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Abstract Recently it was shown that standard odd- and
even-dimensional general relativity can be obtained from
a (2n + 1)-dimensional Chern–Simons Lagrangian invari-
ant under the B2n+1 algebra and from a (2n)-dimensional
Born–Infeld Lagrangian invariant under a subalgebra LB2n+1 ,
respectively. Very recently, it was shown that the generalized
Inönü–Wigner contraction of the generalized AdS–Maxwell
algebras provides Maxwell algebras of types Mm which
correspond to the so-called Bm Lie algebras. In this arti-
cle we report on a simple model that suggests a mechanism
by which standard odd-dimensional general relativity may
emerge as the weak coupling constant limit of a (2p + 1)-
dimensional Chern–Simons Lagrangian invariant under the
Maxwell algebra type M2m+1, if and only if m ≥ p. Simi-
larly, we show that standard even-dimensional general rela-
tivity emerges as the weak coupling constant limit of a (2p)-
dimensional Born–Infeld type Lagrangian invariant under a
subalgebra LM2m of the Maxwell algebra type, if and only if
m ≥ p. It is shown that when m < p this is not possible for
a (2p +1)-dimensional Chern–Simons Lagrangian invariant
under the M2m+1 and for a (2p)-dimensional Born–Infeld
type Lagrangian invariant under the LM2m algebra.

1 Introduction

The most general action for the metric satisfying the crite-
ria of general covariance and second-order field equations for
d > 4 is a polynomial of degree [d/2] in the curvature known
as the Lanczos–Lovelock gravity theory (LL) [1,2]. The LL
Lagrangian in a d-dimensional Riemannian manifold can be
defined as a linear combination of the dimensional contin-
uation of all the Euler classes of dimension 2p < d [3,4]:

S =
∫ [d/2]∑

p=0

αp L(p) (1)

a e-mail: pasalgad@udec.cl

where αp are arbitrary constants and

L p = εa1a2···ad Ra1a2 · · · Ra2p−1a2p ea2p+1 · · · ead (2)

with Rab = dωab + ωa
c ωcb. The expression (1) can be used

both for even and for odd dimensions.
The large number of dimensionful constants in the LL

theory αp, p = 0, 1, . . . [d/2], which are not fixed from first
principles, contrasts with the two constants of the Hilbert–
Einstein action.

In Ref. [5] it was found that these parameters can be fixed
in terms of the gravitational and the cosmological constants,
and that the action in odd dimensions can be formulated as a
Chern–Simons theory of the Ad S group.

The closest one can get to a Chern–Simons theory in even
dimensions is with the so-called Born–Infeld theories [5–
8]. The Born–Infeld Lagrangian is obtained by a particular
choice of the parameters in the Lovelock series, so that the
Lagrangian is invariant only under local Lorentz rotations in
the same way as the Hilbert–Einstein action.

If Chern–Simons theory is the appropriate odd-
dimensional gauge theory and if Born–Infeld theory is the
appropriate even-dimensional theories to provide a frame-
work for the gravitational interaction, then these theories
must satisfy the correspondence principle, namely they must
be related to general relativity.

In Ref. [9] it was shown that the standard, odd-dimensional
general relativity (without a cosmological constant) can be
obtained from Chern–Simons gravity theory for a certain
Lie algebra B and recently it was found that standard, even-
dimensional general relativity (without a cosmological con-
stant) emerges as a limit of a Born–Infeld theory invariant
under a certain subalgebra of the Lie algebra B [10].

Very recently it was found that the so-called Bm Lie alge-
bra of Ref. [9] corresponds to Maxwell algebras type Mm

[11]. In fact, it was shown that the generalized Inönü–Wigner
contraction of the generalized AdS–Maxwell algebras pro-
vides Maxwell algebras types Mm which correspond to Bm
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Lie algebra. These Maxwell algebras of type Mm can be
obtained by an S-expansion resonant reduction of the Ad S
Lie algebra when we use S(N )

E = {λα}N+1
α=0 as a semigroup.

It is the purpose of this paper to show that standard odd
general relativity emerges as the weak coupling constant
limit of a (2p + 1)-dimensional Chern–Simons Lagrangian
invariant under the M2m+1 algebra, if and only if m ≥ p.
Similarly, we show that standard even general relativity
emerges as the weak coupling constant limit of a (2p)-
dimensional Born–Infeld type Lagrangian invariant under
the LM2m algebra, if and only if m ≥ p. It is shown that
when m < p this is not possible for a (2p + 1)-dimensional
Chern–Simons Lagrangian invariant under the M2m+1 and
for a (2p)-dimensional Born–Infeld type Lagrangian invari-
ant under LM2m .

This paper is organized as follows: In Sect. 2 we briefly
review some aspects of: (i) Lovelock gravity theory, (ii)
the construction of the so-called M2n+1 algebra, and (iii)
obtaining odd- and even-dimensional general relativity from
Chern–Simons gravity theory and from Born–Infeld theory,
respectively.

In Sect. 3 it is shown that the odd-dimensional Hilbert–
Einstein Lagrangian can be obtained from a Chern–Simons
Lagrangian in (2p + 1) dimensions invariant under the alge-
bra M2m+1, if and only if m ≥ p. However, this is not pos-
sible for Chern–Simons Lagrangian in (2p + 1) dimensions
invariant under the M2m+1 algebra when m < p.

In Sect. 4 it is shown that the even-dimensional Hilbert–
Einstein Lagrangian can be obtained from a Born–Infeld type
Lagrangian in (2p) dimensions invariant under the LM2m

subalgebra of the M2m algebra, if and only if m ≥ p. How-
ever, this is not possible for Born–Infeld type Lagrangians in
(2p) dimensions invariant under the LM2m subalgebra when
m < p.

Section 5 concludes the work with a comment about pos-
sible developments.

2 The Lovelock action, the M2n+1 algebra and general
relativity

In this section we shall review some aspects of higher dimen-
sional gravity, the construction of the so-called Maxwell alge-
bra types, and obtaining odd- and even-dimensional general
relativity from Chern–Simons gravity theory and from Born–
Infeld theory, respectively. The main point of this section is to
display the differences between the invariances of Lovelock
action when odd and even dimensions are considered.

2.1 The Chern–Simons gravity

The Lovelock action is a polynomial of degree [d/2] in curva-
ture, which can be written in terms of the Riemann curvature

and the vielbein ea in the form of (1) and (2). In the first order
formalism the Lovelock action is regarded as a functional of
the vielbein and spin connection, and the corresponding field
equations are obtained by varying with respect to ea and ωab

[5]:

εa =
[(d−1)/2]∑

p=0

αp(d − 2p)ε
p
a = 0;

εab =
[(d−1)/2]∑

p=1

αp p(d − 2p)ε
p
ab = 0

(3)

where

ε
p
a := εab1···bd−1 Rb1b2 · · · Rb2p−1b2p eb2p+1 · · · ebd−1 , (4)

ε
p
ab = εaba3···ad Ra3a4 · · · Ra2p−1a2p T a2p+1 ea2p+2 · · · ead . (5)

Here T a = dea + ωa
beb is the torsion 2-form. Using the

Bianchi identity one finds [5]

Dεa =
[(d−1)/2]∑

p=1

αp−1(d − 2p + 2)(d − 2p + 1)ebε
p
ba . (6)

Moreover

ebεba =
[(d−1)/2]∑

p=1

αp p(d − 2p)ebε
p
ba . (7)

From (6) and (7) one finds for d = 2n − 1

αp = α0
(2n − 1)(2γ )p

(2n − 2p − 1)

(
n − 1

p

)
(8)

with α0 = κ
dld−1 , γ = −sign(�) l2

2 , where for any number of
dimensions l is a length parameter related to the cosmological
constant by � = ±(d − 1)(d − 2)/2l2.

With these coefficients, the Lovelock action is a Chern–
Simons (2n−1)-form invariant not only under standard local
Lorentz rotations δea = κa

b eb, δωab = −Dκab, but also
under a local Ad S boost [5].

2.2 Born–Infeld gravity

For d = 2n it is necessary to write (6) in the form [5]

Dεa = T b
[n−1]∑
p=1

2αp−1(n − p + 1)T p
ab

−
[n−1]∑
p=1

4αp−1(n − p + 1)(n − p)ebε
p
ba (9)
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with

Tab = δL

δRab
=

[(d−1)/2]∑
p=1

αp pT p
ab (10)

where

T p
ab = εaba3···ad Ra3a4 · · · Ra2p−1a2p T a2p+1 ea2p+2 · · · ead .

(11)

The comparison between (7) and (9) leads to [5]

αp = α0(2γ )p
(

n

p

)
. (12)

With these coefficients the LL Lagrangian takes the form
[5]

L = κ

2n
εa1a2···ad R̄a1a2 · · · R̄ad−1ad , (13)

which is the Pfaffian of the 2-form R̄ab = Rab + 1
l2 eaeb and

can be formally written as the Born–Infeld like form [5,8].
The corresponding action, known as Born–Infeld action is
invariant only under local Lorentz rotations.

The corresponding Born–Infeld action is given by
[5,8]

S =
∫ [d/2]∑

p=0

κ

2n

(
n

p

)
l2p−d+1εa1···ad Ra1a2 · · ·

Ra2p−1a2p ea2p+1 · · · ead (14)

where ea corresponds to the 1-form vielbein, and Rab =
dωab + ωa

c ωcb to the Riemann curvature in the first order
formalism.

The action (14) is off-shell invariant under the Lorentz–
Lie algebra SO(2n −1, 1), whose generators J̃ab of Lorentz
transformations satisfy the commutation relationships[

J̃ab, J̃cd

]
= ηcb J̃ad − ηca J̃bd + ηdb J̃ca − ηda J̃cb.

The Levi-Civita symbol εa1...a2n in (14) should be regarded
as the only non-vanishing component of the symmetric,
SO (2n − 1, 1) invariant tensor of rank n, namely

〈
J̃a1a2 · · · J̃a2n−1a2n

〉
= 2n

n
εa1···a2n . (15)

In order to interpret the gauge field as the vielbein, one
is forced to introduce a length scale l in the theory. To see
why this happens, consider the following argument: Given
that (i) the exterior derivative operator d = dxμ∂μ is dimen-
sionless, and (i i) one always chooses Lie algebra generators
TA to be dimensionless as well, the 1-form connection fields

A = AA
μT Adxμ must also be dimensionless. However,

the vielbein ea = ea
μdxμ must have dimensions of length

if it is to be related to the spacetime metric gμν through
the usual equation gμν = ea

μeb
νηab. This means that the

‘true’ gauge field must be of the form ea/ l, with l a length
parameter.

Therefore, following Refs. [14,15], the 1-form gauge field
A of the Chern–Simons theory is given in this case by

A = 1

l
ea P̃a + 1

2
ωab J̃ab. (16)

It is important to notice that once the length scale l is
brought into the Born–Infeld theory, the Lagrangian splits
into several sectors, each one of them proportional to a dif-
ferent power of l, as we can see directly in (14).

2.3 The Maxwell algebra type

2.3.1 The S-expansion procedure

In this subsection we shall review the main aspects of the S-
expansion procedure and their properties introduced in Ref.
[12].

Let S = {λα} be an abelian semigroup with 2-selector
K γ

αβ defined by

K γ
αβ =

{
1 when λαλβ = λγ

0 otherwise,
(17)

and g a Lie (super)algebra with basis {TA} and structure
constant CC

AB ,

[TA, TB] = CC
ABTC . (18)

Then it may be shown that the product G = S × g is also
a Lie (super)algebra with structure constants C (C,γ )

(A,α)(B,β) =
K γ

αβCC
AB ,

[
T(A,α), T(B,β)

] = C (C,γ )

(A,α)(B,β)T(C,γ ). (19)

The proof is direct and may be found in Ref. [12].

Definition 1 Let S be an abelian semigroup and g a Lie alge-
bra. The Lie algebra G defined by G = S × g is called the
S-expanded algebra of g.

When the semigroup has a zero element 0S ∈ S, it plays a
somewhat peculiar role in the S-expanded algebra. The above
considerations motivate the following definition.

Definition 2 Let S be an abelian semigroup with a zero ele-
ment 0S ∈ S, and let G = S × g be an S-expanded algebra.
The algebra obtained by imposing the condition 0STA = 0
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on G (or a subalgebra of it) is called a 0S-reduced algebra of
G (or of the subalgebra).

An S-expanded algebra has a fairly simple structure. Inter-
estingly, there are at least two ways of extracting smaller
algebras from S × g. The first one gives rise to a resonant
subalgebra, while the second produces reduced algebras. In
particular, a resonant subalgebra can be obtained as follows.

Let g = ⊕
p∈I Vp be a decomposition of g in subspaces

Vp, where I is a set of indices. For each p, q ∈ I it is always
possible to define i(p,q) ⊂ I such that

[
Vp, Vq

] ⊂ ⊕
r∈i(p,q)

Vr . (20)

Now, let S = ⋃
p∈I Sp be a subset decomposition of the

abelian semigroup S such that

Sp · Sq ⊂ ⋃
r∈i(p,q)

Sp. (21)

When such a subset decomposition S = ⋃
p∈I Sp exists,

then we say that this decomposition is in resonance with the
subspace decomposition of g, g = ⊕

p∈I Vp.
The resonant subset decomposition is crucial in order to

systematically extract subalgebras from the S-expanded alge-
bra G = S × g, as is proven in the following Theorem IV.2
of Ref. [12]: Let g = ⊕

p∈I Vp be a subspace decomposition
of g, with a structure described by (20), and let S = ⋃

p∈I Sp

be a resonant subset decomposition of the abelian semigroup
S, with the structure given in (21). Define the subspaces of
G = S × g,

Wp = Sp × Vp, p ∈ I. (22)

Then

GR = ⊕
p∈I Wp (23)

is a subalgebra of G = S × g.

Proof the proof may be found in Ref. [12].

Definition 3 The algebra G R = ⊕
p∈I Wp obtained is called

a resonant subalgebra of the S-expanded algebra G = S × g.

A useful property of the S-expansion procedure is that
it provides us with an invariant tensor for the S-expanded
algebra G = S × g in terms of an invariant tensor for g.
As shown in Ref. [12] the theorem VII.2 provides us with a
general expression for the invariant tensor for a 0S-reduced
algebra.

Theorem VII.2 of Ref. [12] Let S be an abelian semigroup
with nonzero elements λi , i = 0, . . . , N and λN+1 = 0S . Let

g be a Lie (super)algebra of basis {TA}, and let 〈TAn · · · TAn 〉
be an invariant tensor for g. The expression

〈T(A1,i1) · · · T(An ,in)〉 = α j K j
ia ···in

〈TA1 · · · TAn 〉, (24)

where α j are arbitrary constants, corresponds to an invariant
tensor for the 0S-reduced algebra obtained from G = S × g.

Proof the proof may be found in Section 4.5 of Ref. [12].

2.3.2 S-expansion of SO (2n, 2) algebra

Let us consider the S-expansion of the Lie algebra SO(2n, 2)

using the Abelian semigroup S(2n−1)
E = {λ0, λ1, λ2, λ3, λ4,

λ5, λ6, . . . , λ2n} defined by the product

λαλβ =
{

λα+β, when α + β ≤ 2n
λ2n, when α + β > 2n

(25)

The λα elements are dimensionless, and they can be rep-
resented by the set of 2n ×2n matrices [λα]i

j = δi
j+α , where

i, j = 1, . . . , 2n − 1, α = 0, . . . , 2n, and δ stands for the
Kronecker delta [9].

After extracting a resonant subalgebra and perfoming its
0S(= λ2n)-reduction, one finds a new Lie algebra, the so-
called Maxwell algebra type M2n+1, which in Ref. [9] was
called a B2n+1 algebra, whose generators

J(ab,2k) = λ2k ⊗ J̃ab, (26)

P(a,2k+1) = λ2k+1 ⊗ P̃a, (27)

with k = 0, . . . , n−1, satisfy the commutation relationships
[9]

[Pa, Pb] = Z (1)
ab , [Jab, Pc] = ηbc Pa − ηac Pb (28)[

Jab, Jcd
] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb (29)[

Jab, Z (i)
c

]
= ηbc Z (i)

a − ηac Z (i)
b , (30)[

Z (i)
ab , Pc

]
= ηbc Z (i)

a − ηac Z (i)
b , (31)[

Z (i)
ab , Z ( j)

c

]
= ηbc Z (i+ j)

a − ηac Z (i+ j)
b (32)[

Jab,Z (i)
cd

]
= ηcb Z (i)

ad − ηca Z (i)
bd + ηdb Z (i)

ca − ηda Z (i)
cb (33)[

Z (i)
ab,Z

( j)
cd

]
= ηcb Z (i+ j)

ad − ηca Z (i+ j)
bd + ηdb Z (i+ j)

ca

− ηda Z (i+ j)
cb (34)[

Pa, Z (i)
c

]
= Z (i+1)

ab ,
[

Z (i)
a , Z ( j)

c

]
= Z (i+ j+1)

ab . (35)

and where we have defined
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Jab = J(ab,0) = λ0 ⊗ J̃ab, (36)

Pa = P(a,1) = λ1 ⊗ P̃a, (37)

Z (i)
ab = J(ab,2i) = λ2i ⊗ J̃ab, (38)

Z (i)
a = P(a,2i+1) = λ2i+1 ⊗ P̃a, (39)

with i = 1, . . . , n − 1.

We note that the commutation relations (29), (33), and
(34) form a subalgebra of the M2n+1 algebra, which we will
denote as LM2n+1 . This subalgebra can be obtained from an
S-expansion of the Lorentz–Lie algebra using as a semigroup
the sub-semigroup S(2n−1)

0 = {λ0, λ2, λ4, λ6, . . . , λ2n} of

semigroup S(2n−1)
E = {λ0, λ1, λ2, λ3, λ4, λ5, λ6, . . . , λ2n} .

After extracting a resonant subalgebra and perfoming its
0S(= λ2n)-reduction, one finds the LM2n+1 algebra, which is
a subalgebra of the M2n+1 algebra, whose generators Jab =
λ0 J̃ab, Z (1)

ab = λ2 J̃ab, Z (2)
ab = λ4 J̃ab, . . . , Z (n)

ab = λ2n J̃ab

satisfy the commutation relationships (29), (33), and (34).

2.4 General relativity

2.4.1 Odd-dimensional general relativity

In Ref. [9], it was shown that the standard, odd-dimensional
general relativity (without a cosmological constant) can be
obtained from Chern–Simons gravity theory for the alge-
bra M2n+1. The Chern–Simons Lagrangian is built from a
M2n+1-valued, 1-form gauge connection A which depends
on a scale parameter l, which can be interpreted as a cou-
pling constant that characterizes different regimes within
the theory. The field content induced by M2n+1 includes
the vielbein ea , the spin connection ωab, and extra bosonic
fields ha(i) and kab( j). The odd-dimensional Chern–Simons
Lagrangian invariant under the M2n+1 algebra is given by
[9]

L(2n+1)
C S =

n∑
k=1

l2k−2ckα j δ
j
i1+···+in+1

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

εa1···a2n+1

× R(a1a2,i1) . . . R(a2k−1a2k ,ik )e(a2k+1,p1)e(a2k+2,q1) . . .

. . . e(a2n−1,pn−k )e(a2n ,qn−k )e(a2n+1,in+1), (40)

where

ck = 1

2(n − k) + 1

(
n
k

)

R(ab,2k) = dω(ab,2k) + ηcdω(ac,2i)ω(db,2 j)δk
i+ j .

In the l −→ 0 limit, the only nonzero term in (40) corre-
sponds to the case k = 1, whose only non-vanishing compo-
nent occurs for p = q1 = · · · = q2n−1 = 0 and is propor-
tional to the odd-dimensional Hilbert–Einstein Lagrangian
[9]

L(2n+1)
C S

∣∣∣
l=0

= nα2n−1

2n − 1
εa1···a2n+1 Ra1a2 ea3 . . . ea2n+1 . (41)

2.4.2 Even-dimensional general relativity

In Ref. [10], it was recently shown that standard, even-
dimensional general relativity (without a cosmological con-
stant) emerges as a limit of a Born–Infeld theory invariant
under the subalgebra LM2n+1 of the Lie algebra M2n+1.

The Born–Infeld Lagrangian is built from the curvature
2-form S(2n−1)

0 -expanded

F =
n−1∑
k=0

1

2
F (ab,2k) J(ab,2k), (42)

where

F (ab,2k) = dω(ab,2k) + ηcdω(ac,2i)ω(db,2 j)δk
i+ j

+ 1

l2 e(a,2i+1)e(b,2 j+1)δk
i+ j+1, (43)

which depends on a scale parameter l which can be inter-
preted as a coupling constant that characterizes different
regimes within the theory. The field content induced by
LM2n+1 includes the vielbein ea , the spin connection ωab,
and extra bosonic fields ha(i) = e(a,2i+1) and kab(i) =
ω(ab,2i), with i = 1, . . . , n−1. The even-dimensional Born–
Infeld gravity Lagrangian invariant under the LM2n+1 algebra
is given by [10]

LLM
B I (2n) =

n∑
k=1

l2k−2 1

2n

(
n

k

)
α jδ

j
i1+···+in

δ
ik+1
p1+q1

· · ·δin
pn−k+qn−k

εa1···a2n R(a1a2,i1) · · · R(a2k−1a2k ,ik )e(a2k+1,p1)

e(a2k+2,q1) · · · e(a2n−1,pn−k )e(a2n ,qn−k ). (44)

where we can see that in the limit l = 0 the only nonzero term
corresponds to the case k = 1, whose only nonzero compo-
nent (corresponding to the case p = q1 = · · · = q2n−2 = 0)
[10] is proportional to the even-dimensional Hilbert–Einstein
Lagrangian

LLM
B I (2n)

∣∣∣
l=0

= 1

2
α2n−2εa1···a2n R(a1a2,0)e(a3,1) · · · e(a2n ,1)

= 1

2
α2n−2εa1···a2n Ra1a2 ea3 · · · ea2n . (45)

3 Chern–Simons Lagrangians invariant
under the Maxwell algebra type

In this section it is shown that the Hilbert–Einstein Lagrang-
ian for an odd number of dimensions can be obtained from a
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Chern–Simons Lagrangian in (2p + 1) dimensions invariant
under the M2m+1 algebra, if and only if m ≥ p. However, this
is not possible when m < p for Chern–Simons Lagrangians
in (2p + 1) dimensions invariant under the M2m+1 algebra.

The 1-form gauge connection A is M2n+1-valued; it is
given by

A =
n−1∑
k=0

[
1

2
ω(ab,2k) J(ab,2k) + 1

l
e(a,2k+1) P(a,2k+1)

]
, (46)

and the 2-form curvature F = d A + A2 is

F =
n−1∑
k=0

[
1

2
F (ab,2k) J(ab,2k) + 1

l
F (a,2k+1) P(a,2k+1)

]
,

(47)

where

F (ab,2k) = dω(ab,2k) + ηcdω(ac,2i)ω(db,2 j)δk
i+ j

+ 1

l2 e(a,2i+1)e(b,2 j+1)δk
i+ j+1, (48)

F (a,2k+1) = de(a,2k+1) + ηbcω
(ab,2i)e(c,2 j)δk

i+ j . (49)

It is interesting to note that the Maxwell algebra type
M2m+1 can be used to construct different odd-dimensional
Chern–Simons Lagrangians. For example, if we consider
a S(3)

E -expansion of the Ad S algebra SO (4, 2) and after
extracting a resonant subalgebra and performing its 0S-
reduction, one finds the M5 algebra in D = 5 dimensions. On
the other hand, if we consider an S(3)

E -expansion of the Ad S
algebra SO(6, 2) and after extracting a resonant subalgebra
and performing its 0S-reduction, one finds the M5 algebra in
D = 7 dimensions. In this way, the CS Lagrangians LM5

C S(5)

and LM5
C S(7) are invariant under the same M5 algebra, how-

ever, the indices of the generators Ta run over five and seven
values, respectively.

These considerations allow the construction of gravita-
tional theories in every odd number of dimensions. Never-
theless, as discussed below, only in some dimensions it is
possible to obtain general relativity as the weak coupling
constant limit of a Chern–Simons theory.

3.1 (2 + 1)-dimensional Chern–Simons Lagrangians
invariant under M7-algebra

Before considering the Chern–Simons (2n +1)-dimensional
Lagrangian, we study the case of the M7 algebra. The M7-
algebra can be found by an S-expansion of the Ad S algebra
using as semigroup S(5)

E . In fact, after extracting a resonant
subalgebra and performing the 0S reduction, one finds the

M7-algebra whose generators satisfy the following commu-
tation relations:

[Pa, Pb] = Z (1)
ab , [Jab, Pc] = ηbc Pa − ηac Pb, (50)[

Jab, Jcd
] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb, (51)[

Jab, Z (1)
c

]
= ηbc Z (1)

a − ηac Z (1)
b ,

[
Jab, Z (2)

c

]

= ηbc Z (2)
a − ηac Z (2)

b , (52)[
Z (1)

ab , Pc

]
= ηbc Z (1)

a − ηac Z (1)
b ,

[
Z (2)

ab , Pc

]

= ηbc Z (2)
a − ηac Z (2)

b , (53)[
Z (1)

ab , Z (1)
c

]
= ηbc Z (2)

a − ηac Z (2)
b ,

[
Pa, Z (1)

c

]
= Z (2)

ab ,

(54)[
Jab,Z

(1)
cd

]
=ηcb Z (1)

ad −ηca Z (1)
bd +ηdb Z (1)

ca −ηda Z (1)
cb , (55)[

Jab,Z
(2)
cd

]
=ηcb Z (2)

ad − ηca Z (2)
bd +ηdb Z (2)

ca −ηda Z (2)
cb , (56)[

Z (1)
ab,Z

(1)
cd

]
=ηcb Z (2)

ad −ηca Z (2)
bd +ηdb Z (2)

ca −ηda Z (2)
cb , (57)[

Z (2)
ab , Z (1)

c

]
=

[
Z (2)

ab , Z (2)
c

]
=

[
Z (1)

ab , Z (2)
c

]
= 0, (58)[

Z (2)
ab,Z

(2)
cd

]
=

[
Z (1)

ab,Z
(2)
cd

]
=

[
Pa, Z (2)

c

]
= 0, (59)[

Z (1)
a , Z (1)

c

]
=

[
Z (1)

a , Z (2)
c

]
=

[
Z (2)

a , Z (2)
c

]
= 0. (60)

Consider the construction of a 3-dimensional Chern–
Simons Lagrangian invariant under M7. In fact, using The-
orem VII.2 of Ref. [12], it is possible to show that the only
non-vanishing components of an invariant tensor for the M7

algebra are given by

〈Jab Jcd〉M7 = α0 (ηadηbc − ηacηbd), (61)〈
Jab Z (1)

cd

〉
M7

= α2 (ηadηbc − ηacηbd), (62)
〈
Z (1)

ab Z (1)
cd

〉
M7

=
〈
Jab Z (2)

cd

〉
M7

= α4 (ηadηbc − ηacηbd),

(63)

〈Pa Pc〉M7 = α2ηac, (64)〈
Pa Z (1)

c

〉
M7

= α4ηac, (65)

〈Jab Pc〉M7 = α1εabc, (66)〈
Z (1)

ab Pc

〉
M7

=
〈
Jab Z (1)

c

〉
M7

= α3εabc, (67)
〈
Z (1)

ab Z (1)
c

〉
M7

=
〈
Jab Z (2)

c

〉
M7

= α5εabc, (68)

where α0, α1, α2, α3, α5, and α5 are arbitrary independent
dimensionless constants. The 1-form gauge connection A is
M7-valued; it is given by

A = 1

2
ωab Jab + 1

l
ea Pa + 1

2
k(ab,1)Z (1)

ab + 1

l
h(a,1)Z (1)

a

+1

2
k(ab,2)Z (2)

ab + 1

l
h(a,2)Z (2)

a , (69)
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and the 2-form curvature is

F = 1

2
Rab Jab + 1

l
T a Pa + 1

2

(
Dωk(ab,1) + 1

l2 eaeb
)

Z (1)
ab

+1

l

(
Dωh(a,1) + ka(1)

b eb
)

Z (1)
a

+1

2

(
Dωk(ab,2) + ka(1)

c kcb(1) + 1

l2

[
eah(b,1) + h(a,1)eb

])
Z (2)

ab

+1

l

(
Dωh(a,2) + ka(2)

c ec + ka(1)
c h(c,1)

)
Z (2)

a .

Using the dual procedure of the S-expansion, we find
that the 3-dimensional Chern–Simons Lagrangian invariant
under the M7-algebra is given by

LM7
C S(2+1) = α1

l
εabc

(
Rabec − d

(
1

2
ωabec

))

+α3

l
εabc

(
Rabh(c,1) + R(ab,1)ec + 1

3l2 eaebec

−d

2

(
ωabh(c,1) + k(ab,1)ec

))

+α5

l
εabc

(
Rabh(c,2) + R(ab,1)h(c,1)

+R(ab,2)ec + 1

l2 eaebh(c,1)

−d

2

(
ωabh(c,2) + k(ab,1)h(c,1) + k(ab,2)ec

))

+α0

2

(
ωa

bdωb
a + 2

3
ωa

bωb
cωc

a

)

+α2

2

(
ωa

bdkb(1)
a + ka(1)

b dωb
a + 2ωa

bωb
c kc(1)

a + 2

l2 eaT a
)

+α4

2

(
ωa

bdkb(2)
a + ka (2)

b dωb
a + 2ωa

bωb
c kc(2)

a

+ka(1)
b dkb(1)

a + 2ωa
bkb (1)

c kc(1)
a

+ 2

l2 eaT(a,1) + 2

l2 h(1)
a T a

)
(70)

where

R(ab,1) = Dωk(ab,1), (71)

R(ab,2) = Dωk(ab,2) + ka(1)
c kcb(1) (72)

T(a,1) = Dωh(a,1) + ka(1)
c ec. (73)

The Lagrangian (70) is split into six independent pieces,
each one proportional to α1, α3, α5, α0, α2, and α4. The
term proportional to α1 corresponds to the Chern–Simons
Lagrangian for I SO(2, 1), which contains the Hilbert–
Einstein term εabc Rabec.

Varying the Lagrangian (70) we have

δLM7
C S(2+1) =

1

l
εabc

(
α1 Rab + α3

l2 eaeb + α3R
(ab,1) + R(ab,2)

)
δec

+1

l
εabc

(
α3 Rab + α5R

(ab,1) + α5

l2 eaeb
)

δh(c,1)

+1

l
εabc

(
α5 Rab

)
δh(c,2) + 1

l
εabcδω

ab

×
(
α1T c + α3 Dωh(c,1) + α5 Dωh(c,2)

)

+1

l
εacdδωab

(
α3ebk(cd,1) + α5h,(1)

b k(cd,1) + α5ebk(cd,2)
)

+1

l
εabcδk(ab,1)

(
α3T c + α5 Dωh(c,1)

)

+1

l
εacdδk(ab,1)

(
2α5kc,(1)

b ed
)

+1

l
εabcδk(ab,2)

(
α5T c)

+α0

2

(
δLLorentz

3

)
+ α2

2

(
δLLorentz

3

(
k(1)

))

+α4

2

(
δLLorentz

3

(
k(2)

))
+ α4

2

(
δLLorentz

3

(
k(1)k(1)

))

+δea

(
α4

l2 T(a,1) + 2α2

l2 T a
)

+ δωab
(α2

l2 eaeb + α4

l2 ebh(1)
a

)

+δh,(1)
a

(
2α4

l2 T a
)

+ δk(ab,1)
(α4

l2 ebea

)
,

where LLorentz
3 = ωdω + 2

3ω3.

If we consider the case where k(ab,1) = k(ab,2) = 0,
h(a,1) = 0 and h(a,2) = 0) with the condition α1 = α3 =
α5 = 0, we have

δLM7
C S (2+1) =

α0

2

(
δLLorentz

3

)
+ α2

2l2 δωab (eaeb)+ α2

2l2 δea (Ta)

=α0δω
ab (Rab)+ α2

2l2 δωab (eaeb)+ α2

2l2 δea (Ta).

Choosing α0 = α2 we find that δLM7
C S(2+1) = 0 leads to the

following equations of motion:

Rab + 1

l2 eaeb = 0, (74)

Ta = 0. (75)

which correspond to the equations of general relativity with
a cosmological constant in (2 + 1) dimensions.

3.2 (4 + 1)-dimensional Chern–Simons Lagrangian
invariant under M7-algebra

The only non-vanishing components of an invariant tensor
for the M7 algebra are given by
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In D = 5, the only non-vanishing components of an
invariant tensor for the M7 algebra are given by

〈
Jab Jcd Pf

〉
M7

= 4

3
l3α1εabcd f . (76)

〈
Jab Jcd Z (1)

f

〉
M7

= 4

3
l3α3εabcd f . (77)

〈
Jab Z (1)

cd Pf

〉
M7

= 4

3
l3α3εabcd f . (78)

〈
Jab Jcd Z (2)

f

〉
M7

= 4

3
l3α5εabcd f . (79)

〈
Jab Z (1)

cd Z (1)
f

〉
M7

= 4

3
l3α5εabcd f , (80)

where α1, α3 and α5 are arbitrary independent constant
of dimensions [length]−3. Using the dual procedure of S-
expansion, we find that the 5-dimensional Chern–Simons
Lagrangian invariant under the M7-algebra is given
by

LM7
(4+1) = α1εabcd f

(
l2 Rab Rcd e f

)

α3εabcd f

(
l2 Rab Rcd h( f,1) + 2l2 RabR(cd,1)e f + 2

3
Rabeced e f

)

α5εabcd f

(
l2 Rab Rcd h( f,2) + 2l2 RabR(cd,1)h( f,1)

+2l2 RabR(cd,2)e f

+l2R(ab,1)R(cd,1)e f + 2Rabeced h( f,1)

+2

3
R(ab,1)eced e f + 1

5l2 eaebeced e f
)

. (81)

Varying the Lagrangian (81) we have

δLM7
(4+1) =εabcd f

(
α1l2 Rab Rcd + 2α3l2 RabR(cd,1)

+2α3 Rabeced + 2α5l2 RabR(cd,2)

+α5l2R(ab,1)R(cd,1) + 4α5 Rabech(d,1)

+2α5R
(ab,1)eced + 1

l2 α5eaebeced
)

δe f

+εabcd f

(
α3l2 Rab Rcd + 2α5l2 RabR(cd,1)

+2α5 Rabeced
)

δh( f,1)

+εabcd f α5l2 Rab Rcdδh( f,2) + 2εabcd f α5l2δk(ab,2) Rcd T f

+εabcd f δk(ab,1)
(

2α3l2 Rcd T f

+2α5l2 Rcd Dωh( f,1) + 2α5eced T f

+2α5l2 Dωk(cd,1)T f
)

+ εacd f gδk(ab,1)

×
(

4α5l2kc,(1)
b Rd f eg + 2α5l2 Rc

bk(d f,1)T g
)

+εabcd f δω
ab

[
2α1l2 Rcd T f + 2α3l2 Rcd Dωh( f,1)

+2α3l2R(cd,1)T f

−2α3l2k(cd,1) R f geg + 2α3eced T f + 2α5l2 Rcd Dωh( f,2)

+2α5l2R(cd,1)Dωh( f,1)

−2α5l2k(cd,1) R f gh,(1)
g + 2α5l2 Dωk(cd,2)T f

−2α5l2k(cd,2) R f geg

+4α5l2Rc,(1)
g k(gd,1)e f + 2α5l2kc,(1)

g k(gd,1)T f

+4α5ecT d h( f,1) + 2α5eced Dωh( f,1)
]

+εacd f gδω
ab

(
2α3l2eb Rcdk( f g,1) + 2α5l2h,(1)

b Rcdk( f g,1)

+2α5l2eb Rcdk( f g,2)

−2α5l2R
c,(1)
b k(d f,1)eg + 2α5kc,(1)

b R(d f,1)eg

+ebk(cd,1)R( f g,1) + 2α5ebk(cd,1)e f eg
)

.

When a solution without matter
(
k(ab,1) = 0, k(ab,2) =

0, h(a,1) = 0, h(a,2) = 0
)

is singled out, we are left with

δLM7
(4+1) = εabcd f

[ (
α1l2 Rab Rcd + 2α3 Rabeced

+ 1

l2 α5eaebeced
)

δe f

+
(
α3l2 Rab Rcd + 2α5 Rabeced

)
δh( f,1)

+2α5l2δk(ab,2) Rcd T f + α5l2 Rab Rcdδh( f,2)

+δk(ab,1)
(

2α3l2 Rcd T f + 2α5eced T f
)

+δωab
(

2α1l2 Rcd T f + 2α3eced T f
) ]

.

So when α1 and α5 vanish we finally get

δLM7
(4+1) = εabcd f

(
2α3 Rabeced

)
δe f

+ εabcd f

(
α3l2 Rab Rcd

)
δh( f,1)

+ εabcd f δk(ab,1)
(

2α3l2 Rcd T f
)

+ δωab
(

2α3eced T f
)

.

(82)

Therefore, if we impose the torsionlessness condition, we
see that the Chern–Simons Lagrangian in D = 5 invariant
under M7 leads to the same equations of motion as the Chern–
Simons Lagrangian in D = 5 invariant under M5 [9]. From
(82), like in Ref. [9], we see that in the limit where l = 0
the extra constraints just vanish, and δLC S = 0 leads to the
Hilbert–Einstein dynamics in vacuum,

δLM7
C S (4+1) = εabcd f

(
2α3 Rabeced

)
δe f

+εabcd f δω
ab

(
2α3eced T f

)
. (83)

Similarly, when the cosmological constant is not considered
and a solution without matter is singled out, the strict limit
where the coupling constant l equals zero yields just the

123



Eur. Phys. J. C (2014) 74:2741 Page 9 of 16 2741

Hilbert–Einstein term in the Lagrangian,

LM7
C S (4+1) = 2

3
α3εabcd f Rabecede f . (84)

3.3 (6 + 1)-dimensional Chern–Simons Lagrangian
invariant under M5-algebra

Now, consider a Chern–Simons action (6 + 1)-dimensional
invariant under the M5-algebra. The 1-form gauge connec-
tion A is M5-valued; it is given by

A = 1

2
ωab Jab + 1

l
ea Pa + 1

2
kab Zab + 1

l
ha Za, (85)

and the 2-form of the curvature is given by

F = 1

2
Rab Jab + 1

l
T a Pa + 1

2

(
Dωkab + 1

l2 eaeb
)

×Zab + 1

l

(
Dωha + ka

b eb
)

Za . (86)

Using the dual procedure of S-expansion, we find that the
7-dimensional Chern–Simons Lagrangian invariant under
the M5-algebra is given by

LM5
(6+1) = α1

l
εabcde f g

(
Rab Rcd Ref eg

)

+α3

l
εabcde f g

(
Rab Rcd Ref hg + 3Rab Rcd Dωke f eg

+ 1

l2 Rab Rcdeee f eg
)

, (87)

where α1 = λ1κ, α3 = λ3κ. From here we see that the
Hilbert–Einstein term is not present in the Lagrangian. This
result holds for all D = p-dimensional Chern–Simons
Lagrangians invariant under an algebra Mm if p > m.

Varying the Lagrangian we have

δLM5
(6+1) = 1

l
εabcde f g

(
α1 Rab Rcd Ref + 3α3 Rab Rcd Dωkef

+ 3

l2 α3 Rab Rcdeee f
)

δeg

+ 1
l
εabcde f g

(
α3 Rab Rcd Ref

)
δhg

+ 1
l
εabcde f gδω

ab
(

3α1 Rcd Ref T g

+3α3 Rcd Ref Dωhg + 6α3 Rcd Dωke f T g

+ 6

l2 α3 Rcdeee f T g
)

+ 1
l
εacde f ghδωab

(
3eb Rcd Ref kgh

)

+ 1
l
εabcde f gδkab

(
3α3 Rcd Ref T g

)
, (88)

from which we can see that it is not possible to obtain the
Hilbert–Einstein dynamics.

In fact, imposing the torsionlessness condition and if we
consider the case where kab = 0, ha = 0 with α1 = 0 we
find

δLB5
(6+1) = α3

l2 εabcde f g Rab Rcdeee f δeg

+α3

l
εabcde f g Rab Rcd Ref δhg, (89)

which obviously does not correspond to the dynamics of gen-
eral relativity.

3.4 (6 + 1)-dimensional Chern–Simons Lagrangian
invariant under M7-algebra

Consider the 7-dimensional Chern–Simons Lagrangian
invariant under the Ad S algebra

L Ad S
C S (6+1) = κ

[
εabcde f g

(
1

l
Rab Rcd Ref eg + 1

l3 Rab Rcd eee f eg

+ 3

5l5
Rabeced eee f eg + 1

7l7 eaebeced eee f eg
)]

+ β2,2

[
Ra

b Rb
a + 2

l2

(
T a Ta − Rabeaeb

)]

×
(

ωc
d dωd

c + 2

3
ωc

f ω
f
g ω

g
c + 2

l2 ecT c
)

+ β4

[(
ωa

bdωb
c dωc

d dωd
a + 8

5
ωa

bωb
c ωc

d dωd
e dωe

a

+4

5
ωa

bdωb
c ωc

dωd
e dωe

a

+2ωa
bωb

c ωc
dωd

e ωe
f dω

f
a + 4

7
ωa

bωb
c ωc

dωd
e ωe

f ω
f
g ω

g
a

)

+ 1

l2 4Ta Ra
b Rb

c ec + 1

l4

[
2

(
Rabeaeb+T a Ta

)
T cec

]]
.

Using the dual procedure of the S-expansion, we find
that the 7-dimensional Chern–Simons Lagrangian invariant
under the M7-algebra is given by

LM7
C S (6+1) = α1l4εabcde f g Rab Rcd Ref eg + α3εabcde f g

×
(

l4 Rab Rcd Ref h(g,1) + 3l4 Rab RcdR(e f,1)eg

+l2 Rab Rcdeee f eg
)

+ α5εabcde f g

(
l4 Rab Rcd Ref h(g,2)

+3l4 RabR(cd,1)R(e f,1)eg + 3l4 Rab RcdR(e f,2)eg

+3l4 Rab RcdR(e f,1)h(g,1) + 2l2 RabR(cd,1)eee f eg

+3l2 Rab Rcdeee f h(g,1) + 3

5
Rabecedeee f eg

)

+ α0{2,2}l5
[(

Ra
b Rb

a

)
LLorentz

3

]
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+ α2{2,2}l5
[(

Ra
b Rb

a

)(
LLorentz

3

(
k(1)

)
+ 2

l2 ecT c
)

+2
(

Ra
bR

b(1)
a

)
LLorentz

3

+ 2

l2

(
T aTa − Rabeaeb

)
LLorentz

3

]

+ α4{2,2}l5
[(

Ra
b Rb

a

) (
LLorentz

3

(
k(2)

)

+LLorentz
3

(
k(1)k(1)

)
+ 2

l2 ecT
c(1) + 2

l2 h(1)
c T c

)

+2
(

Ra
bR

b(1)
a

) (
LLorentz

3

(
k(1)

)
+ 2

l2 ecT c
)

+
(
R

a(1)
b Rb(1)

a

)
LLorentz

3

+2
(

Ra
bR

b(2)
a

)
LLorentz

3 + 2

l2

(
T aTa − Rabeaeb

)

×
(

LLorentz
3

(
k(1)

)
+ 2

l2 ecT c
)

+ 2

l2

(
2T aT(1)

a − 2Rabeah(1)
b − R(ab,1)eaeb

)
LLorentz

3

]

+ α0{4}l5
[

LLorentz
7

]
+ α2{4}l5

[
LLorentz

7

(
k(1)

)

+ 1

l2 4Ta Ra
b Rb

cec
]

+ α4{4}l5
[

LLorentz
7

(
k(2)

)
+ LLorentz

7

(
k(1)k(1)

)

+ 4

l2

(
Ta Ra

b Rb
ch(c,1) + T(1)

a Ra
b Rb

cec

+Ta Ra
bR

b(1)
c ec + TaR

a(1)
b Rb

cec
)

+ 1

l4

[
2

(
Rabeaeb + T aTa

)
T cec

] ]
. (90)

The Lagrangian (90) is split into nine independent pieces,
each one proportional to α1, α3, α5, α0{2,2}, α2{2,2}, α4{2,2},
α0{4}, α2{4}, and α4{4}. The term proportional to α1 corre-
sponds to the Chern–Simons Lagrangian for the ISO(6, 1)

group. The Hilbert–Einstein term εabcde f g Rabecedeee f eg

appears in the term proportional to α5.

Varying the Lagrangian (90) for the case α0{2,2} = α2{2,2}
= α4{2,2} = α0{4} = α2{4} = α4{4} = 0, we have

δLM7
C S (6+1) = εabcde f g

(
α1l4 Rab Rcd Ref + 3α3l4 Rab RcdR(e f,1)

+ 3α3l2 Rab Rcd eee f

+3α5l4 RabR(cd,1)R(e f,1) + 3α5l4 Rab RcdR(e f,2)

+6α5l2 RabR(cd,1)eee f

+6α5l2 Rab Rcd eeh( f,1) + 3α5 Rabeced eee f
)

δeg

+ εabcde f g

(
α3l4 Rab Rcd Ref + 3α5l4 Rab RcdR(e f,1)

+3α5l2 Rab Rcd eee f
)

δh(g,1)

+ εabcde f g

(
α5l4 Rab Rcd Ref

)
δh(g,2)

+ εabcde f gδωab
(

3α1l4 Rcd Ref T g

+3α3l4 Rcd Ref T(g,1) + 6α3l4 RcdR(e f,1)T g

+6α3l2 Rcd eee f T g + 3α5l4 Rcd Ref T(g,2)

+3α5l4R(cd,1)R(e f,1)T g

+2α5l4k(cd,1)k(e f,1)T g + 6α5l4 RcdR(e f,2)T g

+6α5l4 RcdR(e f,1)
(
T(g,1) + kg(1)

h eh
)

+6α5l2R(cd,1)eee f T g + 3α5l2 Rcd eee f T(g,1)

+3α5eced eee f T g
)

+ εabcde f gδk(ab,1)
(

3α3l4 Rcd Ref T g + 6α5l4 RcdR(e f,1)T g

+3α5l4 Rcd Ref
(
T(g,1) + kg(1)

h eh
)

+ 2α5l2 Rcd eee f T g
)

+ εabcde f gδk(ab,2)
(

3α5l4 Rcd Ref T g
)

.

In the event that (i) α1 and α3 are zero, (ii) the torsionless-
ness condition is imposed, and (iii) k(ab,1) = 0, k(ab,2) =
0, h(a,1) = 0, h(a,2) = 0, it is found that

δLM7
C S (6+1) = εabcde f g

(
3α5 Rabecedeee f

)
δeg

+ εabcde f g

(
3α5l2 Rab Rcdeee f

)
δh(g,1)

+ εabcde f g

(
α5l4 Rab Rcd Ref

)
δh(g,2). (91)

Here we see that in the limit l → 0 the Lagrangian leads
to the Hilbert–Einstein term

LM7
C S (6+1) = 3

5
α5εabcde f g Rabecedeee f eg, (92)

and the condition δLM7
C S (6+1) = 0 leads to the Einstein equa-

tions,

δLM7
C S (6+1) = εabcde f g

(
3α5 Rabecedeee f

)
δeg

+εabcde f gδω
ab

(
3α5ecedeee f T g

)
. (93)

The results show that the (2p + 1)-dimensional Chern–
Simons actions invariant under the algebra M2m+1 does not
always lead to the action of general relativity. Indeed, for
certain values of m it is impossible to obtain the Hilbert–
Einstein term in the (2p + 1)-dimensional Chern–Simons
Lagrangian invariant under M2m+1. This is because to obtain
the Hilbert–Einstein term, the presence is necessary of the〈
Ja1a2 Za3a4 · · · Za2p−1a2p P2p+1

〉
component of the invariant

tensor, which is given by
〈
Ja1a2 Za3a4 · · · Za2p−1a2p Pa2p+1

〉
M2m+1

=
{

l2p−1α2p−1
〈
Ja1a2 · · · Ja2p−1a2p Pa2p+1

〉
Ad S , if m ≥ p

0, if m < p.

(94)

This observation leads us to state the following theorem.
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Theorem 4 Let M2m+1 be the Maxwell type algebra,
which is obtained from the Ad S algebra by a resonant
reduced S(2m−1)

E -expansion. If LM2m+1
C S(2p+1) is a Chern–Simons

Lagrangian (2p + 1)-dimensional invariant under the
M2m+1-algebra, then the (2p + 1)-dimensional Chern–
Simons Lagrangian leads to the Hilbert–Einstein Lagrangian
in a certain limit of the coupling constant l, if and only if
m ≥ p.

The following table shows a set of Chern–Simons Lagran-
gians LM2m+1

C S(2p+1), invariant under the Lie algebraM2m+1, that
flow into the general relativity Lagrangian in a certain limit:

(95)

It is interesting to note that for each dimension D of
spacetime, we have the Lagrangian LC S(D) invariant under
the algebra M2n+1 that contains all other D-dimensional
Lagrangian with values in an algebra M2m+1 with m < n.
So it is always possible to obtain an action of a lower algebra
from the appropriate fields.

4 Born–Infeld Lagrangians invariant
under the subalgebra LM

In this section is shown that the even-dimensional Hilbert–
Einstein Lagrangian can be obtained from a Born–Infeld
Lagrangian in (2p) dimensions invariant under the subal-
gebra LM2m of the algebra M2m , if and only if m ≥ p.
However, this is not possible when m < p for a Born–Infeld
Lagrangian in (2p) dimensions invariant under the subalge-
bra LM2m .

4.1 Born–Infeld Lagrangian in D = 4 invariant under LM5

Following the definitions of Ref. [12], let us consider the S-
expansion of the Lie algebra SO (3, 1) using as a semigroup
the sub-semigroup S(3)

0 = {λ0, λ2, λ4} of the semigroup

S(3)
E = {λ0, λ1, λ2, λ3, λ4} . After performing its 0S(= λ4)-

reduction, one finds a new Lie algebra, call it LM5 , which
is a subalgebra of the so-called M5 algebra, whose genera-

tors Jab = λ0 J̃ab and Zab = λ2 J̃ab satisfy the commutation
relationships

[
Jab, Jcd

] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb,[
Jab,Zcd

] = ηcb Zad − ηca Zbd + ηdb Zca − ηda Zcb, (96)[
Zab,Zcd

] = 0.

In order to write down a Born–Infeld, we start from the 2-
form of the LM5 curvature F

F = 1

2
Rab Jab + 1

2

(
Dωkab + 1

l2 eaeb
)

Zab. (97)

Using Theorem VII.2 of Ref. [12], it is possible to show
that the only non-vanishing components of an invariant tensor
for the LM5 algebra are given by

〈Jab Jcd〉LM5 = α0l2εabcd , (98)

〈Jab Zcd〉LM5 = α2l2εabcd (99)

where α0 and α2 are arbitrary independent constants of
dimensions [length]−2.

Using the dual procedure of S-expansion in terms of the
Maurer–Cartan forms [13], we find that the 4-dimensional
Born–Infeld Lagrangian invariant under the LM5 algebra is
given by [10]

LLM5
B I (4) = α0

4
εabcdl2 Rab Rcd

+α2

2
εabcd

(
Rabeced + l2 Dωkab Rcd

)
. (100)

Here we can see that the Lagrangian (100) is split into
two independent pieces, one proportional to α0 and the other
to α2. The term proportional to α0 corresponds to the Euler
invariant. The piece proportional to α2 contains the Hilbert–
Einstein term εabcd Rabeced plus a boundary term which con-
tains, besides the usual curvature Rab, a bosonic matter field
kab.

Unlike the Born–Infeld Lagrangian the coupling constant
l2 does not appear explicitly in the Hilbert–Einstein term but
accompanies the remaining elements of the Lagrangian. This
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allows one to recover the 4-dimensional Hilbert–Einstein
Lagrangian in the limit where l equals zero.

The variation of the Lagrangian, modulo boundary terms,
is given by

δLLM5
B I (4) = εabcd

(
α2 Rabec

)
δed

+εabcdδωab
(
α2T ced + α2kc

e Red
)

, (101)

from which we see that to recover the field equations of gen-
eral relativity it is not necessary to impose the limit l = 0.
δLLM

B I (4) = 0 leads to the dynamics of relativity when consid-

ering the case of a solution without matter (kab = 0). This is
possible only in 4 dimensions. However, to recover the field
equations of general relativity in dimensions greater than 4,
it is necessary to take the limit of the coupling constant l.

4.2 Born–Infeld Lagrangian in D = 4 invariant under LM7

algebra

Now, we consider the Born–Infeld Lagrangian in D = 4
invariant under LM7 algebra whose generators satisfy the
following commutation relations:

[
Jab, Jcd

] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb, (102)[
Jab,Z

(1)
cd

]
= ηcb Z (1)

ad − ηca Z (1)
bd + ηdb Z (1)

ca − ηda Z (1)
cb ,

(103)[
Jab,Z

(2)
cd

]
= ηcb Z (2)

ad − ηca Z (2)
bd + ηdb Z (2)

ca − ηda Z (2)
cb ,

(104)[
Z (1)

ab,Z
(1)
cd

]
= ηcb Z (2)

ad − ηca Z (2)
bd + ηdb Z (2)

ca − ηda Z (2)
cb ,

(105)[
Z (1)

ab,Z
(2)
cd

]
= 0 =

[
Z (2)

ab,Z (2)
cd

]
. (106)

The curvature 2-form S(3)
0 -expanded and reduced is

F = 1

2
Rab Jab + 1

l
T a Pa + 1

2

(
Dωk(ab,1) + 1

l2 eaeb
)

Z (1)
ab

+ 1

2

(
Dωk(ab,2) + ka(1)

c kcb(1) + 1

l2

[
eah(b,1) + h(a,1)eb

])
Z (2)

ab .

(107)

Using theorem VII.2 of Ref. [12], it is possible to show that
the only non-vanishing components of an invariant tensor for
the LM7 algebra are given by

〈Jab Jcd〉LM7 = α0εabcd , (108)〈
Jab Z (1)

cd

〉
LM7

= α2εabcd , (109)
〈
Jab Z (2)

cd

〉
LM7

=
〈
Z (1)

ab Z (1)
cd

〉
LM7

= α4εabcd , (110)

where α0, α2 and α4 are arbitrary dimensionless independent
constants.

Using the dual procedure of S-expansion in terms of the
Maurer–Cartan forms [13], we find that the 4-dimensional
Born–Infeld Lagrangian invariant under the LM7 algebra is
given by

LLM7
B I (4) = α0

4
εabcd Rab Rcd + α2

2
εabcd

(
R(ab,1) Rcd

+ 1

l2 Rabeced
)

+ α4

4
εabcd

(
R(ab,1)R(cd,1) + R(ab,2) Rcd

+ 2

l2 R(ab,1)eced + 4

l2 Rabh(c,1)ed + 1

l4 eaebeced
)

,

(111)

where

R(ab,1) = Dωk(ab,1), (112)

R(ab,2) = Dωk(ab,2) + ka(1)
c kcb(1). (113)

The Lagrangian (111) is split into three independent
pieces, each one proportional to α0, α2, and α4 respec-
tively. The term proportional to α0 corresponds to the Euler
invariant. The piece proportional to α2 contains the Hilbert–
Einstein term εabcd Rabeced plus a boundary term which con-
tains, besides the usual curvature Rab, a bosonic matter field
k(ab,1).

The variation of the Lagrangian, modulo boundary terms,
is given by

δLLM7
B I (4) = εabcd

(α2

l2 Rabec + α4

l2 R(ab,1)ec + α4

l2 Rabh(c,1)

+α4

l4 eaebec
)

δed

+ εabcd

(α4

l2 Rabec
)

δh(d,1)+εabcdδωab
(
α2kc,(1)

e Rde

+α2

l2 T ced + α4

2
kc,(2)

e Rde

+α4

l2

(
Dωh(c,1)ed − h(c,1)T d

))

+ εacdeδω
ab

(
α2kc,(1)

b Rde + α4kc,(1)
b R(de,1)

+α4

2
kc,(2)

b Rde + α4

l2 kc,(1)
b edee

)

+ εabcdδk(ab,1)
(α4

l2 T ced
)

+ εacdeδk(ab,1)
(
α4ω

c
bR

(de,1) + α4

2
kc,(1)

b Rde
)

(114)

where T(a,1) = Dωh(a,1) + ka(1)
c ec. If we consider the case

where k(ab,1) = h(a,1) = 0 , we have
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δLLM7
B I (4) = εabcd

(α2

l2 Rabec + α4

l4 eaebec
)

δed

+ εabcd

(α4

l2 Rabec
)

δh(d,1)

+ εabcdδωab
(α2

l2 T ced
)

+ εabcdδk(ab,1)
(α4

l2 T ced
)

,

(115)

from which

εabcd Rabec = 0, (116)

εabcd T ced = 0. (117)

That is, we have obtained the Hilbert–Einstein dynamics in
a vacuum without any restriction on the coupling constant l.

4.3 Born–Infeld Lagrangian in D = 4 invariant
under LM2n+1

The generators of the M2n+1 algebra satisfy the commu-
tation relation (46–35). The corresponding 1-form gauge
connection A and the curvature 2-form, the M2n+1-valued
F = d A+A2 are given in (46) and (47). The generators of the
LM2n+1 algebra satisfy the following commutation relation:

[
Jab, Jcd

] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb[
Jab,Z

(i)
cd

]
= ηcb Z (i)

ad − ηca Z (i)
bd + ηdb Z (i)

ca − ηda Z (i)
cb ,[

Z (i)
ab,Z

( j)
cd

]
= ηcb Z (i+ j)

ad − ηca Z (i+ j)
bd + ηdb Z (i+ j)

ca

− ηda Z (i+ j)
cb . (118)

We bear in mind that the nonzero components of the invariant
tensor are given by

〈
J(ab,2i) J(cd,2 j)

〉 = α2i+2 jεabcd , (119)

where α2i+2 j are arbitrary independent dimensionless con-
stants and where we have defined

Jab = λ0 J̃ab = J(ab,0)

Z (i)
ab = λ2i J̃ab = J(ab,2i)

with i = 1, . . . , n − 1.
Using the same procedure as used in the previous cases,

we found that the Lagrangian LLM2n+1

B I (4) is given by

LLM2n+1

B I (4) = α2i+2 j

4
εabcd F (ab,2i)F (cd,2 j). (120)

Varying the Lagrangian and considering the case without
matter, (k(ab,i) = h(a, j) = 0), we have

δLLM2n+1

B I (4) = εabcd

(α2

l2 Rabec + α4

l4 eaebec
)

δed

+ εabcd

(αi+1

l2 Rabec
)

δh(d,i) (121)

+ εabcdδωab
(α2

l2 T ced
)

+ εabcdδk(ab,i)
(αi+1

l2 T ced
)

(122)

and the equations leading to the field equations of general
relativity

εabcd Rabec = 0, (123)

εabcd T ced = 0. (124)

4.4 Born–Infeld Lagrangian in D = 6 invariant under
LM2n algebra

It should be noted that the LM2n+1 algebra has the prop-
erty of being identical to the LM2n algebra. However, they
have different origins: The LM2n+1 algebra corresponds to
a reduced S(2n−1)

0 -expansion of the Lorentz algebra, as we
have seen previously, and the LM2n algebra corresponds to
a reduced S(2n−2)

0 -expansion of the Lorentz algebra, where

the semigroup S(2n−2)
0 is a sub-semigroup of the semigroup

S(2n−2)
E = {λi }2n−1

i=0 .
It is also interesting to note that the LM2n algebra can

be used to construct different even-dimensional Born–Infeld
type Lagrangians. For example, if we consider a reduced
S(4)

0 -expansion of the Lorentz algebra SO (3, 1), the LM6

algebra in D = 4 dimensions is obtained, and if we consider
a reduced S(4)

0 -expansion of the Lorentz algebra SO (5, 1)

then we get the LM6 algebra in D = 6 dimensions. In this
way, the Lagrangians LLM6

B I (4) and LLM6
B I (6), are invariant under

the same algebra LM6 , but the indices in the generators Jab

run over four and six values, respectively.
These considerations allow the construction of gravita-

tional theories in every even number of dimensions. However,
as discussed below, only in some dimensions it is possible to
obtain general relativity as a weak coupling constant limit of
Born–Infeld theory.

4.4.1 Born–Infeld Lagrangian in D = 6 invariant under
LM4

The Born–Infeld Lagrangian invariant under the Lorentz
algebra is given by

L(6)
B I = κ

6
εabcde f

(
Rab Rcd Ref + 3

l2 Rab Rcdeee f

+ 3

l4 Rabecedeee f + 1

l6 eaebecedeee f
)

. (125)

Following the definitions of Ref. [12], let us consider the
S-expansion of the Lie algebra SO (5, 1) using S(2)

0 =

123



2741 Page 14 of 16 Eur. Phys. J. C (2014) 74:2741

{λ0, λ2, λ3} as a sub-semigroup of S(2)
E = {λ0, λ1, λ2, λ3}.

After performing its 0S-reduction, one finds the LM4 algebra
which corresponds to a subalgebra of the M4 algebra. The
new algebra is generated by {Jab, Zab}, where these new
generators can be written as

λ0 ⊗ J̃ab = Jab, (126)

λ2 ⊗ J̃ab = Zab. (127)

In this case, J̃ab corresponds to the original generator of
SO (5, 1) and the λα belong to a finite abelian semigroup
S(2)

0 . Using the invariant tensors

〈
Jab Jcd Je f

〉
LM4 = 4

3
α0εabcde f , (128)

〈
Jab Jcd Zef

〉
LM4 = 4

3
α2εabcde f , (129)

we find that the 6-dimensional Born–Infeld Lagrangian
invariant under the LM4 algebra is given by

LLM4
B I−(6) = α0

6
εabcde f Rab Rcd Ref + α2

2
εabcde f

×
(

Rab Rcd Ref + 1

l2 Rab Rcdeee f
)

(130)

where Rab = Dωkab.

Note that in this case the S-expansion procedure caused
the Hilbert–Einstein term to disappear. This means that the
case of a 6-dimensional Born–Infeld Lagrangian invariant
under LM4 does not lead to general relativity in any limit.

4.4.2 Born–Infeld Lagrangian in D = 6 invariant under
LM6 algebra

In this case the curvature 2-form is given by [10]

F = 1

2
Rab Jab + 1

2

(
Dωk(ab,1) + 1

l2 eaeb
)

Z (1)
ab

+ 1

2

(
Dωk(ab,2) + ka(1)

c kcb(1)

+ 1

l2

[
eah(b,1) + h(a,1)eb

])
Z (2)

ab . (131)

Using the invariant tensors

〈
Jab Jcd Je f

〉
LM6 = 4

3
l4α0εabcde f , (132)

〈
Jab Jcd Zef

〉
LM6 = 4

3
l4α2εabcde f , (133)

〈
Jab Jcd Z (2)

e f

〉
LM6

=
〈
Jab Z (1)

cd Z (1)
cd

〉
LM6

= 4

3
l4α4εabcde f ,

we find that the 6-dimensional Born–Infeld Lagrangian
invariant under LM6 algebra is given by

LLM6
B I−(6) = α0

6
εabcde f l4 Rab Rcd Ref + α2

2
εabcde f

×
(

l4R(ab,1) Rcd Ref + l2 Rab Rcdeee f
)

+ α4

2
εabcde f

(
l4R(ab,1)R(cd,1) Ref + l4R(ab,2) Rcd Ref

+2Rl4ab Rcd h(e,1)e f + l2R(ab,1) Rcdeee f

+Rabecedeee f
)

.

Varying the Lagrangian and considering the case without
matter, k(ab,1) = h(a,1) = 0, we have

εabcde f Rabecedee = 0, (134)

εabcde f T cedee = 0. (135)

which are the Einstein equations in vacuum. Note that if in
the Lagrangian LLM6

B I−(6) we take the limit l = 0, we obtain
the Hilbert–Einstein term.

LLM6
B I−(6) = α4

2
εabcde f Rabecedeee f .

4.5 Born–Infeld Lagrangian in D = 2n invariant under
LM2n

The generators of the algebra LM2n satisfy the following
commutation relations:

[
Jab, Jcd

] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb[
Jab, Z (i)

cd

]
= ηcb Z (i)

ad − ηca Z (i)
bd + ηdb Z (i)

ca − ηda Z (i)
cb[

Z (i)
ab, Z ( j)

cd

]
= ηcb Z (i+ j)

ad − ηca Z (i+ j)
bd + ηdb Z (i+ j)

ca − ηda Z (i+ j)
cb ,

(136)

Theorem VII.2 of Ref. [9] allows us to see that the only
nonzero components of the tensor invariant are given by

〈
J(a1a2,i1) · · · J(a2n−1a2n ,in)

〉 = 2n−1l2n−2

n
α jδ

j
i1+···+in

εa1···a2n ,

(137)

where j = 0, . . . , 2n − 2 and α j are arbitrary independent

constants of dimensions
[
length

]2−2n .
In this case, the curvature 2-form is given by

F =
n−1∑
k=0

1

2
F (ab,2k) J(ab,2k) (138)

where
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F (ab,2k) = dω(ab,2k) + ηcdω(ac,2i)ω(db,2 j)δk
i+ j

+ 1

l2 e(a,2i+1)e(b,2 j+1)δk
i+ j+1. (139)

Using the dual procedure of the S-expansion in terms
of the Maurer–Cartan forms [13], we find that the 2n-
dimensional Born–Infeld Lagrangian invariant under the
LM2n algebra is given by

L
LM

2n
B I (2n) =

n∑
k=1

l2k−2 1

2n

(
n

k

)
α jδ

j
i1+···+in

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

εa1···a2n R(a1a2,i1) · · · R(a2k−1a2k ,ik )e(a2k+1,p1)

e(a2k+2,q1) · · · e(a2n−1,pn−k )e(a2n ,qn−k ). (140)

In the l → 0 limit, the only surviving term in (140) is given
by k = 1:

L
LM

2n
B I (2n)

∣∣∣∣
l=0

= 1

2
α jδ

j
i+k1+···+k2n−2

εa1···a2n R(a1a2,i)e(a3,k1) . . . e(a2n ,k2n−2)

= 1

2
α jδ

j
2p+2q1+1+···+2q2n−2 +1εa1···a2n R(a1a2,2p)

× e(a3,2q1+1) . . . e

(
a2n ,2q2n−2 +1

)

= 1

2
α jδ

j
2(p+q1+···+q2n−2)+2n−2εa1···a2n R(a1a2,2p)

× e(a3,2q1+1) . . . e

(
a2n ,2q2n−2 +1

)
. (141)

The only non-vanishing component of this expression occurs
for p = q1 = · · · = q2n−2 = 0, namely

L
LM

2n
B I (2n)

∣∣∣∣
l=0

= 1

2
α2n−2εa1···a2n R(a1a2,0)e(a3,1) · · · e(a2n ,1)

= 1

2
α2n−2εa1···a2n Ra1a2 ea3 · · · ea2n , (142)

which is proportional to the Hilbert–Einstein Lagrangian.

The results show that the 2p-dimensional Born–Infeld
action invariant under the algebra LM2m does not always lead
to the action of general relativity. Indeed, for certain values
of m it is impossible to obtain the Hilbert–Einstein term in
the 2p-dimensional Born–Infeld type Lagrangian invariant
under LM2m . This is because to obtain the Hilbert–Einstein
term, the presence is necessary of the

〈
Ja1a2 Za3a4 · · ·Za2p−1a2p

〉
component of the invariant tensor, which is given by〈

Ja1a2 Za3a4 · · · Za2p−1a2p

〉
LM2m

=
{

l2p−2α2p−2
〈
Ja1a2 · · · Ja2p−1a2p

〉
L

, if m ≥ p
0, if m < p.

(143)

This observation leads us to state the following theorem.

Theorem 5 Let LM2m be the algebra obtained from the
Lorentz algebra by a reduced S(2m−2)

0 -expansion, which cor-

responds to a subalgebra of the M2m algebra. If LLM2m
B I−2p is

a Born–Infeld type (2p)-dimensional Lagrangian built from
the curvature 2-form of LM2m F, then the 2p-dimensional
Lagrangian of Born–Infeld type leads to the Lagrangian of
general relativity, in a certain limit of the coupling constant
l, if and only if m ≥ p.

The following table shows a set of Born–Infeld type
Lagrangians LLM2n

B I−2p, invariant under the Lie algebra LM2n ,
that flow into the Lagrangian of general relativity in a certain
limit:

(144)

It is interesting to note that for each number of dimensions
D of spacetime, we see that the Lagrangian L B I (D) invariant
under the LM2n algebra contains all other D-dimensional
Lagrangian evaluated in an LM2m algebra with m < n. So
it is always possible to obtain an action of a lower algebra
from the appropriate fields.

It is also of interest to note that it was found that, analo-
gously to what happens in the case of 3-dimensional Chern–
Simons gravity, in 4 dimensions it is not necessary to take
the limit l = 0 to result in general relativity.
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5 Comments and possible developments

In the present work we have shown the following.

(i) Standard odd-dimensional general relativity (without a
cosmological constant) emerges as the weak coupling
constant limit of a (2p+1)-dimensional Chern–Simons
Lagrangian invariant under the M2m+1 algebra, if and
only if m ≥ p.

(ii) When m < p, it is impossible to obtain odd-dimensional
general relativity from a (2p + 1)-dimensional Chern–
Simons Lagrangian invariant under the M2m+1 algebra.

(iii) Standard even-dimensional general relativity (without
a cosmological constant) emerges as the weak coupling
constant limit of a (2p)-dimensional Born–Infeld type
Lagrangian invariant under the LM2m algebra, if and
only if m ≥ p.

(iv) When m < p, it is impossible to obtain even-
dimensional general relativity from a (2p)-dimensional
Born–Infeld type Lagrangian invariant under the LM2m

algebra.

The toy model and procedure considered here could play
an important role in the context of supergravity in higher
dimensions. In fact, it seems likely that it is possible to
recover standard odd- and even-dimensional supergravity
from Chern–Simons and Born–Infeld gravity theories, in a
way very similar to the one shown here. In this way, the pro-
cedure sketched here could provide us with valuable infor-
mation of what the underlying geometric structure of super-
gravity could be. This work is in progress.
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