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Abstract

about the same as corresponding traditional algorithms.

For the compressed sensing of multiband signals, modulated wideband converter (MWC) is used as the sampling
system, and the signal is reconstructed by the simultaneous orthogonal matching pursuit algorithm (SOMP) and its
derivative algorithms. In order to find matching atoms, we need to obtain the inner product between atoms in
sensing matrix and columns in residual matrix. Next, several inner products corresponding to the same atom
constitute an inner product vector. By calculating its 2-norm, we can find the maximum value, whose corresponding
atom is the matched atom. However, the inner product actually cannot reflect the relevancy between atoms and
residual matrix very accurately, which may eventually lead to wrong results for a certain probability. The main idea of
this paper is to change the inner product into the correlation coefficient, so that we can measure the relevancy
between atoms and the residual better. Simulation results show that the improved algorithms can get higher
probability of the signal reconstruction compared with the original algorithms in the condition of high signal-noise
ratio (SNR). It also means that less samples were needed to reconstruct signals than traditional algorithms when the
number of bands is unchanged. Since calculating correlation coefficient at each iteration will cost a lot of time, we
also proposed a simplified algorithm, which can also improve reconstruction probability and reconstruction time is
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1 Introduction

Traditional compressed sensing theory is mainly used
to process discrete and finite-dimensional digital signal.
However, it is expected to develop a technology which can
sample continuous and infinite dimensional analog signal
at sub-Nyquist rate, so as to truly break the bandwidth
limitation of existing ADC equipment and reconstruct
original signal from the samples of baseband signal after
low-pass filters and finally ease the pressure of hardware
sampling. To address this problem, a variety of solutions
have been proposed. Analog to information convertor
(AIC) and Xampling for multiband analog signal [1-5]
are two relatively mature technologies among them. Xam-
pling uses modulated wideband converter [6] (MWC) to
sample, whose results are infinite measurement vectors
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(IMV), and it cannot directly reconstruct signal using the
traditional reconstruction algorithms. To solve this prob-
lem, we can reconstruct the original signal by turning IMV
problem into multiple measurement vector (MMV) prob-
lem using continuous to finite (CTF) modular [7] under
the premise of joint sparse [8].

The simultaneous orthogonal matching pursuit (SOMP)
[9, 10], treated as a derivative algorithm of matching pur-
suit simultaneous (OMP) algorithm to solve MMV prob-
lem, is what used for reconstruction in CTF at present.
Based on this method, many novel MMV algorithms have
been proposed according to the derivative algorithms
of OMP such as regularized orthogonal matching pur-
suit (ROMP) [11], stagewise orthogonal matching pursuit
(StOMP) [12], compressive sampling matching pursuit
(CoSaMP) [13], and subspace pursuit (SP) [14]. The main
idea of these algorithms is firstly calculating the inner
product between atoms in sensing matrix and columns
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in residual matrix. Then, several inner products corre-
sponding to the same atom constitute an inner product
vector. By calculating its 2-norm. We can find the max-
imum value whose corresponding atom is the matched
atom. In fact, the inner product cannot measure the rel-
evancy between atoms and residual matrix very well and
sometimes will eventually lead to errors.

The idea of this paper is to change the inner product
into the correlation coefficient, so that we can measure
the matching degree between atoms and the residual
better. In order to check the performance of the change-
ment, the SOMP algorithm and its derivative algorithms
such as MMV-ROMP, MMV-StOMP, MMV-CoSaMP, and
MMV-SP, which can solve MMV problems, are chosen
for comparison. The proposed algorithms are improved
by changing the inner product into correlation coefficient
as screening criterion of atoms, then compare the signal
reconstruction probability of these methods with original
algorithms. The results show that the improved algo-
rithms have better reconstruction probability and there
are less samples required.

2 Signal model of multiband
Assuming x(¢) is a continuous signal in Ly space which
satisfies the square integration as follows.

+00
/ lx(6)|%dt < +00 1)

And its Fourier transformation can be expressed as

w-f”

If X(f) is finite banded and its frequency spectrum is
in [-1/2T,1/2T], then its Nyquist sampling frequency
should be fyiyq = 1/T . Besides, if X(f) satisfies the
structure shown in Fig. 1, namely, it contains N disjoint
sub-frequency bands whose bandwidths are all less than
B, then x(¢) is a multiband signal.

x(t)e 7 dt (2)

3 Modulated wideband converter
The model of MWC for multiband signal is shown as
Fig. 2.

Multiband modulated wideband signal converter is
shown in Fig. 2. There are m sampling channels, and the
mixing function p;(¢) is a pseudo-random sequence with
Ty-period. Its value is {+1,—1} , and it has M pulses in
each period whose interval is T;. The values of p;(¢) in the

A
-fi —fz —f 2 f3

Fig. 1 Model of multiband signal
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Fig. 2 Model of MWC

first k intervals are denoted as oy , h(t) is a low-pass filter
whose cutoff frequency is 1/27T; , and the sampling fre-
quency is 1/T;. The signal x(¢) is transmitted through m
channels at the same time, and it is multiplied with dif-
ferent pseudo-random sequences in each branch whose
cycle is abiding and obey the same distribution. The sam-
ples yi[n],n = 1,2,...,m can be obtained after low-pass
filters and low-speed sampling.
And the fourier transform can be expressed as

[ee) Lo

Vi@ Ty = 3" yiln)e P = 3" X (f — Ify)

n=—00 I=—Ly

3)
where fy = 1/Ty, B = [f/2/2), 1o = [22] - 1,

1 Ty —j2 it
and ¢;; = T Jo" pit)e " dt.
For convenience, the formula can be expressed in matrix
form

Y(f) = Aa(f)f € Fs (4)

From Eq. (4), it can be seen that y(f) is a m x 1 dimen-
sion vector which is made of Y; (ejZ”fTS). AisaM x L
dimensional matrix which is composed of A;; = ¢;_; =
¢p—Lo<1<Lo,L=2Lp+1,and L ~ fyyq/B in com-
mon. Moreover, o (f) is a L x 1 dimensional vector which
is composed of «;(f) = X (f + (@ —Lo— 1)];) f € E. To
recover a signal, we need to firstly solve the sparse spec-
trum «(f) from Eq. (4). Then, the estimated value x(¢) of
x(t) is obtained by using the inverse Fourier transform.
However, f is defined over a continuous interval whose
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samples are infinite dimensional vector. Thus, in fact,
this is a problem about how to gain the sparse solution
from one more of the numerous less demand equations.
Moreover, it cannot be calculated by the conventional
compressed sensing reconstruction algorithms.Therefore,
we should get the support set S of signal by using CTF
module and MMV problem can be turned into SMV prob-
lem by joint sparsity; then, SOMP algorithm is adopted. In
CTE, we first use y[ #] to construct a matrix as follows

Q‘/ YOV P = 3 yinly'n (5)

H=—00

where y[n] = [yl[n] ,y2[n], ... ,ym[n]]T, then matrix Q
is divided into Q = VV | then we can get framework
matrix V. Then, the sparsest support set U of V. = AU
is obtained. According to the support set U and y[#],
we can solve the signal’s support set S, and finally, com-
pose the matrix Ag by the columns in the matrix A which
correspond to the elements of S, then reconstruct sparse
spectrum «(f) by using Eq. (6), so as to reconstruct the
traditional signal.

o (f) = Aly(f) ©
(2%} (f) =0, ¢ S

4 Improved simultaneous orthogonal matching
pursuit algorithm

The reconstruction algorithm for the MW C system is usu-

ally simultaneous orthogonal matching pursuit algorithm,

whose steps are as follows:

Input: m x L dimensional sensing matrix A, the
number of sub frequency bands K, m x 2K
dimensional frame vector V, and residual threshold 6.
Output: 2K x 1 dimensional support set S.
Initialization: support set S = @, residual matrix
R=V.

Iteration: Repeat the following steps until the residual
is less than the threshold or the number of iteration
reach K.

1) P =ATR.

(2) dx = IPrllo, k= 1,2,...,L, Py is kth column of
matrix P. y

(3) zx = ﬁ,k =12,....,.L,z={z1,20...,z1}, A

is the kth column of matrix A.

(4) Find the largest item in the vector z and add its
corresponding index k into the support set S, and the
symmetric index value L + 1 — k is also added to the
support set V. It is generally considered that the
traditional signal is real signal, and its support set is
symmetric.

(5) Construct the matrix Ag corresponding to the
columns in matrix A and support set S.
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(6) Evaluate U, U = ALV = (ATAs) 'AIV.
(7) Update signal residuals R =V — Asﬁ.

It can be found that the inner product between atoms
in sensing matrix and columns in residual matrix can be
obtained from steps (1) to (4) firstly. Then, several inner
products corresponding to the same atom constitute an
inner product vector. By calculating its 2-norm, we can
find the maximum value, whose corresponding atom is
matched atom. The relevancy between residual matrix
and sensing matrix actually depends on the relevancy
between residual matrix columns and atoms in the sensing
matrix. However, because of the randomness of sensing
matrix and sampling, the inner product cannot accurately
reflect the relevancy between vectors. Wrong atoms can
be selected when the number of sampling points is rela-
tively small. However, if the correlation coefficient is used
as the criterion, it can reflect the correlation between the
random variables better. The reason for the difference can
be traced to the calculation method of the inner product
and correlation coefficient. For an n dimensional vector a
and b, their inner product formula is

deb= ai; (7)
i=1

In two dimensions, the inner product can be expressed as

Zlo;?=|21| b|cosé (8)

The inner product itself cannot reflect the relevancy
between vectors because it is influenced by the norm of
vectors. But if Z and b are the unit vectors, the _inner
product can reflect the relevancy between a and b.1f b
is regarded as the column vector of the residual matrix,
while the vector 4 is regarded as the atom in the matrix A,
then, the inner product can reflect the relevancy between
the residuals and the atoms.With this relative, the corre-
lation coefficient can also reflect the relevancy, and its
formula is

¥ (6-%) (1= )

rxy = )

[0 /Z

It also excludes the effect of the norm of atoms, and
the mean value of atom is zero. Although both the inner
product and the correlation coefficient can reflect the rel-
evancy, but in some cases, for the same signal and sensing
matrix, the atoms they selected are different, just as the
following example: There are two atoms X = (1,2,3),
Y = (2,2,3), signal Z = (4,5, 6), after normalizing them,
we can get Xx, Y%, and Zx. If we use the inner product
as screening criterion of atoms, the inner product of Xx
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and Zx is 0.975 and the inner product of Y and Zx is
0.995.The most matched atoms should be Y. However,
when the correlation coefficient is used as screening cri-
terion of atoms, the correlation coefficient of X* and Zx
is 1 and the correlation coefficient of Y and Zx is 0.866.
The most matched atoms should be Xx. The results are
different using two criterions. Then which one is better?
To solve this problem, we need to analyze the process of
signal reconstruction.

In CTE the signal support set S is calculated indirectly
by calculating the most sparse solution U of V = AU,
since the support set of U and the support set of signal
y[#n] are the same. Then, construct the matrix Ag cor-
responding to the columns of matrix A and support set
S. Finally, reconstruct the sparse spectrum «(f) and the
original signal by using Eq. (6). If

an -+ aig - aiy; -+ aiL
0:

A= arl - arq e Ay v Gl (10)
Aml - Qg - Ami - Gl

In order to simplify the analysis, V = AU is expressed as

apn - dig e Ay - air
arl arq Ari ar | X
L dm1 Amg *°° Ami **° AmL
r o - 0 0 7
alguq1 + ariui
Ugl - Uge - Ugp :
= Argiql + arildi1
Uil Wi o Uip
: : : AmqUql + Amitkil
L 0 -0 --- 0 |

- AlgUgr + A1illis - Aighgp + Alilkip

- ArqUgr + Arillit ArgUgp + Arillip =

© AmglUgr + Amilkic -+ AmgUqp + Amillip
[Aquq1 + A - Aguge + At - - - Aqitgp + Aiuip]
(11)

In which, A; and A; are the gth column and ith column
of matrix A, respectively. According to SOMP algorithm,
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the method of using inner product as screening criterion
of atoms can be expressed as
) 1/2

A= [lAR|y = [[AsVll, =
We hope that when s = g or s = i, A has the maximum
value. Since the column vectors of matrix A are approx-
imately orthogonal, one of ASTAquqt and ASTAiuit is rela-
tively large, while the other one is quite small. Assuming

( (AT Aqug + AT Ajun)* + - -- (12)

2
+(AT Aqugp + AT Aiuip)

AN \/(AsTAq”ql)z toe Tt (AsTAq“qp)z

2(.2 2
- \/(ASTAq) (uql tuly ufzp)
where the value of X is independent of the matrix U, only
related to A. Most of the time,

(AgA,,)2 > (af Aq>2,s £q

But sometimes, the result is opposite (even if the atoms
are normalized). Then, the SOMP algorithm will select the
wrong atoms. And if the correlation coefficient is used as
screening criterion of atoms,

(13)

(14)

raa, <1 (15)

if and only if when s = g, the equality holds. Thus, using
correlation coefficient as screening criterion of atoms is
more accurate.

Since the sensing matrix A and the residual matrix R
are multidimensional, we cannot calculate the correlation
coefficient between them directly, so we need to calcu-
late the correlation coefficient between atoms in matrix
A and columns in residual matrix R, and then squaring
the correlation coefficients and sum the correlation coef-
ficients corresponding to the same atom; finally, extract
the root of the sum and find the largest one, whose corre-
sponding atom is matched atom. This improvement will
only change the first step of the SOMP algorithm into

m

Py = )" ra,r; other steps remain unchanged.
i=1

5 Simulation results

To test whether the improved algorithm can improve
the reconstruction probability, we compare the perfor-
mance of MMV-ROMP, MMV-StOMP, MMV-CoSaMP,
MMV-SP, and SOMP and their improved algorithms. We
perform 1000 Monte-Carlo simulation for each algorithm.
The signal expression is

N/2
x(t) = Z v/ BE;sinc (B(t — 1;) cos(2mfi(t — l',')) (16)
n=1

The signal contains N frequency bands which are origin
symmetric. The maximum bandwidth of sub-frequency
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Fig. 3 Reconstruction probability comparison between MMV-CoSaMP and improved MMV-CoSaMP

bands is 50 MHz. The carrier frequency f; is a uniform dis-
tribution random number among [—5 GHz, 5 GHz]. The
Nyquist sampling rate is f\yq = 10 GHz. The energy E; of
each frequency band is random, time shift ; is a uniform
distribution random number among [0,1] us. Lo = 97,
L = 195, M 195, SNR 0, the sampling period,
and the period of the pseudo random sequence p;(¢) are
Jp = fs = fNyqQ/L = 51.28 MHz, respectively. The value
of p;(¢) is either 1 or —1 with equal probability and obey

Bernoulli distribution. The numbers of sampling chan-
nels in Figs. 3 and 7 are 100, 100, 50, 50, and 120. The
simulation results are as follows.

As can be seen from the simulation, new algorithms
are improved in reconstruction probability compared with
the traditional algorithms, especially for MMV-ICoSaMP
algorithm and MMV-ISP algorithm, the improvement is
very significant. When traditional algorithms are com-
pletely unable to reconstruct the signal, as is shown in
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Figs. 3 and 4, the improved algorithm still can recon-
struct the signal with 100 % probability. It also means
that less samples were needed to reconstruct signals
than traditional algorithms when the number of bands is
unchanged. The other three algorithms can also improve
the reconstruction probability to a limited extent, as is
shown in Figs. 5, 6 and 7. Because of the improve-
ment about correlation coefficient, the complexity of the

algorithm is increased. In addition, relatively small SNR
has an adverse effect on reconstruction probability of
improved algorithm, as is shown in Figs. 8 and 9, where
the number of sampling channels is 100 and the number
of bands is 20.

Although changing the inner product into correlation
coefficient as screening criterion of atoms can improve
the performance of the algorithm, calculating correlation
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coefficient at each iteration will cost a lot of time, so we
can consider the possibility of simplified this process. A
significant difference between the inner product and cor-
relation coefficient is that correlation coefficient excludes
the impact of data mean, so we can consider whether it is
feasible if the column vectors of sensing matrix are cen-
tered or normalized firstly and still use inner product as
screening criterion of matching atoms. Simulation result

shows that compared to traditional MMV-SP algorithms,
normalization cannot improve the reconstruction proba-
bility, but centralization can. If the column vectors of sens-
ing matrix are centered firstly and still use inner product
as screening criterion of matching atoms, the reconstruc-
tion probability is silently worse than MMV-ISP algo-
rithm, just as shown in Fig. 10, where MMV-SISP means
simplified MMV-ISP. The advantage of this simplification
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is that it can reduce the complexity of the proposed algo-
rithm so that the reconstruction time is about the same as
MMV-SP algorithm.

6 Conclusions

In order to improve the reconstruction probability of
MWC sampling system, we improve the SOMP algorithm
and its derivative algorithms in this paper by changing
the inner product into correlation coefficient as screening

criterion of atoms. The simulation experiments show that
the improved algorithm can increase the reconstruction
probability, especially for MMV-ICoSaMP algorithm and
MMV-ISP algorithm, the improvement is very significant.
For SOMP, MMV-ROMP, and MMV-StOMP algorithms,
the improvement can also increase the reconstruction
probability to a limited extent. It also means that less sam-
ples were needed to reconstruct signals than traditional
algorithms when the number of bands is unchanged.
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Fig. 10 Comparison of the reconstructed probability of the simplified and unsimplified algorithms
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Because of the improvement of correlation coefficient,
the complexity of the algorithms increase, so the recon-
struction time correspondingly increase and the algo-
rithm is not suitable for the system with high real-time
requirements. For systems that require high accuracy, the
improved algorithms can be used. Since calculating cor-
relation coefficient at each iteration will cost a lot of
time, we also proposed a simplified algorithm, which can
also improve reconstruction probability and reconstruc-
tion time is about the same as traditional algorithms.
In addition, relatively small SNR has an adverse effect
on reconstruction probability of improved algorithms, so
the improved algorithms are more suitable for low noise
channels.
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