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Abstract
This paper deals with singular dynamical networks with non-delay coupling and
unbounded time-delay coupling simultaneously, where the coupling configuration
matrices are symmetric with zero row sums and nonnegative off-diagonal entries.
A sufficient condition of synchronization is derived based on the Lyapunov-Krasovskii
functional method and matrix analysis technique. A numerical example shows that
our proposed method is simple and convenient in computation.
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1 Introduction
In general, complex networks consist of a large number of nodes, in which every node is
a fundamental cell with specific activity. In the past two decades, complex networks have
attracted scholars’ increasing attention. Several famous network models, such as scale-free
model [], small-world model [, ], which accurately characterize some important natural
structures, have been presented. Synchronization is a universal phenomenon in various
fields of science and society, and many significant works have been obtained in [–]; Wu
et al. investigate synchronization of an array of linearly coupled identical systems in [–];
research in [, ] shows that the structure of networks must have an inevitable effect on
the ability and speed of synchronization. It is well known that time-delays widely exist in a
large number of concrete systems, and coupled dynamical networks are often associated
with time-delays due to the finite speeds of transmission and spreading as well as traffic
congestion. A lot of efforts have been made to study the synchronization of dynamical
coupled systems with time-delays in [–].

At the same time, we notice that a large number of practical networks, such as eco-
nomic networks, power networks and so on, are singular differential systems which are
also named differential-algebraic systems or descriptor systems. Singular systems have
some particular complex properties which need not be considered in normal systems. In
singular systems, impulse behavior may appear (if the index is greater than one) and ini-
tial value problem may also be unsolvable or have more than one solution, regularity is
closely related to the solution behavior of the corresponding singular systems []. In or-
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der to make a singular system solvable with no impulse behavior and unique solution, the
system must be regular and the initial condition must be compatible, which can be ac-
quired similarly to the method presented in []. Due to the effect of time-delays, coupled
correlative terms will inevitably appear if the system is divided into two subsystems in-
cluding a differential subsystem and an algebraic subsystem, which makes the problems
become more complicated. Recently, Xiong et al. [] have investigated synchronization of
singular hybrid coupled networks without time-delays, the original system is divided into
two subsystems including a differential subsystem and an algebraic subsystem, the authors
present a sufficient condition of global synchronization, but the presented method cannot
be applied to singular delayed networks. Koo et al. [] and Li et al. [] investigate syn-
chronization of singular complex dynamical networks with time-varying bounded delays.
Sufficient conditions for synchronization in terms of LMIs (linear matrix inequalities) are
obtained, respectively. Motivated by this research, in this paper we study synchronization
problem of singular dynamical networks with non-delay coupling and unbounded time-
delay coupling simultaneously. Based on the Lyapunov-Krasovskii functional method,
a simple sufficient condition of synchronization is derived by using matrix analysis and
matrix inequality technique. Our presented method can also be applied to more general
dynamical networks including the networks presented in [–]. Finally, a numerical ex-
ample shows that our presented method is simple and convenient in computation.

Notation: The notation used throughout this paper is fairly standard. Rn denotes an
n-dimensional Euclidean space, Rn×n is the set of all n × n real matrices, In stands for
the identity matrix of order n, UT means the transpose of a real matrix or vector U , ‖x‖
denotes the Euclidean norm of a real vector x. For a real matrix A, λmax(A) and λmin(A)
denote the maximal and minimal eigenvalue respectively. ‖A‖ =

√
λmax(AT A) denotes the

spectral norm of matrix A, A > B (or A ≥ B) means the symmetric matrix A – B is posi-
tive definite (or positive semi-definite) and A⊗B denotes the Kronecker product between
matrix A and B.

2 Preliminaries
In this section, we now introduce some notations and preliminaries. Consider the singular
delayed network consisting of N linearly and diffusively coupled identical nodes, with full
diagonal coupling, and each node is an n-dimensional dynamical oscillator which can be
chaotic. The state equations of the network are described as

Eẋi(t) = Axi(t) + f
(
xi(t), t

)
+ c

N∑

j=

bij�xj(t)

+ c

N∑

j=

b̂ij�̂xj
(
t – τi(t)

)
, i = , , . . . , N , ()

where matrix E may be singular and  < rank(E) = p < n, A ∈ Rn×n is a constant matrix.
xi = (xi, xi, . . . , xin)T ∈ Rn is the state vector of node i, f : Rn × R → Rn is a continuously
differentiable vector-valued function describing the dynamics of the nodes, ci >  (i = , )
represent the coupling strength, the inner coupling link matrices are diagonal matrices,
� = diag{r, r, . . . , rn} with ri > , �̂ = diag{r̂, r̂, . . . , r̂n} with r̂i > . The coupling time-
delays τi(t) >  are differentiable and τ̇i(t) ≤ di < , i = , , . . . , N . The coupling config-
uration matrices B = (bij)N×N and B̂ = (b̂ij)N×N describe the topological structure of the
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network, in which bij (the entries b̂ij are defined similarly) is defined as follows: if there is
a connection from node i to node j (i �= j), then bij > ; else bij = , the diagonal entries of
matrix B are defined by

bii = –
N∑

j=,j �=i

bij = –
N∑

j=,j �=i

bji, i = , , . . . , N .

We assume that network () is connected in the sense that there are no isolated clusters,
i.e., matrices B and B̂ are irreducible, hence the zero is an eigenvalue of B and B̂ with
multiplicity  (see []). Furthermore, the eigenvalues can be arranged respectively as

 = λ > λ ≥ λ ≥ · · · ≥ λN ,

 = μ > μ ≥ μ ≥ · · · ≥ μN .

In virtue of the Kronecker product, system () can be written as

(IN ⊗ E)ẋ(t) = (IN ⊗ A)x(t) + IN ⊗ f
(
x(t), t

)

+ c(B ⊗ �)x(t) + c(B̂ ⊗ �̂)x
(
t – τ (t)

)
, ()

where x(t) = (xT
 (t), xT

 (t), . . . , xT
N (t))T , x(t – τ (t)) = (xT

 (t – τ(t)), xT
 (t – τ(t)), . . . , xT

N (t –
τN (t)))T , IN ⊗ f (x(t), t) = (f T (x(t), t), f T (x(t), t), . . . , f T (xN (t), t))T .

To obtain our main results, the following lemmas will be used later.

Lemma . ([]) For any vectors x, y ∈ Rn and ε > , the inequality xT y ≤ εxT x + 
ε
yT y

holds.

Lemma . ([]) Suppose that U and V are real symmetric matrices and U > , V ≥ ,
α is a positive number. Then

αU > V ⇔ λmax
(
VU–) < α ⇔ λmax

(
U– 

 VU– 

)

< α.

3 Main results
In this section, the main results of this paper on asymptotical synchronization of singular
delayed network () are derived. We first introduce the following definition.

Definition . ([]) The singular delayed network () is said to achieve asymptotical syn-
chronization if

xi(t) = s(t), i = , , . . . , N , as t → ∞, ()

where s(t) ∈ Rn is a synchronous solution of an isolated cell such that Eṡ(t) = As(t) +
f (s(t), t).

Remark . In [], the authors presented a sufficient condition on the existence and
uniqueness of solution of the system Eẋ(t) = Ax(t) + f (x(t), t).
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Theorem . Suppose that matrix BB̂ is symmetric, then the synchronization state s(t) of
the singular delayed network () is asymptotically stable if the linear time-varying singular
delayed systems

Eẏi = (A + J + cλi�)yi(t) + cμi�̂yi
(
t – τi(t)

)
, i = , , . . . , N , ()

are asymptotically stable about their zero solutions, where s(t) is an asymptotical stable
solution of an isolated cell, J is the Jacobian matrix of f (x(t), t) at s(t).

Proof To investigate the stability of the synchronous solution s(t), let

ei(t) = xi(t) – s(t), i = , , . . . , N . ()

Then we obtain an error system in a compact form

(IN ⊗ E)ė(t) =
(
IN ⊗ (A + J)

)
e(t) + c(B ⊗ �)e(t) + c(B̂ ⊗ �̂)e

(
t – τ (t)

)
, ()

where e(t) = (eT
 (t), eT

 (t), . . . , eT
N (t))T , e(t – τ (t)) = (eT

 (t – τ(t)), eT
 (t – τ(t)), . . . , eT

N (t –
τN (t)))T .

Obviously, the dynamical network () will achieve asymptotical synchronization if the
error system () is asymptotically stable about the zero solution.

Since matrix BB̂ is symmetric, there exists an orthogonal matrix U ∈ RN×N such that

UBUT = �, UB̂UT = �, ()

where � = diag{λ,λ, . . . ,λN }, � = diag{μ,μ, . . . ,μN } are both diagonal matrices.
Let y(t) = (UT ⊗ In)e(t) = (yT

 (t), yT
 (t), . . . , yT

N (t))T , we have

(IN ⊗ E)ẏ(t) =
(
IN ⊗ (A + J)

)
y(t) + c(� ⊗ �)y(t) + c(� ⊗ �̂)y

(
t – τ (t)

)
. ()

Namely,

Eẏi(t) = (A + J + cλi�)yi(t) + cμi�̂yi
(
t – τi(t)

)
, i = , , . . . , N . ()

The proof is completed. �

In order to make singular system () or () solvable with no impulse, we suppose that
the following assumption holds.

Assumption  There exist matrices Pi and positive-define matrices Qi such that the fol-
lowing inequalities hold:

ET Pi = PT
i E ≥ , i = , , . . . , N , ()

(A + J)T P + PT
 (A + J) < ,

PT
i (A + J + cλi�) + (A + J + cλi�)T Pi + βiQi ≤ , i = , , . . . , N

()
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and

‖Pi‖ <
√

 – diλminQi, i = , , . . . , N , ()

where βi = cr̂|μi| (i = , , . . . , N ), r̂ = max≤i≤n r̂i.

Remark . The initial function space of differential systems with unbounded delays
is not completed. Let BC := {φ|φ : (–∞, ] → Rn,φ is bounded and continuous}, then
(BC,‖ · ‖) is a Banach space. We also may define a new complete initial function space.

Let x : [a, b] → Rn, with the norm ‖x‖ := sups∈[a,b] |x(s)|. Denote C := {φ|φ : (–∞, ] →
Rn,φ is continuous}, then C and BC are both linear spaces.

Let h ∈ C, h ≥ , and  <
∫ 

–∞ h(s) ds < ∞. Denote Cn
h := {φ| ∫ 

–∞ h(s)‖φ‖ds < ∞,φ ∈ C},
the norm of φ ∈ Cn

h is defined as ‖φ‖h :=
∫ 

–∞ h(s)‖φ‖ds, hence Cn
h is a linear subspace of

C and BC � Cn
h .

Lemma . ([]) (Cn
h ,‖ · ‖h) is a Banach space.

Under condition (), it follows from [] that the pair (E, A + J + cλi�) is regular and
impulse free, hence the solution of Eq. () exists and is impulse free and unique on [t,∞)
for any admissible initial condition φ ∈ Cn

h .

Theorem . Suppose that matrix BB̂ is symmetric and Assumption  holds, then the sin-
gular networks with unbounded coupled delays () will asymptotically synchronize in the
sense of ().

Proof Construct the Lyapunov-Krasovskii functionals as:

Vi(t) = yT
i (t)ET Piyi(t) + βi

∫ t

t–τi(t)
yT

i (s)Qiyi(s) ds. ()

We get the derivatives of Vi(t) along the trajectories of the ith equation () as follows:

V̇i(t) = yT
i (t)PT

i
(
(A + J + cλi�)yi(t) + cμi�̂yi

(
t – τi(t)

))

+
(
(A + J + cλi�)yi + cμi�̂yi

(
t – τi(t)

))T

× Piyi(t) + βiyT
i (t)Qiyi(t) – βi

(
 – τ̇i(t)

)
yT

i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)

= yT
i (t)

(
PT

i (A + J + cλi�) + (A + J + cλi�)T Pi + βiQi
)
yi(t)

+ cμiyT
i (t)PT

i �̂yi
(
t – τi(t)

)
– βi

(
 – τ̇i(t)

)
yT

i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)

≤ –βiyT
i (t)Qiyi(t) + cμiyT

i (t)PT
i �̂yi

(
t – τi(t)

)

– βi( – di)yT
i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)
.

From Lemma ., we obtain

cμiyT
i (t)PT

i �̂yi
(
t – τi(t)

)

= cμiyT
i (t)PT

i �̂

 Q– 


i Q



i �̂


 yi

(
t – τi(t)

)



Liu et al. Advances in Difference Equations  (2015) 2015:193 Page 6 of 9

≤ cr̂
αi( – di)

|μi|yT
i (t)PT

i Q–
i Piyi(t) + αicr̂|μi|( – di)yT

i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)

=
βi

αi( – di)
yT

i (t)PT
i Q–

i Piyi(t) + αiβi( – di)yT
i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)
.

Then we get

V̇i(t) ≤ βiyT
i (t)

(


αi( – di)
PT

i Q–
i Pi – Qi

)
yi(t)

+ βi( – di)(αi – )yT
i
(
t – τi(t)

)
Qiyi

(
t – τi(t)

)
.

From the definition of spectral norm, we know

(
λmax

(
Q– 


i

(


 – di
PT

i Q–
i Pi

)
Q– 


i

)) 


=
√

 – di

(
λmax

(
Q– 


i PT

i Q–
i PiQ

– 


i
)) 



=
√

 – di

∥∥Q– 


i PiQ
– 


i

∥∥

≤ √
 – di

∥∥Q– 


i
∥∥‖Pi‖

=
√

 – diλmin(Qi)
‖Pi‖.

Since PT
i Q–

i Pi ≥ , from () we get

λmax

(
Q– 


i

(


 – di
PT

i Q–
i Pi

)
Q– 


i

)
< .

Hence, there exist ηi >  (i = , , . . . , N ) such that

λmax

(
Q– 


i

(


 – di
PT

i Q–
i Pi

)
Q– 


i

)
< ηi < .

Since PT
i Q–

i Pi ≥ , from Lemma . we obtain


 – di

PT
i Q–

i Pi < ηiQi.

Choose αi <  such that  < ηi
αi

< . Then

Mi := βi

(


αi( – di)
PT

i Q–
i Pi – Qi

)
< βi

(
ηi

αi
– 

)
Qi <  ()

and

Ni := βi( – di)(αi – )Qi < . ()
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Hence we obtain

V̇i(t) ≤ yT
i (t)Miyi(t) + yT

i
(
t – τi(t)

)
Niyi

(
t – τi(t)

)
.

From () and (), we know V̇i(t) (i = , , . . . , N ) are negative definite. Therefore Eq. ()
is asymptotically stable about zero solution via the Lyapunov stability theory, then the
singular delayed network () will achieve asymptotical synchronization. �

Remark .
() If bij =  (i.e., B = ) and τi(t) = τ (t) is bounded, Eq. () is reduced to

Eẋi(t) = Axi(t) + f
(
xi(t), t

)
+ c

N∑

j=

b̂ij�̂xj
(
t – τ (t)

)
, i = , , . . . , N , ()

which is the network model presented in [, ].
() If b̂ij =  (i.e., B̂ = ), Eq. () is reduced to

Eẋi(t) = Axi(t) + f
(
xi(t), t

)
+ c

N∑

j=

bij�xj(t), i = , , . . . , N , ()

which is the network model presented in [].

Hence, the model investigated in this paper may characterize many natural dynamical
networks and our proposed method can also be applied to more general dynamical net-
works.

Remark . In reality, it is difficult to compute matrices Pi (i = , , . . . , N ) and Qi (i =
, , . . . , N ) for a general complex model with a large number N of nodes or with a large di-
mension from conditions () and (). It should be pointed out that () and () cannot be
solved directly by the LMI toolbox of Matlab. However, if matrix E is positive semi-definite
and matrix A is negative definite, one can easily choose positive definite matrices Pi and
Qi satisfying conditions ()-() (see the following numerical example). Comparing with
[–], our proposed method is simple and convenient in computation.

4 An illustrative example
In this section, a simple example is given to illustrate theoretical results and the presented
conditions in Theorem . can be easily obtained. We consider the following singular com-
plex network with six nodes (see Figure ) in which each node is connected to other nodes
and which is described as

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠

⎛

⎜
⎝

ẋi

ẋi

ẋi

⎞

⎟
⎠ =

⎛

⎜
⎝

–  
 – 
  –

⎞

⎟
⎠

⎛

⎜
⎝

xi

xi

xi

⎞

⎟
⎠ +

⎛

⎜
⎝

–xi + x
i

–xi

xi – xi

⎞

⎟
⎠ , i = , , , , , ,

and the solution of the state equation can be written as

⎧
⎪⎨

⎪⎩

xi = ke–t – k

 e–t ,

xi = ke– 
 t ,

xi = k
 e– 

 t ,
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Figure 1 Structure of the network.

which is asymptotically stable at s(t) = , where k, k are both constants. And the Jacobian
is J = diag{–, –, –}. For convenience, we assume coupled time-delays τi(t) = .t, the
coupling strength c = c =  and the inner coupling matrices � = �̂ = I, the coupling
configuration matrices are

B = B̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

–     
 –    
  –   
   –  
    – 
     –

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the eigenvalues are , –, –, –, –, –.
One can choose Pi = I (i = , , , , , ), hence condition () holds. Matrices Qi can be

chosen as

Qi =

⎛

⎜
⎝


  
 

 – 


 – 





⎞

⎟
⎠ , i = , , , , ,

and the minimal eigenvalue of Qi is 
 , which shows that condition () is satisfied. Noting

that di = ., hence condition () holds. Therefore the singular delayed network () will
achieve asymptotical synchronization by Theorem ..

5 Conclusions
This paper investigates singular complex networks with non-delay coupling and un-
bounded time-delay coupling simultaneously. Based on the Lyapunov stability theory and
matrix inequalities and singular system theory, a simple sufficient condition of synchro-
nization is derived, which can be easily realized and is simple and convenient in com-
putation. The proposed method also can be applied to more general complex networks
comparing with [–]. Finally, a simple example is given to illustrate the effectiveness
of our theoretical results.
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