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Abstract. In this work, an alternative model to discrete-time Markov model (DTMM) or
standard continuous-time Markov model (CTMM) for analyzing ordered categorical data
with Markov properties is presented: the minimal CTMM (mCTMM). Through a CTMM
reparameterization and under the assumption that the transition rate between two
consecutive states is independent on the state, the Markov property is expressed through a
single parameter, the mean equilibration time, and the steady-state probabilities are
described by a proportional odds (PO) model. The mCTMM performance was evaluated
and compared to the PO model (ignoring Markov features) and to published Markov models
using three real data examples: the four-state fatigue and hand-foot syndrome data in cancer
patients initially described by DTMM and the 11-state Likert pain score data in diabetic
patients previously analyzed with a count model including Markovian transition probability
inflation. The mCTMM better described the data than the PO model, and adequately
predicted the average number of transitions per patient and the maximum achieved scores in
all examples. As expected, mCTMM could not describe the data as well as more flexible
DTMM but required fewer estimated parameters. The mCTMM better fitted Likert data
than the count model. The mCTMM enables to explore the effect of potential predictive
factors such as drug exposure and covariates, on ordered categorical data, while accounting
for Markov features, in cases where DTMM and/or standard CTMM is not applicable or
conveniently implemented, e.g., non-uniform time intervals between observations or large
number of categories.

KEY WORDS: NONMEM; non-linear mixed effects models; ordered categorical data; pharmacokinetic-
pharmacodynamic; serial correlations.

INTRODUCTION

In clinical trials and practice, efficacy and safety evalu-
ation often involves endpoints that are of categorical nature.
In the simplest case, these endpoints are binary, e.g.,
responder versus non-responder and presence versus absence
of a favorable or undesired event. In more complex cases,
when the intensity of a variable that is not directly or easily
quantifiable is of interest, ordered categorical variables are
collected, for example, pain intensity, sedation grade, or
adverse effect severity (e.g., none, mild, moderate, severe,
or life threatening). Ordered categorical data may also arise
from a categorization of a continuous variable, e.g., grade of
neutropenia. In order to assess disease progression and/or

treatment effect, these variables are collected repeatedly in
each patient over the course of a therapy. Depending on the
frequency of collection, the outcome (state) of two consecu-
tive assessments may not be independent but intercorrelated
beyond what is predicted by taking standard predictors (dose,
time, individual patient characteristics) into account. Away to
handle such correlation is to make an outcome conditional on
the observed state at the previous assessment in the
individual (but not on the whole history). Such models are
referred to as (first-order) Markov models.

Population pharmacokinetic-pharmacodynamic (PKPD)
modeling has proved useful in elucidating exposure-response
relationships for categorical outcomes by use of non-linear
mixed effect (NLME) models. NLME models allow for
simultaneous analysis of the data from all individuals in a
study, description of the typical trend in the population, and
quantification of between-subject variability (BSV). Ordered
categorical data have mostly been characterized using pro-
portional odds (PO) models, first introduced for NLME
models by Sheiner, in which the probability of a response is
described as a function of explanatory factors (drug exposure,
covariates, etc.) (1). PO models are often appropriate for
characterizing PKPD relationships in the absence of serial
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correlations. When potential serial correlations are identified
or suspected, Markov models should be used to describe the
transition between states (2).

Discrete-time Markov models (DTMM) describe the
probability of transition between states from one observation
to the next and the potential covariate influence, including
drug effects, on these probabilities. DTMM combines the PO
model with a transition model. DTMM was first introduced
into PKPD models by Karlsson et al. to characterize sleep
stages in insomnia patients treated with temazepam (2), and
since then applied to various outcomes such as sedation
scores in acute stroke (3), central nervous system side effects
(4), improvement scores in rheumatoid arthritis (5), grades of
proteinuria (6), fatigue, and hand-foot syndrome in cancer
patients (7,8). In DTMM, the influence of the preceding state
on the probability of the current score is assumed to be the
same whatever the time interval is between the two assess-
ments. DTMM is therefore appropriate when modeling data
with uniform observation intervals. In DTMM, the number of
transitions to model, and therefore the number of model
parameters to estimate, increases dramatically with the
number of categories. For computational reasons, application
of DTMM for variables with large number of categories
(typically more than six) may not always be feasible. In this
case, although alternative models accounting for serial
correlations have been proposed (9), modelers often treat
the outcome as a continuous variable, thereby ignoring the
true discrete nature of the data.

When observation intervals are non-uniform,
continuous-time Markov models (CTMM) should be pre-
ferred. The first PKPD application of CTMM was to model
the position of a tablet in the gastrointestinal tract (10–12),
and it has since then been used to describe various ordered
categorical outcomes, e.g., pain in animals (13), extrapyrami-
dal side effects of antipsychotic drugs in schizophrenia (14),
improvement scores in rheumatoid arthritis (15), and neuro-
psychiatric impairment in immunodeficiency virus (16). In
CTMM models, the influence of the previous state on the
probability of the current state typically decreases with
increasing time between observations. For dichotomous
variables, CTMM and DTMM should provide similar de-
scription of the data. When more than two categories are
considered, CTMM models typically involve fewer model
parameters compared to DTMM. The reason for this is the
often-applied assumption that transitions only occur between
neighboring states. Like a tablet moving from the stomach to
colon is assumed to pass the small intestine in between, a
patient reporting no side effect at one time and moderate the
next time is assumed to have had mild side effect at some
intermediate time. However, for categorical variables with a
large number of states, CTMM may still encompass many
parameters and result in complex introduction of predictors
and long runtimes. We believe that a simplification of the
model would help model building and exploration of
exposure-response relationships.

In this work, we present a version of CTMM, the
minimal CTMM (mCTMM), as an alternative to DTMM or
standard CTMM. In the mCTMM, the assumption is made
that the transition rate between two consecutive states is

independent on the state and governed by a single parameter,
the mean equilibration time (MET). Through this assumption
and a reparameterization, the Markov property can be
expressed through the MET and the remaining parameters
can be expressed as typically done for PO models. The
application of mCTMM and its comparison to PO, DTMM,
and count models are then illustrated by three real data
examples: fatigue data and hand-foot syndrome (HFS) data
from sunitinib-treated gastrointestinal stromal tumor (GIST)
patients (7) and Likert pain score data in patients with
neuropathic pain (9).

METHODS

Theory

Let Yij be the categorical response for the ith individual at
the jth occasion. P(Yij ≥ k) is the probability that an
observation Yij is greater than or equal to a score k, also
known as the cumulative probability of score k. Figure 1
provides a schematic representation of the models described
in the following for an example scale with four categories (0
to 3). In the following sections, k is assumed to take values of
0, 1,…, K.

PO Model

In the PO model, the logit of P(Yij≥ k), which is the log
odds of falling into or above category k, is expressed as a
function of a vector x of p predictors x1ij,…, xpij (e.g., drug
exposure, concomitant treatments, biomarkers) specific to the
ith individual at the jth occasion (Eq. 1).

logit P Yi j≥k
� �� � ¼ log

P Yi j≥k
� �

1−P Yi j≥k
� �

 !
¼ αk þ f θ; xð Þ ð1Þ

Reciprocally, P(Yij≥ k) can be retrieved by the inverse
of the logit function, known as the expit function
(expit að Þ ¼ ea

1þea ¼ 1
1þe−a), as shown in Eq. 2.

P Yij≥k
� � ¼ 1

1þ e− αkþ f θ;xð Þð Þ ð2Þ

The intercept αk corresponds to the log odds of scoring at
least k when f(θ, x) is 0. f(θ, x) is a function of a vector of
covariate coefficients θ describing the effect of the predictors,
i.e., covariate coefficients, on the log odds of falling into or
above any category. Predictors’ effects can be described as
linear or non-linear functions. A major assumption of the PO
model is that all categories are affected to the same extent by
the predictors, i.e., the parameters θ are not specific to any
score. Note that for the lowest category (k = 0) P(Yij≥ k) = 1,
and α0 is not estimated. To ensure that P(Yij≥ k) >P(Yij≥
k + 1), the constraint αk > αk + 1 is required. To do so, αk for
the second lowest category (k = 1) is estimated with no
constraint and the following parameterization is used for the
higher categories: αk + 1 = αk + bk + 1, where bk + 1 are the
estimated parameters constrained to be negative. Moreover,
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when investigating BSV on αk, BSV terms are incorporated
additively on α1 so that the PO assumption is respected.

The probability of observing exactly score k can be
derived as follows:

P Yij ¼ k
� � ¼ 1−P Yij≥kþ 1

� �
if k ¼ 0

P Yij≥k
� �

−P Yij≥kþ 1
� �

if 0 < k < K
P Yij≥k
� �

if k ¼ K

8<
: ð3Þ

Importantly, in the PO model, potential dependency of
the current observation on the previous observation (Markov
elements) is ignored.

Discrete-Time Markov Model

In the DTMM, time is viewed as a discrete variable; i.e.,
it takes a discrete set of values such as the observation times
in a clinical study. DTMM equations are similar to the PO
model but describe the transition probability from state kj − 1

to state kj, i.e., the probability of each state kj at the current

occasion j given that a state kj − 1 was observed at the
previous occasion j-1 (Eqs. 4 and 5).

P Yij ¼ kjjYi j−1ð Þ ¼ kj−1
� �
¼ P Yij≥kjjYi j−1ð Þ ¼ kj−1

� �
−P Yij≥kj þ 1jYi j−1ð Þ ¼ kj−1
� �

ð4Þ
Similarly to the PO model, the cumulative probability of

score kj, given that the previous observed score is kj − 1, is
modeled using the expit function:

P Yij≥kjjYi j−1ð Þ ¼ kj−1
� � ¼ 1

1þ e
− αk j jk j−1þ f θ;xjk j−1ð Þ
� �

0
B@

1
CA ð5Þ

αk j jk j−1 is the intercept of the logit of the cumulative
probability of score kj given that kj − 1 was observed at the
previous occasion. f(θ, x| kj − 1) is a function of a vector of
parameters θ describing the effect of the predictors x on the

Fig. 1. Schematic representation of a discrete-time Markov model (top), a continuous-time Markov model (middle-top), a minimal
continuous-time Markov model (middle-bottom), and a proportional odds model (bottom), exemplified for a variable with four
categories (0 to 3). In the DTMM, transition probabilities cover a finite although fixed time interval from one observation to the next;
it is possible in that finite time interval to have gone from any state x to any state y. Conversely, in the CTMM, a differential transition
probability (rate constant lambda) between non-neighboring states will be 0 in the infinitesimal change in time. This results in DTMM
requiring a greater parameterization than CTMM. Pyx transition probability from state x to state y, λxy transfer rate constant from
state x to state y, MET mean equilibration time
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log odds of falling into or above any category. f(θ, x| kj − 1) is
conditional on the previous observed score. For the lowest
category (k = 0), P(Yij≥ k|Yi(j − 1) = kj − 1) = 1 and no αk j jk j−1 is
therefore estimated. To ensure that P(Yij≥ k|Yi(j − 1) = kj −
1) > P(Yij ≥ k + 1| Yi(j − 1) = kj − 1), the constraint αk j jk j−1 >

αk jþ1jk j−1 needs to be applied. This is achieved by estimating
αk j jk j−1 for the second lowest category (k = 1) and by using the
following parameterization for higher categories:
αk jþ1jk j−1 ¼ αk j jk j−1 þ bk jþ1jk j−1 , where bk jþ1jk j−1 are the negative
estimated parameters. BSV terms are incorporated additively
on αk j jk j−1 for the second lowest category (k = 1) so that the
PO assumption is respected. One major assumption in the
DTMM is that the transition probabilities are independent on
the time between two subsequent occasions. Moreover, the
score preceding the first observation is not known and is
assumed to be the same as the current.

Minimal Continuous-Time Markov Model

The mCTMM is a parsimonious version of the CTMM.
In the CTMM, time is regarded as a continuous variable and
the probability of each score is defined by an ordinary
differential equation and corresponds to a compartment
amount. At any time point, the sum of the probabilities of
all scores equals to 1. At the time of observation, the amount
of the compartment corresponding to the actual observed
score is set to 1, whereas the amounts in the compartments
for all other scores are reset to 0. A set of transfer rate
constants λ governs the rate at which the probability amounts
distribute between the different states during the time
interval between two observations. λk , k + 1 represents the
transfer rate constant from state k to state k + 1. In the
previously published CTMM, the probability amounts can
only transfer to adjacent states (from k to k + 1 or k − 1, but
not directly from, e.g., k to k + 2 or k − 2) (Eq. 6).

dP Yij ¼ k
� �
dt

¼
λkþ1;k � P Yij ¼ kþ 1

� �
−λk;kþ1 � P Yij ¼ k

� �
if k ¼ 0

λk−1;k � P Yij ¼ k−1
� �þ λkþ1;k � P Yij ¼ kþ 1

� �
− λk;k−1 þ λk;kþ1
� � � P Yij ¼ k

� �
if 0 < k < K

λk−1;k � P Yij ¼ k−1
� �

−λk;k−1 � P Yij ¼ k
� �

if k ¼ K

8<
: ð6Þ

In the mCTMM, the mean equilibration time (MET)
between two consecutive states is assumed to be constant
across states (Eq. 7).

MET ¼ 1
λk−1;k þ λk;k−1

¼ 1
λk;kþ1 þ λkþ1;k

ð7Þ

The transfer rate constants λ are expressed as functions
of the MET and a set of steady-state probabilities Pss , k

(Eqs. 8 and 9).

λk−1;k ¼ 1

MET � 1þ Pss;k−1

Pss;k

� � ð8Þ

λk;k−1 ¼ λk−1;k � Pss;k−1

Pss;k
ð9Þ

The steady-state probabilities Pss , k are defined similarly
to the PO model (Eqs. 10 and 11):

Pss Yij≥k
� � ¼ 1

1þ e− αkþ f θ;xð Þð Þ ð10Þ

Pss;k ¼ Pss Yij ¼ k
� � ¼ 1−Pss Yij≥kþ 1

� �
if k ¼ 0

Pss Yij≥k
� �

−Pss Yij≥kþ 1
� �

if 0 < k < K
Pss Yij≥k
� �

if k ¼ K

8<
: ð11Þ

The effect of explanatory factors can be investigated on
Pss , k as described by the function f(θ, x) in Eq. 10 or on
MET. In the mCTMM, estimated parameters include MET,

the intercepts αk, and the parameters θ related to the
predictors’ effect. Noteworthy, conversely to DTMM, the
response probability for the first observation of each individ-
ual can be estimated to Pss , k without the need to make any
assumption regarding the previous score.

An example of the code used in NONMEM software is
provided as Supplementary material.

Clinical Data and Published Models

To assess the predictive performance of the mCTMM
and compare it to the PO model and models with Markov
components, data from previously published clinical studies
were reanalyzed using the PO model and the mCTMM. A
summary of the available data and three published models is
provided in the following for each example.

Example 1: Fatigue

The first example consisted of fatigue score data
collected as five ordinal grades from 0 (no adverse effect) to
4 (life-threatening adverse effect) according to the National
Cancer Institute-Common Terminology Criteria for Adverse
Events (NCI-CTCAE) (version 3.0). Data were pooled from
four clinical trials including a total of 303 patients with GIST
treated with placebo or sunitinib, where fatigue status was
assessed daily (7). As described in the original publication,
since grade 4 was rare (1%), the categories 3 and 4 were
lumped into a single category (grade 3+). A total of 55,027
fatigue scores were collected with a median follow-up
duration of 157 days (range, 7–687). Fatigue data were
originally described by a DTMM driven by the relative
change from baseline over time in soluble vascular endothe-
lial growth factor receptor 3 (sVEGFR-3), a pharmacody-
namic biomarker related to sunitinib mechanism of action.
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sVEGFR-3 time-course was predicted using a published
indirect-response model (17).

Example 2: Hand-Foot Syndrome

In the second example, HFS data were collected from
three clinical studies including 251 sunitinib-treated GIST
patients and consisted of daily NCI-CTCAE grades ranging
from 0 to 3 (grade 4 was never observed) (7). A total of
39,294 HFS scores were collected with a median follow-up
duration of 147 days (range, 10–540). About 74% of the
patients did not experience HFS, i.e., had scores of 0 for the
entire study period. The original HFS DTMM model
structure was the same as the fatigue model (7).

Example 3: Likert Pain Score

In the third example, Likert pain score data were
available from 231 patients with painful distal diabetic
neuropathy randomized into the placebo arm of three phase
III studies. Daily pain scores were recorded in the evening on
the 11-point Likert pain scale and ranged from 0 to 10. A
total of 22,492 scores were collected with a median follow-up
duration of 124.5 days (range, 2.5–125.5). Patients were
allowed to take rescue medicine (acetaminophen) during the
study, and the intake was recorded daily. Available data,
demographic description, and covariate representation are
presented elsewhere (9).

In the modeling analysis by Plan et al. (9), the Likert
pain score data were treated as counts and described by a
discrete probability distribution model based on a truncated
generalized Poisson distribution accounting for under-disper-
sion. Discrete-time Markov properties were incorporated in
the model through a probability inflation for transitions of 0,
±1, ±2, and ±3. The probability inflation of stable score (null
transitions) was expressed as a time-dependent function. The
placebo effect was accounted for by an exponential decay in
the mean, with a maximal effect of 19% and a half-life of
onset of 28 days. Moreover, acetaminophen use (yes/no) was
found to increase the mean, denoting that rescue medication
was associated with higher pain scores. This model will be
referred to as the count model. Details about model
implementation in NONMEM can be found on DDMoRe
repos i t o r y (h t t p : / / r epo s i t o r y.ddmore . eu /mode l /
DDMODEL00000194).

Data Analysis and Model Evaluation

All data were analyzed and simulations performed using
the NLME software NONMEM version 7.3 (18). Parameter
estimation was carried out using Laplacian estimation method
with the likelihood option (LIKE) in the estimation record.
Data pre- and post-processing, graphical visualization, and
model diagnostics were assisted by R software version 3.1.1,
Perl-speaks-NONMEM (PsN) toolkit version 4, and Piraña
version 2.9.0 (19).

The objective function value (OFV, −2·log-likelihood)
was used as a goodness-of-fit criteria to compare models. No
statistical test was performed for non-nested models. Of note,
the OFV of the mCTMM, as presented above, could be
compared to the OFV of the PO model but not to the one of

the DTMM model as in the latter, the previous score to the
first observation was assumed the same as the current score.
In order to be able to compare the OFVs of the mCTMM and
DTMM, an alternative mCTMM model (mCTMMalt) was
implemented with the same assumption as in DTMM.

Parameter uncertainty was evaluated using the relative
standard errors (RSE) obtained from the NONMEMRmatrix
following an evaluation step using the Monte-Carlo impor-
tance sampling estimation method. To evaluate the predictive
performance of each model, 100 data sets were simulated
according to the realized design of the original data set. For
each simulated data set, the maximum achieved score was
calculated for each individual and the frequency of each
maximum achieved score across individuals was computed.
The distribution of the latter from the 100 simulations was
compared graphically to the maximum achieved score fre-
quencies in the original data set. Moreover, the number of
transitions in each simulated data set averaged by the number
of individuals was calculated and its distribution was numer-
ically compared to the corresponding observed value. Finally,
visual predictive checks (VPCs) were generated, where the
observed proportion of each score over time is compared to
the corresponding 95% confidence intervals (CI) obtained
from 100 simulations.

Model building, covariate evaluation and exposure-
response investigation were not the focus of this work; the
PO models and mCTMM presented here were therefore de-
veloped to reproduce as closely as possible the random effect
structure (BSV) and the implementation of predictor effects
on the score probabilities as in the published DTMM (fatigue,
HFS) and count model (Likert). Additive and exponential
BSV was evaluated as appropriate.

RESULTS

mCTMM was successfully fitted to all example data. A
description of mCTMM features is provided below for each
example. Table I compares the OFV, number of parameters,
and average number of simulated transitions per individual
obtained from the mCTMM, the PO model, and the DTMM
(fatigue and HFS) or the count model (Likert). An improve-
ment (decrease) in OFV was observed in all three examples
when accounting for Markov elements; i.e., DTMM or count
model and mCTMM always performed better than PO
models. Other goodness-of-fit criteria, such as Akaike criteria
or Schwarz criteria, may be calculated based on the informa-
tion provided in Table I. Moreover, when simulating from the
PO model, the number of transition per individual
was consistently overpredicted compared to the observed
data, by a factor of approximately 18, 8.8, and 1.4 in the
fatigue, HFS, and Likert examples, respectively. This is also
evident from Fig. 2, which exemplifies the observed and
simulated HFS score versus time profiles. Figure 3 illustrates
for each model and example the percentage of patients
achieving a given maximum score. VPCs (Figs. 4, 5, and 6)
showed a good predictive performance of the DTMM and
count models, whereas PO models in all three examples had
poor predictive performances of the trend in proportion of
each score over time. VPCs of the mCTMM models are
discussed in the following.
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Example 1: Fatigue

In the mCTMM for fatigue, the steady-state cumulative
probabilities Pss(Yij≥ k) were a function of the model-
predicted relative change in sVEGFR-3 from baseline over
time (sVEGFR3rel(t)) (Eq. 12).

Pss Yij≥k
� � ¼ 1

1þ e− αkþθsVEGFR3�sVEGFR3rel tð Þð Þ ð12Þ

θsVEGFR3 corresponds to the slope of the linear
sVEGFR3rel(t) effect on the logit scale. αk is as described in
the BMethods^ section. α1 was estimated to be −1.85, and the
standard deviation ωα1 of its additive BSV to 0.770, denoting
a large BSV in the score distribution in the absence of drug
(as reflected by sVEGFR-3 changes). Consistent with the
previously published DTMM (7), larger decreases in
sVEGFR-3 were associated with increased steady-state
probability of experiencing fatigue (θsVEGFR3 estimated to

Table I. Data and model characteristics in the fatigue, hand-foot syndrome, and Likert pain score examples

Observed Proportional odds mCTMM DTMM Count (Poisson)

Fatigue
OFV – 55,900 8382/7999 a 6766 –
No. of parameters (fixed/random effects) – 5 (4/1) 7 (5/2) 20 (16/4) –
Average no. of transitions per ID b 1.90 34.7 [28.7–40.0] 3.19 [2.63–3.94] 1.91 [1.68–2.15] –

Hand-foot syndrome
OFV – 24,286 4784/4471 a 3802 –
No. of parameters (fixed/random effects) – 5 (4/1) 7 (5/2) 19 (16/3) –
Average no. of transitions per ID b 1.35 11.9 [8.20–15.7] 1.13 [0.770–1.48] 1.13 [0.821–1.50] –

Likert pain score
OFV – 60,071 48,902 – 49,403
No. of parameters (fixed/random effects) – 15 (13/2) 18 (14/4) – 23 (12/11)
Average no. of transitions per ID b 41.3 58.7 [56.5–60.9] 41.9 [39.0–44.8] – 66.8 [65.1–68.3]

DTMM discrete-time Markov model, ID individual, mCTMM minimal continuous-time Markov model, OFV objective function value
aThe first OFV value corresponds to the mCTMM as presented in BMethods^ section where the probability of the first score is estimated to the
steady-state probability (Pss,k) and can be compared to the PO model OFV. The second OFV value corresponds to the alternative mCTMM
(mCTMMalt), where the previous score to the first observation was assumed the same as the current score and can be compared to the DTMMOFV.
b For all models, mean [95% confidence interval] of the average number of transitions per individual, calculated based on 100 simulated data sets

Fig. 2. Hand-foot syndrome (HFS) score versus time profiles with maximum scores of 1, 2, and 3, in the observed data set as compared to
simulations from the proportional odds model, minimal continuous-time Markov model (mCTMM), and discrete-time Markov model (DTMM)
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be −1.87). MET was estimated to be 37.9 days. All CTMM
parameters were estimated with reasonable uncertainty
(≤19%, Table II).

DTMM provided a better fit to the data (lower OFV) than
mCTMM. However, mCTMM was more parsimonious, with
seven estimated parameters versus 20 for DTMM. The average
number of transitions per individual was best predicted by the
DTMM and slightly overpredicted by the mCTMM. Both
mCTMM and DTMM well described the proportion of patients
with maximum achieved scores, whereas the PO model tended to
underpredict the proportion of patients with maximum achieved
scores of 0 and 1 and overpredict the proportion of patients with
maximumachieved scores of 2 and 3+ (Fig. 3). VPCs (Fig. 4) of the
mCTMMmodel showed at early time points a slight misprediction
of the proportion of scores 0 and 1 and at late time points an
underprediction of the proportion of scores of 1 (as for DTMM),
but overall an appropriate description of the trend over time.

Example 2: Hand-Foot Syndrome

The mCTMM model for HFS was similar to the fatigue
example. As for fatigue, more pronounced reduction in

sVEGFR-3 levels was associated with larger steady-state
probabilities of developing HFS, which is consistent with
previous finding with DTMM (7). MET was estimated to be
16.6 days. The uncertainty was below 30%RSE for all
parameters except α1 (45%RSE) and the associated BSV
(90%RSE) (Table II).

HFS data were best fitted by the DTMM, which gave the
lowest OFV but required 19 parameters versus seven for
mCTMM. Both mCTMM and DTMM adequately predicted
the average number of transitions per individual (Table I).
This is also illustrated in Fig. 2, where for three example
individuals with maximum achieved scores of 1, 2, and 3, the
transition patterns simulated from DTMM and mCTMM
were much more similar to the observed as compared to the
PO model. Figure 3 shows that DTMM provided the best
description of the maximum achieved scores. mCTMM
tended to overpredict the proportion of patients with a
maximum score of 0, and slightly underpredicted the maxi-
mum scores of 2, whereas the PO model accurately predicted
the low scores of 0 and 1, but the proportions of patients with
maximum scores of 2 and 3 were underpredicted and
overpredicted, respectively. VPCs (Fig. 5) of the mCTMM

Fig. 3. Simulation-based diagnostic plots of the proportional odds model (left), minimal continuous-time
Markov model (mCTMM, center), and discrete-time Markov (DTMM) or count models (right) for the
fatigue (top), hand-foot syndrome (HFS, middle), and Likert pain score (bottom) examples. For each
possible score, the percentage of patients achieving this score in the observed data set (blue dots) and in
the simulated data sets (box plots based on 100 samples) are compared
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model evidenced an underprediction of the proportion of
scores of 1 and an overprediction of the proportion of scores
of 3.

Example 3: Likert Pain Score

The steady-state probabilities of Likert scores were
described as a function of a linear effect of time (on logit
scale) with slope parameter θtime, accounting for the placebo
effect, and of an effect of acetaminophen intake (ACE coded
as 0 if absence and 1 if presence) with coefficient θace
(Eq. 13).

Pss Yij≥k
� � ¼ 1

1þ e− αkþθtime�tþθace �ACEð Þ ð13Þ

A non-linear effect of time (infusion-like model) was also
investigated but not supported by the data. The baseline
MET (MET0) was estimated to be 10.8 h; a linear increase in
MET with a typical slope (SlopeMET) estimated to be
0 .740 week− 1 s i gn ifican t l y improved mode l fi t
(dOFV = −539) and was consistent with the time-dependent
increase in score stability (9). The probability of lower pain

scores was found to increase with time (θtime= − 0.141 week−1)
and decrease with acetaminophen intake (θace=1.84). As
shown in Table III, all parameters were estimated with
reasonable uncertainty.

In the Likert pain score example, mCTMM gave the
lowest OFV and an accurate description of the average
number of transitions per individual, whereas the count
model overpredicted it (Table I). mCTMM also best
described the maximum achieved scores although the pro-
portion of patients with the maximum score of 10 was
overestimated (Fig. 3). All models could describe the low
proportion of patients with maximum scores less than 5. Both
the DTMM and the PO model underestimated the proportion
of patients with maximum achieved intermediate scores of 5
to 7, and overestimated the proportion for largest scores.
VPCs (Fig. 6) showed appropriate predictive performance of
the mCTMM.

DISCUSSION

The mCTMM, a simplification of the CTMM, allows
accounting for Markov elements with a minimal number of
estimated parameters when analyzing ordered categorical

Fig. 4. Visual predictive checks of the proportional odds model, minimal continuous-time Markov model (mCTMM),
and discrete-time Markov model (DTMM) for the fatigue example. The solid lines represent the observed time-
course of the proportion of each severity grade, and the shaded areas are the 95% confidence intervals generated
from simulations
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Fig. 5. Visual predictive checks of the proportional odds model, minimal continuous-time Markov model (mCTMM),
and discrete-time Markov model (DTMM) for the hand-foot syndrome example. The solid lines represent the
observed time-course of the proportion of each severity grade, and the shaded areas are the 95% confidence intervals
generated from simulations

Fig. 6. Visual predictive checks of the proportional odds model, minimal continuous-time Markov model (mCTMM), and count model for the
Likert example. The solid lines represent the observed time-course of the proportion of each severity grade, and the shaded areas are the 95%
confidence intervals generated from simulations
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data with serial correlations. As expected, when applied to
data with uniform assessment times previously analyzed with
DTMM, as in the fatigue and HFS examples, the mCTMM
did not provide any improvement in goodness of fit over
DTMM; however, mCTMM could well predict the average
number of transitions per individual as well as the maximum
achieved scores while requiring much fewer estimated
parameters than DTMM. In the HFS example, as opposed
to DTMM, the mCTMM could not appropriately predict the

time-course of the proportion of scores of 1 and 3, as
evidenced by the VPCs (Fig. 5). This may partly be explained
by the single sVEGFR-3rel effect applied in the mCTMM
model on the steady-state probabilities, whereas the DTMM
included four sVEGFR-3rel effects (one for each kj − 1) (7).
When applied to the Likert pain scale, which comprises 11
ordered categories, mCTMM provided a better description of
the data and had better simulation properties with regard to
transitions than the previously published count model, which
was based on a truncated Poisson distribution with Markov
components. This last example evidenced that mCTMM
provides a means for modeling discrete ordinal scales with
large number of categories and Markovian features while
keeping the number of estimated parameters reasonable.

Overall, mCTMM parameters were estimated with
reasonable precision in all three real data examples, except
the parameter α1 and its BSV in the HFS model. This may be
explained by the absence of HFS scores greater than zero in
the absence of drug effect, as untreated patients do not
spontaneously show HFS symptoms. This would translate into
a steady-state probability of 0 scores (Pss,0) that approaches 1
when the relative change from baseline in sVEGFR-3
(representative of the drug effect) is zero, which together
with the asymptotic properties makes the estimation of α1
difficult and explains the large uncertainties. The same issue
may arise from data where some extreme score is predomi-
nant at baseline due to the inclusion criteria. In case this
causes model instability, α1 may be fixed to low/high value as
appropriate. Sensitivity analysis may be performed to evalu-
ate the impact of the choice of this value on the overall model
fit and on other parameter estimates. Noteworthy, due to the
high correlation between α1 and its BSV, α1 value may impact
the BSV variance estimate.

As expected, PO models applied to all three examples
performed poorly compared to Markov models and
overpredicted the average number of transitions per individ-
ual. It has previously been shown that applying PO models to
data with Markov properties may lead to potential structural
model misspecification leading to erroneous conclusions
about the exposure-response relationships and poor predic-
tive performance with inflated number of transition. When
Markovian features are evident from the data, the use of PO
models should be avoided in favor of DTMM, CTMM, or

Table II. Final parameter estimates and their uncertainty for the minimal continuous-time Markov model in the fatigue and hand-foot
syndrome examples

Parameter Fatigue estimate (RSE%) Hand-foot syndrome estimate (RSE%)

α1 −1.85 (7.5) −17.5 (45)
b2 −1.08 (7.9) −1.99 (9.1)
b3 −1.92 (10) −2.66 (12)
MET (h) 909 (11) 399 (7.3)
θsVEGFR3 −1.87 (15) −20.5 (8.5)
ωα1

a 0.770 (19) 11.2 (90)
ωθsVEGFR3

b 1.07 (7.7) 0.475 (28)

RSE relative standard error, α1 intercept parameter on the logit scale for score k = 1, bk parameter for score k such that αk = αk-1 + bk, MET
mean equilibration time, θsVEGFR3 slope of the linear effect (on logit scale) of relative change from baseline over time in soluble vascular
endothelial growth factor receptor 3 (sVEGFR-3), ωP standard deviation of the between-subject variability associated with parameter P
a Incorporated as additive
b Incorporated as exponential

Table III. Final parameter estimates and their uncertainty for the
minimal continuous-time Markov model in the Likert pain score

example

Parameter Estimate (%RSE)

α1 9.56 (2.5)
b2 −1.90 (6.8)
b3 −2.48 (3.5)
b4 −1.90 (2.7)
b5 −1.68 (2.5)
b6 −1.66 (2.4)
b7 −1.64 (2.3)
b8 −1.76 (2.4)
b9 −2.24 (3.1)
b10 −2.07 (5.4)
MET0 (h) 10.8 (7.6)
θtime (week

−1) −0.141 (13)
θace 1.84 (4.7)
SlopeMET (week−1) 0.740 (22)
ωα1

a 3.19 (4.6)
ωMET0 (h)

b 0.881 (6.8)
ωθtime (week

−1)a 0.241 (4.9)
ωSlopeMET (week−1)b 2.15 (7.7)

RSE relative standard error, α1 intercept parameter on the logit scale
for score k = 1, bk parameter for score k such that αk = αk-1 + bk,
MET0 baseline mean equilibration time, θtime slope of the time effect
on the logit scale, θace coefficient for acetaminophen effect on the
logit scale, SlopeMET slope of the time effect on MET, ωp standard
deviation of the between-subject variability associated with parame-
ter p
a Incorporated as additive
b Incorporated as exponential
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mCTMM. In case that the observation frequencies are not
uniform throughout the study or across patients, either due to
study protocol or to missing observations, DTMM should not
be used as it does not account for the time since last
observation. Instead, CTMM or mCTMM should be pre-
ferred. In the absence of univocal evidence of serial
correlations from data exploration, mCTMM may be used
instead of PO models to explore Markov components and
relax the assumption that serial observations are indepen-
dent. In the mCTMM, information about the equilibration
time of the system is provided by a single parameter, the
MET. The transit time from the lowest to the highest category
can be obtained by multiplying the MET by the number of
categories minus one. If the MET is estimated to a very small
value as compared to the observation frequency, it means that
the system is memoryless; hence, Markovian dependencies
are unlikely and may be ignored by using PO models.
Conversely, as seen in all three real data examples presented
here, a MET estimate that is in the same order or greater than
the observation frequency suggests that Markov elements are
not negligible and should be accounted for (PO models
should not be used). In this case, the mCTMM may be used
as a starting point for model development and for exploring
exposure-response relationships. Noteworthy, mCTMM can
easily be extended to mimic a CTMM by investigating
different MET estimates between the different states. In
addition, as shown with the Likert pain scale example, the
effect of time can be investigated on the MET to account for
the fact that stable scores may become more or less frequent
over time. The effect of other explanatory factors such as
drug exposure or patient-specific characteristics may also be
investigated on MET. When assessment intervals are uniform
and predictor effect is constant, mCTMM with constant MET
is expected to well predict individual score time-courses with
homogeneous transition magnitude within a patient. Con-
versely, mCTMM may perform more poorly if patients
experience transitions of heterogeneous magnitude, e.g., if
daily observations are recorded and a single patient with
constant exposure effect presents a combination of transitions
of magnitudes 1 and 2.

In the mCTMM, the steady-state probabilities are affected to
the same extent by predictors regardless of the previous score. This
differs from the DTMM where predictors’ effects are commonly
implemented as conditional on the previous score (4,7). Despite
being less flexible than DTMM, the mCTMM provides a
framework where the effect of predictors (placebo, drug exposure,
or any other explanatory factor) on the score probabilities can be
summarized by a single relationship. Moreover, the mCTMM
allows for the data collected at the first occasion in each patient to
be used and to inform parameter estimates: the probability of each
score at the first visit is assumed to be at equilibrium. In the
DTMM, observations from the first occasion cannot be used in an
optimal manner as information on the previous score is unknown
and the model is too complex to estimate the equilibrium
probability; assumptions regarding the previous score have
therefore to be made, e.g., that it is the same as the current score
or based on some inclusion criteria. Additionally, with mCTMM,
the steady-state probability at any time regardless of the previous
score can easily be derived for each score,which is not possiblewith
DTMM. Finally, the mCTMM presented here were all based on
the POassumption for steady-state probabilities; i.e., the predictors

affected all categories to the same extent on the log odds scale. This
assumption may be relaxed by using the differential odds model as
presented by Kjellsson et al. (20).

In some cases, study subjects may transit to a state that is
not part of the rating scale being modeled and from which it is
not possible to revert back. Examples of such states include
dropout and death. Although not illustrated here, the mCTMM
can easily be extended to other Markov models where transition
rates from all or some of the studied scale states to a dropout/
death state are estimated and predictor effects on these rates can
be tested.

CONCLUSION

In conclusion, the mCTMM offers an alternative to existing
pharmacometric Markov models to explore exposure-response
relationships and predictor effects for ordered categorical data
with suspected serial correlations. The mCTMM uses a restricted
number of parameters, including the easily interpretable mean
equilibration time, MET. Moreover, it can be used when
observation intervals are not uniform and for scales with a large
number of categories.
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