy

π
·

tan
(
π
√
χ2 − j2

)
√
χ2 − j2

· sin
(
jπξy

)
. (4.18)

Thus, the generalized added mass is given by

M̃fluid =
∫Ly

0

P
(
0, ξy

)

A
φ
(
y
)
dy =

ρfLy
2

2π
·

tan
(
π
√
χ2 − j2

)

√
χ2 − j2

. (4.19)

This last equation represents the generalized fluid-added mass solution for a square open
cavity with a harmonic vibrating boundary associated to φ(y) = sin(jπy/Ly). Therefore, the
dynamic equilibrium equation of this system is given by substitution of (4.19) in (4.17):

K̃ −ω2

⎡
⎢⎣M̃ +

ρfLy
2

2π
·

tan
(
π
√
χ2 − j2

)

√
χ2 − j2

⎤
⎥⎦ = 0, (4.20)

where the generalized parameters K̃ and M̃ are given by

K̃ = EI

(
jπ

Ly

)4 ∫L
0

[
cos

(
jπy

Ly

)]2

dy = EI

(
jπ
)4

2Ly3
,

M̃ = μ
∫L

0

[
sin

(
jπy

Ly

)]2

dy =
μLy

2
.

(4.21)
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Table 4: Values of f(χ, j) function for χ → 0.

j

1 2 3 4 5
tanh(πj)/j 0.9963 0.5000 0.3333 0.2500 0.2000

Substitution of (4.21) in (4.20) provides

EI

(
jπ
)4

2Ly3
−ω2

⎡
⎢⎣
μLy

2
+
ρfLy

2

2π
·

tan
(
π
√
χ2 − j2

)
√
χ2 − j2

⎤
⎥⎦ = 0, (4.22)

which indicates the frequency equation of the coupled problem. For the uncoupled case the
second term in brackets vanishes and the corresponding solution is given by

ω
j
vacuum =

(
jπ
)2
√

EI

μLy
4
. (4.23)

For the coupled case, solution of (4.22) is more complicated and includes infinite solutions for
a given value of j (as it will be demonstrated later). The second term in brackets is a function
of χ, and it is interesting to study the variation of this term with this parameter, which can be
simplified to

M̃fluid =
ρfLy

2

2π
· f
(
χ, j
)
. (4.24)

Figure 3 illustrates the variation of (4.24) along the χ axis for values of j = 1 and 3. Analysis
of this graphic indicates that the generalized fluid-added mass solution is hyperbolic and
without critical values (resonances) in the χ < j interval. Occurrences of critical points are
expected beyond this point, leading the generalized added mass to infinite values (due to the
trigonometric nature of the solution). It is interesting to notice that values of χ � j produce
almost constant functions, with defined values at χ = 0.

The limit when χ → 0 establishes

lim
χ→ 0

M̃fluid =
ρfLy

2

2π
·

tanh
(
πj
)

j
, (4.25)

which indicates a generalized fluid-added mass solution independent of ω. Values of this
function can be evaluated for a given value of j. Table 4 illustrates these results. Reduced
values of the added mass are expected with the increasing of j.



18 Mathematical Problems in Engineering

−8

−4

0

4

8

f

0 1 2 3 4

χ

j = 1
j = 3

Figure 3: Variation of f(χ, j) along the χ axis for values of j = 1 and 3.

It is also possible to rewrite (4.22) in terms of the uncoupled frequencies of both the
structure and the associated cavity. Thus,

μLy

2

⎧
⎪⎨
⎪⎩
(
ω
j
vacuum

)2
−
(
χω1

cavity

)2

⎡
⎢⎣1 +

ρfLy

μπ
·

tan
(
π
√
χ2 − j2

)
√
χ2 − j2

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

= 0, (4.26)

where ω
j
vacuum is given by (4.23) and ω1

cavity = πc/Ly, which corresponds to the first
transversal frequency of the uncoupled cavity. Solutions of (4.26) are established when the
term in curly brackets vanishes. Therefore,

(F1)2 − χ2

⎡
⎢⎣1 +

F2

π
·

tan
(
π
√
χ2 − j2

)

√
χ2 − j2

⎤
⎥⎦ = J1 − J2 = 0, (4.27)

where the following dimensionless parameters are defined: F1 = ω
j
vacuum/ω

1
cavity and F2 =

ρfLy/μ. This last term can be rewritten, resulting in

F2 =
ρf · Ly
ρs · e · 1

=
ρ

R , (4.28)
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Figure 4: Parametric abacus of the frequency equation for j = 1 and r = 1.

with ρ = ρf/ρs and R = e/Ly. Therefore, the coupled solutions are defined in terms of
four parameters: the structural frequency of the corresponding mode shape in vacuum, the
first transversal frequency of the uncoupled cavity, the density relation between fluid and
structure, and the thickness/height ratio of the structure.

A parametric study of (4.27) is presented on Figure 4, for j = 1. The distributed
plots are associated to function J2, which represents the second term in this expression. The
coupled values of χ are established at the intersection of these curves with a corresponding
horizontal line, which indicates the value of J1. Constant values of J1 = 4 are illustrated on
this figure, providing a reference for analysis of the involved parameters.

Analysis of Figure 4 indicates the presence of two distinct regions: A and B. The
first one is contained on the initial interval between χ = 0 and the first critical value (first
resonance). The behavior of J2 function at this region is given by curves with developing
amplitudes towards infinity. The second region is composed by curves with amplitudes
ranging from −∞ to +∞. In a given point there is a common intersection, where all the
functions share the same amplitude. In both regions an increase of F2 results in greater
horizontal distances between J2 function and the vertical asymptotes (corresponding to
the cavity resonance frequencies). This implies greater relative differences between the
coupled problem solution and the corresponding uncoupled cavity frequencies. It should
also be noticed that an arbitrary horizontal line (J1 = 4, e.g.) will provide infinite solutions,
intercepting J2 curves more than once.

Limit zones are established by the solid curve χ2, which connects the common
intersection points in Region B. This condition implies J1 = χ2, leading to

⎛
⎝ω

j
vacuum

ω1
cavity

⎞
⎠

2

=

⎛
⎝ ω

ω1
cavity

⎞
⎠

2

∴ ω = ωj
vacuum. (4.29)

Thus, solutions intercepted by χ2 curve will present coupled frequencies which are equal to
the corresponding in-vacuum values. Additionally, this function defines solution zones of
added mass and added stiffness, which are located, respectively, above and below this curve.
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An added mass region implies coupled frequencies inferior to the corresponding in-vacuum
values, while an added stiffness implies the opposite. It should be noted that all solutions
in Region A are of added mass. Therefore, the initial solution will always be of this type.
For Region B both types of solutions are possible, including the common intersection points.
Solutions in Region A are unique, while for Region B an infinite set of solutions is defined.
The common points in Region B are given by

−F2

π
·

tan
(
π
√
χ2 − j2

)

√
χ2 − j2

= 0. (4.30)

Solution of this last expression results in

π
√
χ2 − j2 = mπ, m = 1, 2, 3 . . . . (4.31)

Therefore,

χ =
√
m2 + j2, m = 1, 2, 3 . . . , (4.32)

which provides the common points solution, which is independent of F2. The corresponding
solution of J1 when condition (4.29) is established is given by

J1 = χ2 ∴ J1 = m2 + j2. (4.33)

Therefore, problems with condition (4.33) satisfied will present a single coupled frequency
which is equal to the corresponding in-vacuum value. As mentioned before, this type of
solution is always located on Region B.

Figures 5 and 6 present, respectively, the parametric abacuses for j = 2 and j = 3. In
both cases Region A is extended to the proximity of χ = j. Observations made for Figure 4
are still valid.

It is important to notice that previous analyses were concerned with square cavities
(r = 1). However, the same procedure could be extended to a rectangular geometry. In this
case the generalized added mass will be dependent on the r parameter. Therefore, (4.18) can
be replaced by

P
(
0, ξy

)
=
ρfALy

π
·

tan
(
rπ
√
χ2 − j2

)

√
χ2 − j2

· sin
(
jπξy

)
. (4.34)

The generalized added mass resulting from this last expression is given by

M̃fluid =
ρfLy

2

2π
·

tan
(
rπ
√
χ2 − j2

)

√
χ2 − j2

=
ρfLy

2

2π
· f
(
r, χ, j

)
. (4.35)
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Figure 5: Parametric abacus of the frequency equation for j = 2 and r = 1.
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Figure 6: Parametric abacus of the frequency equation for j = 3 and r = 1.

Thus, the corresponding frequency equation results in

(F1)2 − χ2

⎡
⎢⎣1 +

F2

π
·

tan
(
rπ
√
χ2 − j2

)

√
χ2 − j2

⎤
⎥⎦ = J1 − J2 = 0. (4.36)

The effects of r in the parametric abacuses are related to the resonance values given by (3.18).
An increasing value of this parameter results in a greater number of critical points at a given
interval along the χ axis, resulting in more regions of type B (Figure 7). The first resonance is
also influenced by this parameter, defining the horizontal extension of Region A. Decreasing
the value of r will result in a larger extension of Region A, and in a smaller number of regions
of type B (Figure 8).
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Figure 7: Parametric abacus of the frequency equation for j = 1 and r = 2.
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Figure 8: Parametric abacus of the frequency equation for j = 1 and r = 1/2.

The limit of expression (4.35) when χ → 0 is given by

lim
χ→ 0

M̃fluid =
ρfLy

2

2π
·

tanh
(
rπj

)

j
. (4.37)

Equation (4.37) can be evaluated for given values of j and r. Table 5 illustrates these results.
Reduced values of the added mass are obtained for r < 1 (short cavities). However, these
effects are stronger at smaller values of j, exerting little influence on higher modes. Cavities
with r ≥ 1 (long cavities) present the same added mass for a given value of j.

Figures 7 and 8 illustrate, respectively, the effects of r in the parametric abacuses for
j = 1. Comparison with Figure 4 indicates that regions of type B are developed earlier for
r = 2, with the second region of this type appearing before χ = 1.6. The opposite occurs for
r = 1/2, with these regions dislocated to higher values of χ.
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Table 5: Values of f(r, χ, j) function for χ → 0.

j

1 2 3 4 5
r = 1/4 0.6558 0.4586 0.3274 0.2491 0.1998
r = 1/2 0.9172 0.4981 0.3333 0.2500 0.2000
r ≥ 1 0.9963 0.5000 0.3333 0.2500 0.2000

Table 6: Generalized fluid-added mass conditions.

value of j n M̃fluid 1 M̃fluid 2

even 1, 3, 5 . . . null defined
odd 2, 4, 6 . . . defined defined

4.3. Frequency Equation for a Closed Cavity in the Transversal Direction
with a Sinusoidal Vibrating Boundary

In this specific case fluid pressure solution is given by (3.33) and (3.34). At the interface ξx = 0
of a square cavity (r = 1) these expressions are reduced to

P0(0) = −
ρfALy

jπ2
·

tan
(
πχ
)
·
[
cos
(
jπ
)
− 1
]

χ
,

Pn
(
0, ξy

)
=

2ρfALy
π

∞∑
n=1

tan
(
π
√
χ2 − n2

)

√
χ2 − n2

·
j
[
1 − cos

(
jπ
)

cos(nπ)
]

π
(
j2 − n2

) · cos
(
nπξy

)
.

(4.38)

The generalized added mass is given by

M̃fluid =
∫Ly

0

P0(0)

A
φ
(
y
)
dy +

∫Ly
0

Pn
(
0, ξy

)

A
φ
(
y
)
dy = M̃fluid 1 + M̃fluid 2. (4.39)

This last expression can be evaluated using orthogonality properties of sine and cosine
functions. Therefore, substituting (4.38) in (4.39)

M̃fluid 1 =
ρfLy

2

π3
·

tan
(
πχ
)

χ
·
[
cos
(
jπ
)
− 1
]2

j2
, (4.40)

M̃fluid 2 =
2ρfLy2

π3

∞∑
n=1

tan
(
π
√
χ2 − n2

)

√
χ2 − n2

·
[
j
[
1 − cos

(
jπ
)

cos(nπ)
]

(
j2 − n2

)
]2

. (4.41)

It should be noticed that conditions related to dynamic pressures are still valid for these
generalized added masses. Thus, expression (4.40) vanishes for even values of j, with (4.41)
resulting in non trivial solutions for odd values of n. Table 6 presents these conclusions.
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Figure 9: General analysis scheme, material and geometrical properties.

As in the previous case, a frequency equation is established by

(F1)2 − χ2
[

1 +
F2

π3
· M

]
= J1 − J2 = 0 (4.42)

withM defining the following parameter:

M =
2π3

ρfLy
2
M̃fluid =

2π3

ρfLy
2

(
M̃fluid 1 + M̃fluid 2

)
. (4.43)

5. Application Examples and Results

Two application examples of the previous described procedures are presented on this item.
Simple beams associated to acoustic cavities entirely open (1) and closed in the transversal
direction (2) are solved analytically and these results are compared to a finite element
analysis. Figure 9 illustrates the general analysis scheme with material and geometrical
properties.

5.1. Analysis 1—Entirely Open Cavity (p = 0 → S2, S3, S4)

In this specific case the structural elastic modulus and density are taken, respectively, as E =
2.1 · 1011 N/m2 and ρs = 7800 kg/m3. Parameters F1 and F2 are given by

F1 =
ω
j
vacuum

ω1
cavity

, (5.1)

F2 =
1000 · 10

7800 · 1 · 1
∼= 1.28. (5.2)
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Therefore, the above equations indicate that F2 parameter is constant, while F1 depends on
j, which is associated to the structural vibration mode. The first three structural in-vacuum
modes have the following frequencies:

ω1
vacuum

∼= 147.83 rad/s; ω2
vacuum

∼= 591.33 rad/s; ω3
vacuum

∼= 1330.50 rad/s. (5.3)

The first transversal frequency of the uncoupled cavity is given by

ω1
cavity =

πc

Ly
∼= 471.24 rad/s. (5.4)

Thus, for the first three modes Fj1 parameter presents the following values:

F1
1
∼= 0.31; F2

1
∼= 1.25; F3

1
∼= 2.82. (5.5)

The above values together with (5.2) can be applied in the parametric abacuses corresponding
to the associated value of j, or substituted in (4.27) for solution of the coupled values of χ in
a given mode shape. Coupled frequencies are given by

ω =
χπc

Ly
. (5.6)

Table 7 illustrates hydrodynamic pressure distribution, coupled frequencies, and boundary
deformation associated to the first seven vibration modes, obtained analytically and
numerically using ANSYS finite element code. The last two columns on the right side
indicate, respectively, frequencies and mode shapes of the uncoupled cavity (which are equal
to results presented on Table 2 for r = 1). An alternative type of representation of these results
is illustrated on Table 8, which presents the relative differences between coupled analytical
and numerical frequencies, as well as the relative differences between analytical coupled and
uncoupled cavity frequencies.

Analysis of Tables 7 and 8 results indicates that modes 1, 2, and 6 do not
present characteristics of cavity modes (or resonant modes). The remaining coupled modes
demonstrate certain proximity with the corresponding cavity frequencies and mode shapes,
presenting modes slightly dislocated in the horizontal direction when compared to the cavity
solution. In these cases the relative differences between coupled frequencies and cavity values
are inferior to 10%. Modes 1, 2, and 6 have coupled frequencies inferior to the corresponding
in-vacuum values. Thus, it can be concluded that these modes are included in the added mass
region of the abacuses (above the χ2 curve).

An alternative approach could be used for solution of coupled frequencies of modes
1, 2, and 6. Application of Table 5 and (4.37) provides approximate values of the generalized
fluid-added mass, for solution of coupled frequencies located in Region A of the parametric
abacuses. Therefore, coupled frequencies are given by

ω =

√√√√ K̃

M̃total

=

√√√√ K̃

M̃ + M̃fluid

. (5.7)
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Table 7: Analytical and numerical solutions (Analysis 1).

Mode

1

2

3

4

5

6

7

ωnumerical

(rad/s)

123.68

523.34

570.11

882.36

1002.54

1162.82

1207.65

ωanalytical

(rad/s)
φ(y/Ly)

Analytical
solution

Numerical
solution

ωcavity

(rad/s)

—

—

526.86

849.54

971.48

—

1178.1

—

—

—

Uncoupled
cavity mode

122.52

527.79

570.2

881.22

1003.74

1187.52

1206.37

Table 8: Relative differences between analyzed frequencies (Analysis 01).

Mode
|ωnumerical −ωanalytical| · 100

ωnumerical

|ωanalytical −ωcavity| · 100
ωcavity

1 0.94 —
2 0.85 —
3 0.02 8.23
4 0.13 3.73
5 0.12 3.32
6 2.12 —
7 0.11 2.40

Thus,

ω1
coupled

∼= 122.52 rad/s; ω2
coupled

∼= 537.21 rad/s; ω3
coupled

∼= 1248.78 rad/s. (5.8)

This presents an excellent agreement with corresponding values indicated on Table 7. It
should be noticed that better results are expected for χ � j. Therefore, solution for j =
1 (χ= 0.26) is almost exact, while for j = 3 (χ= 2.65) an error of 7% is encountered.



Mathematical Problems in Engineering 27

5.2. Analysis 2—Closed Cavity in the Transversal Direction
(p = 0 → S2; ∂p/∂y = 0 → S3, S4)

In this specific case the structural elastic modulus and density are taken, respectively, as E =
2.5 · 1010 N/m2 and ρs = 2000 kg/m3. Parameter F2 is given by

F2 =
1000 · 10

2000 · 1 · 1 = 5. (5.9)

The first three structural in-vacuum modes have the following frequencies:

ω1
vacuum

∼= 100.73 rad/s; ω2
vacuum

∼= 402.92 rad/s; ω3
vacuum

∼= 906.58 rad/s. (5.10)

The corresponding values of Fj1 parameter are given by

F1
1
∼= 0.21; F2

1
∼= 0.86; F3

1
∼= 1.92. (5.11)

Table 9 illustrates hydrodynamic pressure distribution, coupled frequencies, and boundary
deformation associated to the first seven vibration modes, obtained analytically and
numerically using ANSYS finite element code. Modes 1, 2, and 5 have coupled frequencies
smaller than the corresponding in-vacuum values, indicating fluid-added mass effects.
Modes 2, 4, and 7 demonstrate certain proximity with cavity results, with configurations
slightly dislocated in the horizontal direction. In the remaining modes, where j is an odd
number, this observation is not very clear. Solutions of this type include cavity modes
associated to null values of n. Therefore, modes 1 and 3 are related to the first cavity resonance
(m = 1, n = 0), while modes 5 and 6 are related to the third cavity mode (m = 3, n = 0).

It is important to notice that in this case fluid effects can modify structural in-vacuum
mode shapes, as it can be noticed on modes 3, 6, and 7. The proposed procedure remains valid
if a dominant configuration is still given by simple beam mode shapes, such as in modes 3 and
7. However, mode 6 presents an exception, where no dominant configuration is identified.

5.3. Results Discussion for Analysis 1

The previous results indicate the division of coupled modes in two distinct categories.
In the first type, coupled frequencies and mode configurations are very different from
the corresponding uncoupled cavity solutions (illustrated on Table 2). In the second type,
coupled modes show great resemblance with the uncoupled cavity configurations, with
solutions dislocated in the horizontal direction and with a certain proximity in frequency
values (which depends on both F1 and F2, with smaller differences expected for solutions
of χ located near the resonances). The first type has characteristics of added mass, with
coupled frequencies smaller than the corresponding structural in-vacuum values. Solutions
of this type are located on Region A in the parametric abacuses. The second type presents the
possibility of coupled frequencies smaller (added mass), greater (added stiffness), or even
equal to the corresponding structural in-vacuum solutions. Solutions of this type are always
located on Region B.
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Table 9: Analytical and numerical solutions (Analysis 2).

Mode

1

2

3

4

5

6

7

ωnumerical

(rad/s)

43.72

255.27

376.02

614.06

645.03

832.3

914.2

ωanalytical

(rad/s)
φ(y/Ly)1 Analytical

solution
Numerical

solution
ωcavity

(rad/s)

235.62

526.86

232.56

526.86

706.86

—

849.54

— —

Uncoupled
cavity mode

43.68

255.1

381.3

616.38

642.55

—

925.42

1� numerical (coupled); –analytical (in-vacuum).

An important conclusion can be established based on the previous results. A given
mode j, located on Region A, with hyperbolic solution, will present χj given by

χj < j ∴ ωj <
jπc

Ly
. (5.12)

From this last expression it is possible to conclude that structural modes with coupled
frequencies inferior to the right side of (5.12) provide typical added mass solutions. That
is, coupled modes were the structure exerting higher influence in the response. It is also
important to notice that this limit is given by the uncoupled cavity frequencies in the
transverse direction.

Typical added mass solutions are given by the modified first cavity resonance for a
given j, with a hyperbolic solution in the longitudinal direction. Therefore, for these modes it
is expected a decay in the dynamic pressure solution towards x = Lx. Table 10 illustrates the
possible configurations for typical added mass modes related to j = 1 to 3.

Configurations of the coupled modes can be divided into distinct regions, according
to the value of χj . Values of χj < j define hyperbolic variations, with the resulting solution
located before the first resonance. Solutions in this region are classified as typical added
mass modes (Region I). Values of j < χj < χ1

critical define trigonometric solutions, with the
corresponding mode shape resembling the first resonance configuration slightly dislocated
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Table 10: Possible configurations for the typical added mass modes.

χj = 0.2 χj = 0.7 χj = 1.2 χj = 1.7 χj = 2.2 χj = 2.7
First

resonance

— — — —

— —

j

1

2

3

Table 11: Domains division for j = 1 and m = 1.

Region I

χj < j

χj = 0.2

Region II

j < χj < χ
1
critical

χj = 1.05

Critical point

χ1
critical

χj =
√

5/2

Region III-a

χ1
critical < χj < χ

1
zero

χj = 1.3

Hyperbolic Trigonometric First resonance Trigonometric

Table 12: Domains division for j = 1 and m = 3.

Zero point

χ1
zero

χj = χ1
zero

Region III-b

χ1
zero < χj < χ

2
critical

χj = 1.6

Critical point

χ2
critical

χj =
√

13/2

Region III-a

χ2
critical < χj < χ

2
zero

χj = 2.1

First zero Trigonometric Second resonance Trigonometric

to the left (Region II). When χj tends to χ1
critical, the corresponding mode shape approaches

the first resonance configuration. For χ1
critical < χj < χ1

zero, the mode shape resembles the
first resonance configuration dislocated to the right (Region III-a). When χj tends to χ1

zero the
corresponding mode shape approaches a null pressure condition at the interface, defining
the first zero point. Table 11 illustrates these domains for j = 1 and m = 1, resulting in
χ1

critical =
√

5/2.
Table 12 illustrates the next sequence, with j = 1 and m = 3, resulting in χ2

critical =√
13/2. It is important to notice that Region III is divided into two categories. The first,

classified as “a”, is contained in the interval between the first resonance and the first zero.
The second, classified as “b”, is limited by the first zero and the second resonance. From the
first resonance and beyond only Region III is present. The zero point is defined as the value of
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Figure 10: Variation of f(χ, j) along the χ axis for values of j = 1 and r = 1.

χj which establishes a null pressure condition at the interface (ξx = 0). Analysis of expressions
(3.15) and (3.17) indicates that this situation occurs whenever f1 = 0. Thus,

f1 = sin
[
−rπ

√
χ2 − j2

]
= 0. (5.13)

Solution of the above expression results in

χzero =

√(
m

r

)2

+ j2, m = 1, 2, 3 . . . , (5.14)

which indicates exactly the same expression given by (4.32) when r = 1. Therefore, it is
possible to conclude that the previous described common points in the parametric abacuses
are equivalent to the zero points, defining conditions of null pressure at the interface and
consequently coupled frequencies equal to the corresponding in-vacuum values.

It is also possible to divide the generalized fluid-added mass diagram of Figure 3
into the previously described regions. Figure 10 illustrates these results. Region II defines
the beginning of the trigonometric solution and corresponds to the final interval before the
first resonance. The first critical point establishes a signal change in the amplitude factor f
of (4.24), which becomes negative. This factor remains negative until the first zero point,
defining Region III-a. From this point until the second resonance the amplitude factor is
kept positive, defining Region III-b. After the second resonance the cycle restarts, alternating
between Regions III-a and III-b. The negative values of f have the physical meaning of an
added stiffness, while the positive values define an additional mass. Therefore, solutions
located on Regions I, II, and III-b provide the effects of an extra mass to the system, while
solutions located in Region III-a provide an extra stiffness. Tables 11 and 12 indicate that
solutions in Region III-a are given by critical configurations dislocated to the right, while
solutions in Region III-b are equivalent to resonant modes dislocated to the left. Based on
the previous analysis it is possible to conclude that solutions located at any of the previous
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described domains are equivalent to modified uncoupled cavity modes, with hyperbolic or
trigonometric variations, and with corresponding configurations dislocated in the horizontal
direction when compared to the uncoupled cavity solution.

5.4. Results Discussion for Analysis 2

This type of analysis presents an infinite summation in the generalized fluid-added mass term
for even and odd values of j. Therefore, even values of this parameter have a common set of
resonances (antisymmetrical cavity modes). This is also true for odd values of j (symmetrical
cavity modes). The occurrence of this phenomena implies in composed modes, where a given
structural mode shape has more than a single j related to φ(y), with the moving boundary
at S1 resulting in a combination of even or odd values of j. In some cases, especially in the
first set of modes, a dominant mode is present and the proposed procedure is able to identify
related frequencies (e.g. modes 1, 2, and 4,). However, the procedure fails if no significant
dominance is present (as it can be noticed on mode 6). It is also important to notice that
for an entirely open cavity (Analysis 1) there is no occurrence of common resonances, since
summation is reduced to a non trivial solution only for n = j, resulting in a unique set of
critical values for each j. Parametric abacuses could also be built for this type of analysis,
resulting in similar conclusions to those identified in Analysis 1.

6. Concluding Remarks

A closed analytical procedure for solution of frequencies and mode shapes of a simple
beam connected to an open rectangular acoustic cavity was presented. The mathematical
development resulted in a frequency equation defined by two dimensionless parameters,
which enabled the construction of practical abacuses for solution and interpretation of the
coupled problem. Analytical results are in agreement with analysis using the finite element
method and indicate the presence of two distinct categories of solutions. The first type
presents hyperbolic nature and a strong influence of the structure, producing typical added
mass modes, with coupled frequencies inferior to the corresponding structural in-vacuum
values. The second type presents a higher influence of the cavity modes, with coupled
frequencies which can be smaller, greater, or even equal to the corresponding structural
in-vacuum values. Mode configurations from this last category are equivalent to modified
uncoupled cavity modes, with strong similarity in both modes and frequencies depending
on the values of F1 and F2,

The proposed solution is useful for interpretation of the coupled phenomena,
providing an understanding of the modes sequences and corresponding configurations. The
resulting mathematical expressions applied at the practical abacuses allow the identification
of these general conclusions, with an initial interval χ < j, resulting in added mass modes,
followed by regions with χ > j, where the coupled solution can assume conditions related
to the structural in-vacuum frequencies values, such as, added stiffness (higher), added
mass (smaller), or a null pressure at the interface (equal). The limit curve identified by
χ2 enables the identification of these regions. Solutions located above this function present
characteristics of added mass modes, while solutions located under this curve present an
added stiffness behavior. For a given mode j only a single hyperbolic solution is possible
(typical added mass mode), followed by an infinite set of trigonometric solutions (modified
cavity modes).
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As an extension, a simplified solution for a closed cavity in the transversal direction
was also developed. The mathematical expressions indicate that summation is present in this
type of solution, defining, respectively, symmetrical and antisymmetrical cavity resonances
for odd and even values of j. Practical consequences of this phenomena imply composed
mode shapes, with φ(y) represented by a set of odd or even values of j. The proposed
procedure is able to identify coupled frequencies whenever a dominant mode is present.
However, this technique fails when solutions are related to composed modes. Properties of
an entirely open cavity, such as added mass, added stiffness, or null pressures at the interface
are also valid in this case.

Although results have been presented for two specific cases, solutions involving other
types of boundary conditions for both the structure and the cavity are also possible, resulting
in similar expressions and abacuses for solution and interpretation of this phenomena. It is
important to remember that the only limitation of this procedure is the prior knowledge of
the imposed deformation functions at the interface.
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