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Abstract
In this paper, we investigate the existence and uniqueness of solutions to the coupled
system of nonlinear fractional differential equations

{
–Dν1

0+y1(t) = λ1a1(t)f (y1(t), y2(t)),
–Dν2

0+y2(t) = λ2a2(t)g(y1(t), y2(t)),

where Dν
0+ is the standard Riemann-Liouville fractional derivative of order ν , t ∈ (0, 1),

ν1,ν2 ∈ (n – 1,n] for n > 3 and n ∈ N, and λ1,λ2 > 0, with the multi-point boundary
value conditions: y(i)1 (0) = 0 = y(i)2 (0), 0≤ i ≤ n – 2; Dβ

0+y1(1) =
∑m–2

i=1 biD
β
0+y1(ξi);

Dβ
0+y2(1) =

∑m–2
i=1 biD

β
0+y2(ξi), where n – 2 < β < n – 1, 0 < ξ1 < ξ2 < · · · < ξm–2 < 1,

bi ≥ 0 (i = 1, 2, . . . ,m – 2) with ρ1 :=
∑m–2

i=1 biξ
ν1–β–1
i < 1, and ρ2 :=

∑m–2
i=1 biξ

ν2–β–1
i < 1.

Our analysis relies on the Banach contraction principle and Krasnoselskii’s fixed point
theorem.

MSC: 26A33; 34B18; 34B27
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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration to arbi-
trary non-integer order. The first definition of fractional derivative was introduced at the
end of the nineteenth century by Liouville and Riemann, but the concept of non-integer
derivative and integral, as a generalization of the traditional integer order differential and
integral calculus, was mentioned already in  by Leibniz and L’Hospital. With the help
of fractional calculus, we can describe natural phenomena and mathematical models more
accurately. The fractional differential equations play an important role in various fields of
engineering, physics, economics and biological sciences, etc. (see [–] for example). In
consequence, the subject of fractional differential equations is gaining much importance
and attention. For more details on basic theory of fractional differential equations, one
can see the monographs of Diethelm [], Kilbas et al. [], Miller and Ross [], Podlubny
[] and Tarasov [], and the papers [–] and the references therein.
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As is known to all, the initial and boundary value problems for nonlinear fractional dif-
ferential equations arise from the study of models of control, porous media, electrochem-
istry, viscoelasticity, electromagnetics, etc. Recently, the existence and uniqueness of solu-
tions of initial and boundary value problems for nonlinear fractional equations have been
extensively studied (see [–]), and some are coupled systems of nonlinear fractional
differential equations (see [, , , , ]).

In [], Mophou studied the mild solutions to impulsive fractional differential equations

⎧⎪⎨
⎪⎩

Dα
t x(t) = Ax(t) + f (t, x(t)), t ∈ I = [, T], t �= tk ,

x() = x ∈ X,
�x|t=tk = Ik(x(t–

k )), k = , , . . . , m,

where  < α < , the operator A : D(A) ⊂ X → X is a generator of C-semigroup (T(t))t≥

on a Banach space X, Dα
t is the Caputo fractional derivative, f : I × X → X is a given

continuous function, Ik : X → X,  = t < t < · · · < tm < tm+ = T , �x|t=tk = x(t+
k ) – x(t–

k ).
Some existence and uniqueness results for the equations were established by means of
Krasnoselskii’s fixed point theorem.

By using the same fixed point theorem, Goodrich [] considered the existence of a
positive solution to the following system of differential equations of fractional order:

{
–Dν

+ y(t) = λa(t)f (y(t), y(t)),
–Dν

+ y(t) = λa(t)g(y(t), y(t)),
()

where Dν
+ is the standard Riemann-Liouville fractional derivative of order ν , t ∈ (, ),

ν,ν ∈ (n – , n] for n >  and n ∈ N, and λ,λ > , with the following boundary value
conditions:

y(i)
 () =  = y(i)

 (),  ≤ i ≤ n – ,
[
Dα

+y(t)
]

t= =  =
[
Dα

+y(t)
]

t=,  ≤ α ≤ n – ,

under the assumptions that a, a, f , g are nonnegative and continuous.
Very recently, Sun et al. [] considered the coupled system of multi-term nonlinear

fractional differential equations

{
Dαu(t) = f (t, v(t), Dβ v(t), . . . , DβN v(t)), Dα–iu() = , i = , , . . . , n,
Dσ v(t) = g(t, u(t), Dρ u(t), . . . , DρN u(t)), Dσ–jv() = , j = , , . . . , n,

where t ∈ (, ], α > β > β > · · · > βN > , σ > ρ > ρ · · · > ρN > , n = [α] + , n = [σ ] + ,
βq,ρq <  and q ∈ {, , . . . , N}. By using the Schauder fixed point theorem and the Banach
contraction principle, some results of existence and uniqueness of solutions for the cou-
pled system are obtained.

However, to our knowledge, there are few works that deal with multi-point boundary
value problems for a coupled system of nonlinear fractional differential equations. The
purpose of this article is to investigate the solutions for the coupled system of nonlinear
fractional differential equations () with the multi-point boundary conditions:

y(i)
 () =  = y(i)

 (),  ≤ i ≤ n – , ()
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Dβ

+ y() =
m–∑
i=

biDβ

+ y(ξi), ()

Dβ

+ y() =
m–∑
i=

biDβ

+ y(ξi), ()

where n –  < β < n – ,  < ξ < ξ < · · · < ξm– < , bi ≥  (i = , , . . . , m – ) with ρ :=∑m–
i= biξ

ν–β–
i < , and ρ :=

∑m–
i= biξ

ν–β–
i < .

Motivated by the above-mentioned works and recent works on coupled systems of frac-
tional differential equations, we consider the existence and uniqueness of solutions of cou-
pled system ()-() by means of the Banach contraction principle and Krasnoselskii’s fixed
point theorem. In our paper, we do not suppose that a, a, f , g are nonnegative.

With this context in mind, the outline of this paper is as follows. In Section  we recall
certain results from the theory of continuous fractional calculus. In Section  we provide
some conditions under which problem ()-() will have a unique solution or at least one
solution.

2 Preliminaries
For the convenience of the reader, we present here some definitions, lemmas and basic
results that will be used in the proofs of our theorems.

Definition . (see []) Let ν >  with ν ∈ R. Suppose that y : [a, +∞) → R. Then the νth
Riemann-Liouville fractional integral is defined to be

D–ν
a+ y(t) :=



(ν)

∫ t

a
y(s)(t – s)ν– ds,

whenever the right-hand side is defined. Similarly, with ν >  and ν ∈ R, we define the νth
Riemann-Liouville fractional derivative to be

Dν
a+ y(t) :=



(n – ν)

dn

dtn

∫ t

a

y(s)
(t – s)ν+–n ds,

where n ∈ N is the unique positive integer satisfying n –  ≤ ν < n and t > a.

Lemma . (see []) Let α ∈ R. Then DnDα
a+ y(t) = Dn+α

a+ y(t), for each n ∈ N, where y(t) is
assumed to be sufficiently regular so that both sides of the equality are well defined. More-
over, if β ∈ (–∞, ] and γ ∈ [, +∞), then Dγ

a+ Dβ

a+ y(t) = Dγ +β

a+ y(t).

Lemma . (see []) The general solution to Dν
a+ y(t) = , where n –  < ν ≤ n and ν > ,

is the function y(t) = ctν– + ctν– + · · · + cntν–n, where ci ∈ R for each i.

Lemma . Let h ∈ Cn([, ]) be given. Then the unique solution to problem –Dν
+ y(t) =

h(t) together with the boundary conditions y(i)() =  and Dβ

+ y() =
∑m–

i= biDβ

+ y(ξi), where
n –  < β < n –  and  ≤ i ≤ n – , is

y(t) =
∫ 


G(t, s)h(s) ds, ()
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where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

– (t–s)ν–


(ν) + tν–


(ν)(–ρ) [( – s)ν–β– –
∑m–

i= bi(ξi – s)ν–β–],
s ≤ t, ξi– < s ≤ ξi, i = , , . . . m – ,
tν–


(ν)(–ρ) [( – s)ν–β– –
∑m–

i= bi(ξi – s)ν–β–],
t ≤ s, ξi– < s ≤ ξi, i = , , . . . m – ,

()

is the Green function for this problem, where ρ =
∑m–

i= biξ
ν–β–
i <  and ξ = , ξm– = .

Proof We know that the general solution to our problem is

y(t) = ctν– + ctν– + · · · + cntν–n – D–ν
+ h(t),

we immediately observe that the boundary value condition y(i)() = ,  ≤ i ≤ n–, implies
that c = c = · · · = cn = . On the other hand, Dβ

+ y() =
∑m–

i= biDβ

+ y(ξi) implies that

–



(ν – β)

∫ 


( – s)ν–β–h(s) ds + c


(ν)

(ν – β)

=
m–∑
i=

bi

(
–



(ν – β)

∫ ξi


(ξi – s)ν–β–h(s) ds + c


(ν)

(ν – β)

ξ
ν–β–
i

)
.

That is to say,

c =



(ν)( – ρ)

[∫ 


( – s)ν–β–h(s) ds –

m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–h(s) ds

]
.

Therefore, the unique solution is

y(t) = –
∫ t



(t – s)ν–


(ν)
h(s) ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–h(s) ds –

m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–h(s) ds

]

=
∫ 


G(t, s)h(s) ds.

The proof is complete. �

3 Main results
This section deals with the existence and uniqueness of solutions to problem ()-().

Let E represent the Banach space of C[, ] when equipped with the usual supremum
norm ‖ · ‖. Then put X := E × E, where X is equipped with the norm

∥∥(y, y)
∥∥ := ‖y‖ + ‖y‖
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for (y, y) ∈ X. Observe that X is also a Banach space (see []). In addition, define two
operators T, T : X → E by

(
T(y, y)

)
(t) := λ

∫ 


G(t, s)a(s)f

(
s, y(s), y(s)

)
ds

and

(
T(y, y)

)
(t) := λ

∫ 


G(t, s)a(s)g

(
s, y(s), y(s)

)
ds,

where G(t, s) is the Green function of Lemma . with ν replaced by ν and ρ replaced
by ρ, and likewise, G(t, s) is the Green function of Lemma . with ν replaced by ν and
ρ replaced by ρ. Now, we define an operator S : X → X by

(
S(y, y)

)
(t) :=

((
T(y, y)

)
(t),

(
T(y, y)

)
(t)

)

=
(

λ

∫ 


G(t, s)a(s)f

(
s, y(s), y(s)

)
ds,

λ

∫ 


G(t, s)a(s)g

(
s, y(s), y(s)

)
ds

)
. ()

We claim that whenever (y, y) ∈ X is a fixed point of the operator defined in (), it follows
that y(t) and y(t) solve problem ()-(). We shall look for fixed points of the operator S,
seeing as these fixed points coincide with solutions of problem ()-().

To establish the main results, we need the following assumptions:
(H) f , g : [, ] × R × R → R and a, a : [, ] → R;
(H) f , g , a, a are continuous;
(H) there exist positive functions L(t) and L(t) such that

∣∣a(t)
∣∣·∣∣f (t, y(t), y(t)

)
– f

(
t, u(t), u(t)

)∣∣ ≤ L(t)
∥∥(y – u, y – u)

∥∥,
∣∣a(t)

∣∣ · ∣∣g(
t, y(t), y(t)

)
– g

(
t, u(t), u(t)

)∣∣ ≤ L(t)
∥∥(y – u, y – u)

∥∥

for all t ∈ [, ] and (y, y), (u, u) ∈ X.
Further, we set

D–ν
L = max

{
sup

t∈[,]

∣∣D–ν
+ L(t)

∣∣, sup
t∈[,]

∣∣D–ν
+ L(t)

∣∣},

D–(ν–β)L() = max
{∣∣D–(ν–β)

+ L()
∣∣, ∣∣D–(ν–β)

+ L()
∣∣},

D–(ν–β)L(ξi) = max
{∣∣D–(ν–β)

+ L(ξi)
∣∣, ∣∣D–(ν–β)

+ L(ξi)
∣∣}, i = , , . . . , m – .

(H) The parameters λ, λ satisfy λ,λ < �, where

� = min

{



[
D–ν

L +

(ν – β)


(ν)( – ρ)

(m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

)]–

,




[
D–ν

L +

(ν – β)


(ν)( – ρ)

(m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

)]–}
.
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(H) The parameters λ, λ satisfy λ,λ < �, where

� = min

{



[

(ν – β)


(ν)( – ρ)

(m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

)]–

,




[

(ν – β)


(ν)( – ρ)

(m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

)]–}
.

(H) There exists μ ∈ L([, ], R+) such that

∣∣a(t)f
(
t, y(t), y(t)

)∣∣ ≤ μ(t),
∣∣a(t)g

(
t, y(t), y(t)

)∣∣ ≤ μ(t),

∀(t, y, y) ∈ [, ] × X.

We are ready to state the existence and uniqueness result.

Theorem . Suppose that conditions (H)-(H) are satisfied. Then the boundary value
problem ()-() has a unique solution.

Proof Let us set

M = max
{

sup
t∈[,]

∣∣a(t)f (t, , )
∣∣, sup

t∈[,]

∣∣a(t)g(t, , )
∣∣}

and choose

r ≥ max

{
λ

[
M


(ν + )
+

M

(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]
,

λ

[
M


(ν + )
+

M

(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]}
.

Now, we show that S(r) ⊂ r , where r = {(y, y) ∈ X : ‖(y, y)‖ ≤ r}, and S is a contrac-
tion. In fact, for all (y, y) ∈ r , we obtain

∥∥T(y, y)
∥∥

= max
t∈[,]

∣∣∣∣∣–
∫ t



(t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λa(s)f

(
s, y(s), y(s)

)
ds

–
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λa(s)f

(
s, y(s), y(s)

)
ds

]∣∣∣∣∣

≤ max
t∈[,]

{∫ t



(t – s)ν–


(ν)
λ

∣∣a(s)f
(
s, y(s), y(s)

)∣∣ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λ

∣∣a(s)f
(
s, y(s), y(s)

)∣∣ds
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+
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λ

∣∣a(s)f
(
s, y(s), y(s)

)∣∣ds

]}

≤ max
t∈[,]

{∫ t



(t – s)ν–


(ν)
λ

∣∣a(s)
∣∣(∣∣f (s, y(s), y(s)

)
– f (s, , )

∣∣ +
∣∣f (s, , )

∣∣)ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λ

∣∣a(s)
∣∣(∣∣f (s, y(s), y(s)

)
– f (s, , )

∣∣

+
∣∣f (s, , )

∣∣)ds

+
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λ

∣∣a(s)
∣∣(∣∣f (s, y(s), y(s)

)
– f (s, , )

∣∣ +
∣∣f (s, , )

∣∣)ds

]}

≤ max
t∈[,]

{∫ t



(t – s)ν–


(ν)
λ

(
L(s)

∥∥(y, y)
∥∥ + M

)
ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λ

(
L(s)

∥∥(y, y)
∥∥ + M

)
ds

+
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λ

(
L(s)

∥∥(y, y)
∥∥ + M

)
ds

]}

≤ max
t∈[,]

{
λ

(
D–ν

+ L(t)r +
Mtν


(ν + )

)
+ λ


(ν – β)tν–


(ν)( – ρ)

×
[m–∑

i=

bi

(
D–(ν–β)

+ L(ξi)r +
Mξ

ν–β

i

(ν – β + )

)
+ D–(ν–β)

+ L()r +
M


(ν – β + )

]}

≤ λ

(
D–ν

L r +
M


(ν + )

)
+ λ


(ν – β)

(ν)( – ρ)

×
[m–∑

i=

bi

(
D–(ν–β)L(ξi)r +

Mξ
ν–β

i

(ν – β + )

)
+ D–(ν–β)L()r +

M

(ν – β + )

]

≤ λ

[
D–ν

L +

(ν – β)


(ν)( – ρ)

(m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

)]
r

+ λM

[



(ν + )
+



(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]

≤ 


r +



r =
r


,

that is to say, ‖T(y, y)‖ ≤ r
 .

Then, for (y, y), (u, u) ∈ X and for each t ∈ [, ], we obtain

∥∥T(y, y) – T(u, u)
∥∥

≤ max
t∈[,]

{∫ t



(t – s)ν–


(ν)
λ

∣∣a(s)
∣∣ · ∣∣f (s, y(s), y(s)

)
– f

(
s, u(s), u(s)

)∣∣ds

+
tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λ

∣∣a(s)
∣∣
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× ∣∣f (s, y(s), y(s)
)

– f
(
s, u(s), u(s)

)∣∣ds

+
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λ

∣∣a(s)
∣∣ · ∣∣f (s, y(s), y(s)

)
– f

(
s, u(s), u(s)

)∣∣ds

]}

≤ λD–ν
L

∥∥(y – u, y – u)
∥∥ + λ


(ν – β)

(ν)( – ρ)

×
[m–∑

i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

]∥∥(y – u, y – u)
∥∥

≤ 


∥∥(y – u, y – u)
∥∥.

That is to say, ‖T(y, y) – T(u, u)‖ ≤ 
‖(y – u, y – u)‖ = 

‖(y, y) – (u, u)‖.
Hence, we find that T : r → B r


and T is a contraction, where B r


= {y ∈ B : ‖y‖ ≤ r

 }.
Similarly, we have T : r → B r


and T is a contraction. Consequently, for any (y, y) ∈

r ,

∥∥S(y, y)
∥∥ =

∥∥(
T(y, y), T(y, y)

)∥∥ ≤ r


+
r


≤ r,

i.e., S(r) ⊂ r . And, for (y, y), (u, u) ∈ r and for each t ∈ [, ],

∥∥S(y, y) – S(u, u)
∥∥ ≤ 


∥∥(y – u, y – u)

∥∥ =


∥∥(y, y) – (u, u)

∥∥.

So, S : r → r and S is a contraction. Thus, the conclusion of the theorem follows from
the contraction mapping principle. �

Our next result is based on the following well-known fixed point theorem due to Kras-
noselskii.

Lemma . (Krasnoselskii []) Let K be a closed convex and nonempty subset of a Banach
space E. Let T , S be the operators such that:

(i) Tx + Sy ∈ K whenever x, y ∈ K ;
(ii) T is compact and continuous;

(iii) S is a contraction mapping.
Then there exists z ∈ K such that z = Tz + Sz.

Now we are ready to state and prove the following existence result.

Theorem . Suppose that conditions (H)-(H), (H), (H) are satisfied. Then there exists
at least one solution of the boundary value problem ()-().

Proof Let us fix

r ≥ max

{


λ‖μ‖L

[



(ν + )
+



(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]
,



λ‖μ‖L

[



(ν + )
+



(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]}
,
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and consider r = {(y, y) ∈ X : ‖(y, y)‖ ≤ r}. We define the operators Q and Q on r

as

T(y, y) := Q(y, y) + Q(y, y),

where

(
Q(y, y)

)
(t) = –

∫ t



(t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds,

(
Q(y, y)

)
(t) =

tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λa(s)f

(
s, y(s), y(s)

)
ds

–
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λa(s)f

(
s, y(s), y(s)

)
ds

]
.

For all (y, y), (u, u) ∈ r , we find that

∥∥Q(y, y) + Q(u, u)
∥∥

≤ ‖μ‖Lλ

[



(ν + )
+



(ν)( – ρ)(ν – β)

(m–∑
i=

biξ
ν–β

i + 

)]

≤ r


.

Thus, Q(y, y) + Q(u, u) ∈  r


for all (y, y), (u, u) ∈ r . From assumption (H), we
have

∥∥Q(y, y) – Q(u, u)
∥∥ ≤ λ


(ν – β)

(ν)( – ρ)

[m–∑
i=

biD–(ν–β)L(ξi) + D–(ν–β)L()

]

× ∥∥(y – u, y – u)
∥∥

≤ 


∥∥(y – u, y – u)
∥∥

=



∥∥(y, y) – (u, u)
∥∥,

where (y, y), (u, u) ∈ X, t ∈ [, ]. So, Q is a contraction mapping. We next consider
the operator Q. Evidently, the continuity of f implies that the operator Q is continuous.
Also, Q is uniformly bounded on r as

∥∥Q(y, y)
∥∥ ≤ λ

‖μ‖L


(ν + )
≤ r.

Now, we show that Q(y, y)(t) is equicontinuous. In fact, since a, f are bounded on the
compact set [, ] and [, ] × r , respectively, we can define

M = max
{

sup
(t,y,y)∈[,]×r

∣∣a(t)f (t, y, y)
∣∣, sup

(t,y,y)∈[,]×r

∣∣a(t)g(t, y, y)
∣∣},
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and we have, for any t, t ∈ [, ],

∣∣Q(y, y)(t) – Q(y, y)(t)
∣∣

=
∣∣∣∣–

∫ t



(t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds

+
∫ t



(t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds

∣∣∣∣
=

∣∣∣∣
∫ t



(t – s)ν– – (t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds

+
∫ t

t

(t – s)ν–


(ν)
λa(s)f

(
s, y(s), y(s)

)
ds

∣∣∣∣
≤ λ

M


(ν)

∣∣∣∣
∫ t



(
(t – s)ν– – (t – s)ν–)ds +

∫ t

t

(t – s)ν– ds
∣∣∣∣

= λ
M


(ν + )
∣∣–(

(t – t)ν – tν


)
– tν

 + (t – t)ν
∣∣

= λ
M


(ν + )
∣∣tν

 – tν


∣∣,

which is independent of (y, y). Therefore, Q is equicontinuous on r . Hence, by the
Arzela-Ascoli theorem, Q is compact on r . Similarly, we set

T(y, y) := P(y, y) + P(y, y),

where

(
P(y, y)

)
(t) = –

∫ t



(t – s)ν–


(ν)
λa(s)g

(
s, y(s), y(s)

)
ds,

(
P(y, y)

)
(t) =

tν–


(ν)( – ρ)

[∫ 


( – s)ν–β–λa(s)g

(
s, y(s), y(s)

)
ds

–
m–∑
i=

bi

∫ ξi


(ξi – s)ν–β–λa(s)g

(
s, y(s), y(s)

)
ds

]
.

And we can obtain a similar conclusion to the operator T. Now, we let

A(y, y) :=
(
Q(y, y), P(y, y)

)
, B(y, y) :=

(
Q(y, y), P(y, y)

)
.

Therefore, we have

S(y, y) =
(
T(y, y), T(y, y)

)
=

(
Q(y, y) + Q(y, y), P(y, y) + P(y, y)

)
=

(
Q(y, y), P(y, y)

)
+

(
Q(y, y), P(y, y)

)
= A(y, y) + B(y, y).

In view of the proof above, we get the following.
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(I) For all (y, y), (u, u) ∈ r , we find that

∥∥A(y, y) + B(u, u)
∥∥ =

∥∥Q(y, y) + Q(u, u)
∥∥ +

∥∥P(y, y) + P(u, u)
∥∥ ≤ r.

Thus, A(y, y) + B(u, u) ∈ r for all (y, y), (u, u) ∈ r .
(II) For (y, y), (u, u) ∈ X, t ∈ [, ],

∥∥B(y, y) – B(u, u)
∥∥ =

∥∥Q(y, y) – Q(u, u)
∥∥ +

∥∥P(y, y) – P(u, u)
∥∥

≤ 

∥∥(y – u, y – u)

∥∥ =


∥∥(y, y) – (u, u)

∥∥.

So, B is a contraction mapping.
(III) The continuity of Q and P implies that the operator A is continuous. Also, A is

uniformly bounded on r as

∥∥A(y, y)
∥∥ =

∥∥Q(y, y)
∥∥ +

∥∥P(y, y)
∥∥ ≤ r.

Moreover, for any t, t ∈ [, ],

∣∣A(y, y)(t) – A(y, y)(t)
∣∣

=
∣∣(Q(y, y)(t) – Q(y, y)(t), P(y, y)(t) – P(y, y)(t)

)∣∣
≤ ∣∣Q(y, y)(t) – Q(y, y)(t)

∣∣ +
∣∣P(y, y)(t) – P(y, y)(t)

∣∣
≤ λ

M


(ν + )
∣∣tν

 – tν


∣∣ + λ
M


(ν + )
∣∣tν

 – tν


∣∣,
which is independent of (y, y). Therefore, A is equicontinuous on r . Hence, by the
Arzela-Ascoli theorem, A is compact on r .

Thus all the assumptions of Lemma . are satisfied, so S(y, y) = A(y, y) + B(y, y) has
at least one fixed point. Hence, we obtain that ()-() has at least one solution. �

4 Conclusions
There are few works that deal with multi-point boundary value problems for a coupled
system of nonlinear fractional differential equations. In this article, we study multi-point
boundary value problems for a coupled system of nonlinear fractional differential equa-
tions ()-(). By using Green’s function, the Banach contraction principle and Krasnosel-
skii’s fixed point theorem, we establish some new existence, uniqueness theorems of solu-
tions for multi-point boundary value problems for a coupled system of nonlinear fractional
differential equations ()-().
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