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Abstract

Background: Genetic variations predispose individuals to hereditary diseases, play important role in the
development of complex diseases, and impact drug metabolism. The full information about the DNA variations in the
genome of an individual is given by haplotypes, the ordered lists of single nucleotide polymorphisms (SNPs) located
on chromosomes. Affordable high-throughput DNA sequencing technologies enable routine acquisition of data
needed for the assembly of single individual haplotypes. However, state-of-the-art high-throughput sequencing
platforms generate data that is erroneous, which induces uncertainty in the SNP and genotype calling procedures
and, ultimately, adversely affect the accuracy of haplotyping. When inferring haplotype phase information, the vast
majority of the existing techniques for haplotype assembly assume that the genotype information is correct. This
motivates the development of methods capable of joint genotype calling and haplotype assembly.

Results: We present a haplotype assembly algorithm, ParticleHap, that relies on a probabilistic description of the
sequencing data to jointly infer genotypes and assemble the most likely haplotypes. Our method employs a
deterministic sequential Monte Carlo algorithm that associates single nucleotide polymorphisms with haplotypes by
exhaustively exploring all possible extensions of the partial haplotypes. The algorithm relies on genotype likelihoods
rather than on often erroneously called genotypes, thus ensuring a more accurate assembly of the haplotypes. Results
on both the 1000 Genomes Project experimental data as well as simulation studies demonstrate that the proposed
approach enables highly accurate solutions to the haplotype assembly problem while being computationally efficient
and scalable, generally outperforming existing methods in terms of both accuracy and speed.

Conclusions: The developed probabilistic framework and sequential Monte Carlo algorithm enable joint haplotype
assembly and genotyping in a computationally efficient manner. Our results demonstrate fast and highly accurate
haplotype assembly aided by the re-examination of erroneously called genotypes.
A C code implementation of ParticleHap will be available for download from https://sites.google.com/site/asynoeun/
particlehap.
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Background
Increased affordability of high-throughput DNA sequenc-
ing has enabled studies of genetic variations and of the
effects they have on health and medical treatments. In
diploid organisms, such as humans, chromosomes come
in pairs. The chromosomes in a pair of autosomes are
homologous, i.e., they have similar composition and carry
the same type of information but are not identical. The
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most common type of DNA sequence variation is a sin-
gle nucleotide polymorphism (SNP), where a single base
in the genome differs between individuals or paired chro-
mosomes. Each of those variants is referred to as an allele;
a SNP has at least two different alleles. If the two alle-
les at a SNP site are same, the SNP site is homozygous;
if they are different, it is heterozygous. SNP calling is
concerned with identification of the locations and types
of such alleles, and is followed by genotype calling to
decide the genotypes associated with the locations of the
detected SNPs. Accurate SNP and genotype calling are
challenging due to uncertainties caused by base calling
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and read alignment errors. The low-to-medium coverages
typical of large-scale sequencing projects are often associ-
ated with erroneous SNP and genotype calling [1]. As an
illustration, in the low-coverage (2 − 6×) 1000 Genomes
Project pilot, the genotype accuracy at heterozygous sites
was 90% for the lowest allele frequencies (minor allele fre-
quency (MAF)< 3%), 95% for the intermediate frequen-
cies (MAF 50%), and 70-80% for the highest frequency
variants (MAF> 97%) [2].
SNP and genotype calling do not assign alleles to spe-

cific chromosomes in the pairs. Such detailed information
is provided by haplotypes, ordered collections of SNPs
on the chromosomes. Haplotypes have been of funda-
mental importance for the studies of human diseases
and effectiveness of drugs [3]. The International Hap-
lotype Map Project’s pursuit of developing a haplotype
map of the human genome reflects the significance of
acquiring and understanding haplotype information [4].
Haplotype inference typically refers to the task of recon-
structing haplotypes from the genotype samples of a
population. Haplotype assembly, or single individual hap-
lotyping, aims to reconstruct single individual haplotypes
from high-throughput sequencing data. Since the SNP
sites are assumed to be bi-allelic (i.e., each SNP site con-
tains one of only two possible nucleotides), the alleles are
labelled as 0 and 1 and the haplotypes are represented by
binary sequences. Therefore, haplotype assembly is often
cast as the problem of phasing two binary sequences from
their short samples (i.e., reads) that are represented by
ternary strings (where the third symbol denotes missing
information). Majority of the existing haplotype assembly
algorithms rely on this formulation of the problem [5].
Several haplotype assembly criteria and algorithms to

optimize them were considered in [6, 7]. The mini-
mum error correction (MEC) criterion, in particular, has
received a considerable amount of attention and has been
broadly used in practice. Most of the haplotype assembly
problem formulations have been shown to be NP-hard [6–
8], which has motivated numerous computationally effi-
cient heuristic solutions [5]. FastHare, proposed in [9],
was an early heuristic method that was followed by sev-
eral approximate techniques in [10, 11]. In [12, 13], the
use of clustering approaches for splitting reads into two
sets, each associated with one chromosome in a pair, was
proposed. In addition to the approximate methods, sev-
eral algorithms that search for the exact solution to the
MEC formulation of the problem were developed, includ-
ing the branch-and-bound technique in [14]. However, as
argued in [15], the exact algorithms are often infeasible
in practice; the approach in [16] based on the Markov
Chain Monte Carlo (MCMC) method, HASH, also incurs
high computational cost while being more accurate than
heuristics. As a follow-up to HASH, [17] presented a sig-
nificantly faster heuristic algorithm, HapCUT, suffering

only aminor loss of accuracy. Tominimize theMEC score,
HapCUT iteratively computes the max-cut in a graph that
represents the assembly problem. In [18], another max-
cut based heuristic, ReFHap, was proposed; ReFHap relies
on a different graph structure to achieve higher speed
while maintaining accuracy similar to that of HapCUT.
Other methods include a dynamic programming solution
in [19]; a method that solves an appropriate integer linear
program [20]; and several other heuristics including [21],
H-BOP [22], HMEC [23], and HapCompass [24, 25].
A probabilistic framework for haplotype assembly was

first introduced in [26]. There, in order to deal with inher-
ently random errors in sequencing data, the probability
that a site in the fragments is incorrectly sequenced is
defined for each of the four nucleotide bases. The most
likely haplotype phases between SNP sites are determined
using joint posteriori probabilities whose calculation is
limited to two or three adjacent SNPs due to the inten-
sive computational cost that grows exponentially in the
number of SNP sites. The locally estimated haplotype seg-
ments are linked if the corresponding confidence levels
exceed a certain threshold. In the follow-up work [27],
reconstruction of longer haplotype segments using the
Gibbs sampling procedure was enabled. However, this
iterative approach still first assembles short haplotype seg-
ments that are then connected, and requires runtimes
infeasible for block lengths typically encountered in prac-
tice. More recently, [28] proposed a new probabilistic
mixture model, MixSIH, which leads to a more efficient
computation of the haplotype likelihoods than those in
[26, 27]. However, MixSIH is still about 10-fold slower
than either HapCUT [17] or ReFHap [18] while having
comparable accuracy, and the model there is restricted to
the bi-allelic representation as in [6-25].
It is worth pointing out that most of the existing algo-

rithms for haplotype assembly allow no more than two
alleles at a SNP site and only deal with the errors caused
by substitutions between those two alleles [6-25,28]. In
practice, when sequencing errors lead to reads that report
more than two alleles at a SNP site, either all of the tri-
or tetra-allelic sites are discarded [10, 17] or the alleles
that do not match the reference (or its alternative) are
thrown away [24, 25]. The former drastically reduces not
only the number of SNP sites to be reconstructed but
also the chance of reliable full haplotype reconstruction
(due to reducing the length of already short reads). The
main drawback to the latter is that by fully trusting geno-
type information provided by SNP/genotype calling, the
true haplotypes may be incorrectly reconstructed when
the genotype calling is erroneous (i.e., when alleles corre-
sponding to an incorrect genotype are preserved while the
alleles corresponding to the true genotype are discarded).
In this paper, we propose a novel method that relies on

a probabilistic model of the data to incorporate genotype
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calling in the haplotype assembly procedure. Unlike
[26, 27], the proposed method infers both the most likely
genotypes and haplotype phases by examining the com-
plete set of SNP loci in a computationally efficientmanner.
To this end, we employ the sequential Monte Carlo (SMC)
algorithm (i.e., a particle filter). Particle filters are capa-
ble of sequentially estimating the posterior density of
unknown variables by representing them with a set of
particles and associated weights [29]. When the solution
space is discrete and finite, a deterministic form of SMC
can be derived [30, 31]; this has been exploited for solv-
ing various problems in genomics [32, 33]. Noting that
the set of possible haplotype pairs is discrete and finite,
we develop a modified deterministic sequential Monte
Carlo (DSMC) method for solving the haplotype assembly
problem. Our algorithm, ParticleHap, relies on the 2nd-
order Markov model of the haploype sequence to search
for the most likely association of the SNPs to haplotypes.
Phasing of the SNPs is done sequentially: the posteriori
probability of a partial haplotype comprising n SNPs is cal-
culated using the read information about the SNP in the
nth position of the haplotype sequence and the posteriori
probability of the previously inferred (n − 1)-bases long
partial haplotype. By working with SNP calls rather than
their binary representations (the latter is typically used
by state-of-the-art haplotype assembly algorithms), Parti-
cleHap can reliably infer the most likely genotypes. Our
extensive computational studies demonstrate that the pro-
posed scheme is more accurate and computationally more
efficient than state-of-the-art methods in [17, 18].

Methods
Problem formulation
In our model and the subsequently proposed haplotype
assembly algorithm, we focus on the SNP sites where
two or more alleles are observed. The sites with only one
observed allele are declared homozygous and not used
for the assembly. Assume there are m paired-end short
reads covering n remaining SNP sites. Such data can be
represented by an m × n matrix where the rows con-
tain information provided by the reads while the columns
correspond to the SNP sites.
By adopting the notation used in [26, 27], let X with

elements Xij = xij, xij ∈ B, be the matrix of poten-
tially erroneous observations, while Y with entries Yij =
yij, yij ∈ A, denote the corresponding error-free data
matrix, 1 ≤ i ≤ m, 1 ≤ j ≤ n, A = {A,C,G, T} and
B = {A,C,G, T,−}. Here − denotes a gap, i.e., a site not
covered by a read or an ambiguous base-call. Let a 2 × n
matrix S with entries Skj = skj, skj ∈ A, k ∈ {1, 2}, denote
the true haplotype pair, and let us collect the indicators
of the origin of the reads, fi ∈ {1, 2}, 1 ≤ i ≤ m, into a
vector F. With this notation, the true bases relate to the
true haplotypes as Yij = Sfi,j, where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We assume that the composition probabilities Pr(Skj = s),
s ∈ A, at each SNP position are mutually independent
and constant across haplotypes. The measurement model
is given by Pr(Xij = xij|Yij = yij), yij ∈ A, xij ∈ B.
A sequencing error occurs when the true base Yij = yij
is misread as Xij = xij, xij �= yij. Note that the posteri-
ori probability p(S|X) can be computed from p(S,X) and
p(X) = ∑

S
p(S,X) using the Bayes’ rule, where

p(S,X) =
(
1
2

)m n∏
j=1

p(S1j)
n∏

j=1
p(S2j)

×
m∏
i=1

⎡
⎣ n∏

j=1
p(Xij | S1j) +

n∏
j=1

p(Xij|S2j)
⎤
⎦ . (1)

We assume that each read is generated from one of the two
haplotypes with probability 1

2 , i.e., Pr(fi = 1) = Pr(fi =
2) = 1

2 .

The ParticleHap algorithm
Following the adopted notation, the goal of haplotype
assembly is to determine matrix S from the observation
matrix X. A Bayesian approach to solving this prob-
lem involves maximization of the posteriori distribu-
tion p(S|X). Let S·j and X·j denote the jth column vec-
tors of S and X, respectively, and let us define S1:t =
{S·1, S·2, · · · , S·t} and X1:t = {X·1,X·2, · · · ,X·t}. Recursive
Bayesian estimation (i.e., Bayesian filtering) is concerned
with recursively finding the conditional probability den-
sity function p(S1:t|X1:t). Having obtained the estimate
p̂(S1:t|X1:t), we can determine the most likely S1:t . How-
ever, finding an analytical form of this probability density
function is often infeasible, as is the case for the haplotype
assembly problem.
Sequential Monte Carlo (SMC), often referred to as

particle filtering [29], describes p(S1:t|X1:t) using a set
of discrete points (particles) and their corresponding
weights. SMC can be interpreted as the dynamical sys-
tem which, in the context of haplotype assembly, com-
prises the initial state model p(S·1), state transitionsmodel
p(S·t|S·t−1) andmeasurement model p(X·t|S·t). The distri-
bution p(S1:t|X1:t) can be propagated using an importance
sampling technique where samples from a proposal den-
sity q(S1:t|X1:t) are generated and appropriately weighted.
Having drawn K samples

{
S(1)
·t , S(2)

·t , · · · , S(K)
·t

}
from

q(S1:t|X1:t) and assigned them weights w(k)
t , p(S1:t|X1:t)

can be approximated by

p̂(S1:t|X1:t) = 1
Wt

K∑
k=1

w(k)
t δ

(
S1:t − S(k)

1:t

)
, w(k)

t = p(S1:t|X1:t)

q(S1:t|X1:t)
,

(2)
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whereWt =
K∑

k=1
w(k)
t and δ(·) is an indicator function, i.e.,

δ(s − s0) = 1 for s = s0 and δ(s − s0) = 0 otherwise. The
weight w(k)

t can be further derived as ([29])

w(k)
t ∝ w(k)

t−1p
(
X·t | S(k)

·t−1

)

∝ w(k)
t−1

L∑
l=1

p(X·t | S·t = sl)p
(
S·t = sl | S(k)

·t−1

)
. (3)

In the traditional SMC, the set
{(

S(k)
1:t ,w

(k)
t

)
, k =

1, · · · ,K
}

is recursively generated from the previ-

ous set of properly weighted samples
{(

S(k)
1:t−1,w

(k)
t−1

)
,

k = 1, · · · ,K
}
by using the optimal proposal distribution

q
(
S·t|S(k)

1:t−1, X1:t
)

= p
(
S·t|S(k)

1:t−1, X1:t
)
,

q
(
S·t = sl|S(k)

1:t−1, X1:t
)

∝ p(X·t|S·t = sl)p
(
S·t = sl|S(k)

·t−1

)
.

(4)

In contrast to the conventional SMC, the determinis-
tic sequential Monte Carlo (DSMC, [30, 31]) explores all
possible states in each step of the recursive procedure. In
particular, each particle at step t − 1, S(k)

·t−1, k = 1, · · · ,K ,
is propagated to L possible states at step t instead of
being propagated to a single particle, where L denotes
the number of possible extensions of the partially recon-
structed haplotype sequence in our haplotype assembly
problem. Maintaining and further propagating all such
particles would inevitably increase their number exponen-
tially; to remedy this problem, in each step onlyK particles
with the highest weights among KL possible particles are
selected. Then, given a set

{(
S(k)
1:t−1,w

(k)
t−1

)
, k = 1, . . . ,K

}
that does not contain duplicate paths, (2) and Bayes’

theorem lead to an approximation of the posterior distri-
bution of S1:t

p̂DSMC(S1:t|X1:t)= 1
W DSMC

t

K∑
k=1

L∑
l=1

w(k,l)
t δ

(
S1:t−

[
S(k)
1:t−1 sl

])
,

(5)

where W DSMC
t = ∑

k,i
w(k,l)
t and

[
S(k)
1:t−1, sl

]
is obtained by

appending the state sl to S(k)
1:t−1. Each weight w(k,l)

t is
calculated as

w(k,l)
t ∝ w(k)

t−1p(X·t|S·t = sl)p
(
S·t = sl|S(k)

·t−1

)
. (6)

The procedure is continued until obtaining S(k)
1:n =(

S(k)
1:n−1, S

(k)·n
)

and its corresponding weights. Figure 1
illustrates the procedure of propagating particles in the
DSMC. Each of K particles at step t− 1 is propagated to L
possible states at step t. Among K × L possible particles,
only K particles with the highest weight are selected.
The conditional distribution p(X·t|S·t = sl) in the

DSMC weight updates (6) reflects dependence of X·t on
the current state S·t only, and does not include the phase
information between nearby SNP sites (note that it does
enable detection of the most likely genotypes at the tth
site). To incorporate the phasing information, we extend
the representation of the particle trajectories to the 2nd-
order Markov model. In particular, we modify (6) so that
the weight updates in our ParticleHap depend on the his-
tory of the state and the observation at t − 1 as well as on
the current state,

w(k,l)
t ∝ w(k)

t−1p
(
X·t|S·t = sl, S(k)

·t−1,X·t−1
)

× p
(
S·t = sl|S(k)

·t−1,X·t−1
)
, (7)

where sl = (sl1 , sl2), l = 1, . . . , L. In particular, at step
t, ParticleHap examines potential extensions of the par-
tially reconstructed haplotype by adding a single SNP site,

Fig. 1 Procedure of propagating particles in deterministic sequential Monte Carlo. Each of K particles at step t − 1 is propagated to L possible states
at step t. Among K × L possible particles, only K particles with the highest weight are selected
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which requires no more than 12 likelihood calculations –
one for each possible heterozygous pair (sl1 , sl2) at site t,
with 12 such pairs when there are 4 different bases in the
tth column of X.
While the conditioning on S(k)

·t−1 and X·t−1 in
p

(
X·t|S·t = sl, S(k)

·t−1,X·t−1
)
in (7) introduced phase infor-

mation between SNPs in positions t − 1 and t, there
remains a major challenge for reconstruction of unknown
haplotype due to gaps in the data matrix X. Even with
the previously described 2nd-order Markov model of
particle trajectories, phase information between two
consecutive SNP sites cannot be retrieved using a read
that is not covering both of those sites. For example, in
Fig. 2, column t + 2 contains 5 informative entries (i.e.,
entries which are not −). However, 2 of them belong to
the reads which do not cover the SNP in the position
t + 1, i.e., are immediately preceded by −, and thus do
not contribute to the phase information if the weights
are computed according to (7). To this end, we modify
(7) so that the information spread across gaps within
paired-end reads can be utilized for generating particle
trajectories. In particular, let us introduce a new variable
Post = {

posti , i = 1, · · · ,m, posti ∈ {0, 1, 2, · · · , t}}, where
posti is the nearest informative (non-gap) position in the
ith row left of the column t; note that post+1

i = posti
if Xi,t+1 = −. Also, note that post−1

i = 0 implies that
there are no informative positions in the ith row left of

Fig. 2 Information about heterozygous sites provided by paired-end
reads and organized in the observation matrix X. Erroneous base
characters are highlighted in red font

the column t (i.e., Xij = − for all j ≤ t − 1). With this
notation, we rephrase (7) as

w(k,l)
t ∝ w(k)

t−1p
(
X·t|S·t = sl, S(k)

·Post−1 ,X·Post−1

)

× p
(
S·t = sl|S(k)

·Post−1 ,X·Post−1

)
. (8)

The measurement model in (8) assumes that the ith read is
randomly generated from one of the two haplotypes, i.e.,

p
(
X·t|S·t = sl, S(k)

·Post−1 ,X·Post−1

)

=
m∏

i=1,xit �=−
p

(
Xi,t|S·t = sl, S(k)

·post−1
i

,Xi,post−1
i

)
,

where

p
(
Xi,t|S·t = sl, S(k)

·post−1
i

,Xi,post−1
i

)

=

⎧⎪⎪⎨
⎪⎪⎩

p(xit|sl1), if Xi,post−1
i

= S(k)
1,post−1

i
,

p(xit|sl2), if Xi,post−1
i

= S(k)
2,post−1

i
p(xit |sl1 )+p(xit |sl2 )

2 , otherwise.

(9)

When computing p
(
S·t = sl|S(k)

·Post−1 ,X·Post−1

)
, we assume

that there is no correlation between the consecu-
tive SNPs. Therefore, the state transition distribution
is formed using the composition probabilities, e.g.,
p

(
S·t = sl|S(k)

·Post−1 ,X·Post−1

)
= Pr(S1t = sl1)Pr(S2t = sl2).

Note that, in principle, side information such as genotype
frequencies or the patterns of linkage disequilibrium (LD)
can be incorporated in state transition probabilities.
Going back to the example illustrated in Fig. 2, the

modification of the weights shown in (8) now allows Parti-
cleHap to retrieve phase information at position t+2 from
the reads (highlighted in orange) that have a gap in posi-
tion t + 1 but cover some SNPs in the positions left of the
(t+1)st one. This often has a beneficial effect on the switch
error rate, defined as the ratio of the number of SNP posi-
tions where the two chromosomes of a resulting haplotype
phase must be switched in order to reconstruct the true
phase. As an illustration, consider column t in the obser-
vation matrix shown in Fig. 2. Since none of the reads that
cover SNPs at column t provide any phasing information,
the partially reconstructed haplotype pair would equally
likely be extended by either (C,G) or (G,C) which might
lead to the switch error at the position t. This ambiguity is
resolved at position t+2 from the reads i1 = 4 and i2 = 13
(highlighted in orange), which do not cover sites t + 1, t
nor t − 1, but do cover sites 4 and 1, respectively: Parti-
cleHap relying on those reads in (8)-(9) will assign larger
weight to the particle propagated along the correct state
path.
To initialize the algorithm at t = 1 from k possible

SNPs, all possible assignments are considered as S(k)
·1 , k =
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1, . . . ,K , with the corresponding weightsw(l)
1 , l = 1, . . . , L,

computed as w(l)
1 ∝ p(X·1|S(l)

·1 = sl). From t = 2, all possi-
ble extensions of the (t−1)-long haplotype are considered,
and the extensions having non-zero weights are used to
generate particles until K such particles are created. Once
the set of K particles is formed, the subsequently gen-
erated particles are included in the set if their weight is
greater than the weight of at least one particle that is
already in the set; the latter then needs to be excluded
from the set so that its cardinality remains K .
The ParticleHap algorithm is formalized below.

Step 1 (Initialization): For the first SNP position,
compute w(l)

1 ∝ p
(
X·1|S(l)

·1 = sl
)
, l = 1, . . . , L.

Normalize w(l)
1 and store the corresponding possible

haplotype pairs in S(k)
·1 , k = 1, 2, · · · ,K .

Step 2 (Run iterations for 2 ≤ t ≤ n): For each step t,
t = 2, . . . , n, enumerate all possible extensions of the
existing particles S(k)

·t−1, thus generating
S(k,l)
·t =

[
S(k)
·t−1, sl

]
, l = 1, · · · , L. For all l, compute

the weights w(k,l)
t using (8).

Step 3 (Particle selection): Select and store K
particles

{
S(k)
·t , k = 1, · · · ,K

}
with the highest

importance weights
{
w(k)
t , k = 1, . . . ,K

}
from the

set
{
S(k,l)
·t ,w(k,l)

t , k = 1, . . . ,K , l = 1, . . . , L
}
.

Normalize the weights of the selected particles. Go
back to Step 2 and repeat until t = n.
Step 4 (Haplotype reconstruction): At t = n,
assemble the entire haplotype sequence by selecting
the particle with the largest weight.

Complexity analysis of ParticleHap
Since ParticleHap searches for the most likely haplo-
types by sequentially extending the partially reconstructed
candidate haplotypes one position at a time, it is com-
putationally very efficient and has complexity that scales
linearly with the haplotype length, O(n). On average,
the amount of calculations needed for haplotype assem-
bly with ParticleHap is nKLaCa, where Ca denotes the
average number of bases covering heterozygous sites and
La denotes the average number of possible extensions
of the partially reconstructed haplotype at a heterozy-
gous SNP site. It is worth pointing out that while there
are in principle 12 possible SNP pairs of (sl1 , sl2) at one
site, the 3rd or 4th most frequently reported nucleotides
are never selected as potential SNPs’ genotypes based
on the likelihood calculations. Therefore, ParticleHap
can be implemented even more efficiently by retaining
the two (or three in the case of ties) most frequently
observed nucleotides at each site while the others, which

are considered errors, are replaced by −; this step can
significantly reduce the amount of likelihood calculations
without compromising the accuracy of computing the
most likely genotype.

Postprocessing
We can further improve the accuracy of assembled hap-
lotypes by pooling the information obtained from mul-
tiple runs of ParticleHap whose performance may be
affected by the choice of the starting position. In partic-
ular, we also run the algorithm in the opposite direction,
e.g., perform sequential Monte Carlo reconstruction of
the most likely haplotype starting from the site t = n
and terminating the algorithm at the site t = 1. For
the sites where the haplotype pairs reconstructed by the
two runs of ParticleHap differ from each other, we com-
pare the likelihoods of the solutions (i.e., we compare
the weights in (8)) and choose the one with larger likeli-
hood. In case the sites are consecutive, we compare MEC
scores for the two cases and choose the one with smaller
MEC.

Results and discussion
We implemented ParticleHap in C and compared its per-
formance with the publicly available implementations of
HapCUT [17] and ReFHap [18]. All three methods are
run on a Linux OS desktop with 3.06GHz CPU and 8Gb
RAM (Intel Core i7 880 processor). Both real and simu-
lated data are used for the experiments, as described in
the remainder of this section.

1000 genome project data
We first study the performance of ParticleHap on
454 sequencing data of CEU NA12878 genome (1000
Genomes Pilot Project [2]). The short-read data aligned
with respect to a reference genome as well as variant and
genotype calls for the individual are provided. The data
contains a total of 2.58 million reads covering 1.65 mil-
lion variants on 22 chromosomes. Due to the short lengths
of reads and limited insert sizes, the data is split into a
number of disconnected blocks. We use ParticleHap to
reconstruct each such block.
To evaluate the performance of haplotype assembly,

we adopt three measures: the number of phased SNPs
(nPhased), the minimum error correction (MEC) score,
and running time (Time). In particular, nPhased is the
number of SNPs phased by a haplotype assembler; MEC
score is the smallest number of entries in the data matrix
which need to be changed so that the sequencing infor-
mation is consistent with an error-free haplotype pair (we
report the total MEC score evaluated as the sum of the
MEC scores obtained for each haplotype block); and, Time
is the runtime of an algorithm in seconds, measured for
each algorithm on the same processor.
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We choose a different number of particles K for each
block. Specifically, the longer the block length n, the larger
the number of particles (12 for n ≤ 12, n

2 for 12 < n <

100, and 50 for n ≥ 100). We assume that the bases in
the sequence are equally likely, i.e., the composition prob-
abilities of the 4 nucleotides are equal, 0.25. Note that
we assume the error rate e = 0.01, which is consistent
with the typical sequencing accuracy of the 454 platform.
Then, the sequencing error probabilities Pr(Xij = xij|Skj =
slk ) = e/3 if xij �= slk and are equal to 1 − e otherwise.
Table 1 shows that ParticleHap can assemble more hap-

lotypes with higher accuracy and better computational
efficiency than HapCUT and ReFHap (the lower the MEC
score, the better the performance). Clearly, more SNP
sites are phased by ParticleHap than by either HapCUT
or ReFHap (please see columns 2, 5 and 8). This can be
attributed to the fact that ParticleHap processes reads
containing actual base calls (i.e., the reads represented
by A, C, G, T and −, rather than the same reads being
represented by their binary post-genotype calling counter-
parts), thus allowing more than two nucleotides at a site,

while HapCUT and ReFHap discard some information in
the process due to relying on the simplified representa-
tion of the reads (via the ternary alphabet with elements
0, 1 and −). It turns out that roughly 1.2 − 1.5% of the
heterozygous positions in the dataset are either tri- or
tetra-allelic SNP sites. As can be seen from columns 3,
6 and 9, ParticleHap outperforms HapCUT and ReFHap
by consistently achieving lower MEC scores on most of
the chromosomes. Note that the MEC scores are calcu-
lated only for the haplotype pairs phased by an algorithm;
thus, the lower MEC of ReFHap does not necessarily
imply that it achieves better performance since it may
actually be phasing a smaller number of SNP sites. Parti-
cleHap simultaneously provides longer lengths of phased
haplotypes as well as lower MEC scores, demonstrating
the high accuracy of the proposed algorithm (note that
the total number of reads and allele calls involved in the
MEC calculation of ParticleHap is larger than those for
HapCUT and ReFHap). This can be partly attributed to
the fact that ParticleHap works with genotype likelihoods
and allows thorough examination of tri- or tetra-allele

Table 1 The performance comparison on a CEU NA12878 data set sequenced using the 454 platform in the 1000 Genomes Project

ParticleHap HapCUT ReFHap

chr nPhased MEC Time(s) nPhased MEC Time(s) nPhased MEC Time(s)

1 66661 2045 1.07 66616 2293 28.03 66490 2111 5.79

2 78002 2742 1.11 77970 2857 35.71 77853 2698 7.78

3 66217 2111 3.96 66178 2349 29.50 66071 2203 6.20

4 69939 2386 3.94 69901 2591 37.16 69786 2410 9.01

5 63723 1971 4.75 63693 2156 28.06 63605 2044 6.00

6 69750 3312 5.25 69706 3544 58.60 69580 3318 13.39

7 54330 1867 3.31 54302 2059 27.23 54202 1908 7.19

8 56406 1700 3.89 56382 1828 25.87 56281 1690 5.60

9 42244 1335 2.15 42230 1472 20.02 42157 1365 4.52

10 50022 1618 2.73 49998 1814 23.44 49900 1662 5.22

11 46141 1411 2.72 46124 1569 21.66 46051 1467 4.89

12 43333 1467 2.32 43315 1581 20.00 43251 1495 3.92

13 36952 1286 0.68 36937 1398 18.80 36872 1311 7.10

14 30349 887 0.38 30334 982 13.25 30293 916 2.90

15 26626 975 0.88 26614 1055 11.46 26567 968 2.60

16 31675 1156 0.87 31662 1257 14.84 31612 1185 3.98

17 21054 1206 0.59 21048 1223 11.19 21010 1172 5.35

18 28784 851 0.37 28769 936 11.94 28717 855 2.67

19 17018 653 0.25 17006 761 8.35 16961 687 4.25

20 21679 737 0.43 21673 790 9.50 21635 735 2.84

21 14737 485 0.41 14736 525 6.82 14714 500 2.09

22 12929 388 0.28 12925 433 5.38 12891 395 1.74

A comparison of the number of phased SNPs(nPhased), the MEC scores(MEC) and running time(Time) for different haplotype assembly algorithms, ParticleHap, HapCUT and
ReFHap, on all of 22 chromosomes
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SNP sites, which leads to improved genotype accuracy in
situations where there are potential errors in “hard” geno-
type calls used by the competing methods. It is also worth
pointing out that ParticleHap is designed to sequentially
find the maximum-likelihood solution to the haplotype
assembly problem rather than to optimize the MEC crite-
rion while HapCUT uses MEC as its optimization objec-
tive (the MEC score is only used to correct potential
errors in ParticleHap’s post-processing step); therefore,
the superior MEC performance of ParticleHap demon-
strates the robustness of the approach. Finally, as reported
in columns 4, 7 and 10, ParticleHap assembles haplotypes
significantly faster than either HapCUT or ReFHap. In
particular, ParticleHap can complete haplotype assembly
for each of the 22 chromosomes within 6 seconds, while
HapCUT and ReFHap require 59 and 14 seconds for the
same task, respectively.

Simulated data
We further test the performance of our proposed method
on the simulated data set. In particular, we examine how
the genotype calling errors affect the performance of hap-
lotype assembly. The data are generated using a similar
strategy to the one in [15] except that a genotype call-
ing error is included in our simulation data. We generate
a pair of phased heterozygous SNP sequences of length
n, which have genotype calling errors with probability
ge. The parameter ge is judiciously chosen as 0.04 and
0.08 in order to emulate practical scenarios reported in
[1] (there, the genotype call accuracy for high call rates
was up to 96% with the use of LD information, from
78% and 87% with the use of single sample and multi-
ple individuals, respectively, for the 62 CEU individuals).
The true haplotype sequences are generated by emulating
genotyping errors; each base in the erroneous heterozy-
gous SNP sequences is flipped to one of the other three
nucleotides with equal probability, ge/3. To generate the
observation data matrix, instead of sampling (with reads)
from true haplotype sequences c times as in [15], we
sample true haplotype sequences c

2 times and sequences
containing genotype calling errors c

2 times. Each replicate
is randomly partitioned into non-overlapping fragments
of length between 3 and 7 (the lengths typical of bench-
marking data sets in [15]). In order to simulate paired-end
(or mate-pair) sequences, we randomly merge some of the
generated fragments (fragments whose SNPs are in the
first half of haplotype sequence are merged with those
whose SNPs in the last half of sequence; as a result, half
of the fragments in the dataset are paired-end sequences).
Once the fragments are arranged in a SNP matrix, we
emulate sequencing errors by randomly flipping a base to
one of the other three nucleotides with equal probability.
The probability that each base is flipped is 0.03 and 0.01
for ge = 0.04 and ge = 0.08, respectively, and thus the total

error rate for the entries in the SNP matrix is e = 0.05.
To explore the performance of the algorithm over a broad
range of experimental parameters, we generate datasets
with different SNP lengths (n = 100, 200 and 300) and
vary the coverage rate (c = 4, 6, 8 and 10) for each geno-
type calling error rate (ge = 0.04 and ge = 0.08). For each
of the 24 combinations of the parameters, the experiment
is repeated 100 times and the results averaged over the 100
instances are reported for each case.
We quantify the ability of an algorithm to reconstruct

a haplotype by means of the reconstruction rate [15]
defined as

R =1−min(D(h1, ĥ1) + D(h2, ĥ2),D(h1, ĥ2) + D(h2, ĥ1))
2l

,

where (h1, h2) is the pair of true haplotypes, (ĥ1, ĥ2)
is the pair of reconstructed haplotypes, D(hi, ĥj) =
n∑

k=1
d(hi[ k] , ĥj[ k] ) is the generalized Hamming distance

between hi and ĥj, and d(hi[ k] , ĥj[ k] ) = 0 if hi[ k]=
ĥj[ k] and is 1 otherwise. Running time (Time(s)) for each
algorithm is evaluated along with the reconstruction rate
(ReconRate). In addition, we report the rate at which Par-
ticleHap infers true genotypes for the locations where
genotype calling errors are induced, i.e., the improvement
rate of genotyping accuracy (labeled as ImpGeAc).
Tables 2 and 3 compare the results of ParticleHap,

HapCUT and ReFHap for ge = 0.04 and ge = 0.08,
respectively. As can be seen in those tables, Particle-
Hap assembles haplotypes with the reconstruction rates
of 97.85% and 95.68% when the data is affected by the
genotype calling error rates of 4% and 8%, respectively.
This highly accurate performance is achieved in part due
to ParticleHap’s ability to improve genotyping accuracy
in mis-called (or uncertain) sites by more than 50% in
all the considered scenarios as shown in column 3 in
Tables 2 and 3. (i.e, ParticleHap can improve the geno-
type accuracy of 96% and 92% to 98% and 96% in Tables
2 and 3, respectively.) It is worth pointing out that, in
these simulations, we assumed equal prior probabilities of
all genotypes. Imposing more judicious choices of priors
may lead to further improvement of genotyping accuracy.
On another note, the corresponding reconstruction rates
of HapCUT and ReFHap do not exceed 96% and 92%,
respectively. Evidently, incorporation of genotyping in the
haplotype assembly procedure allows pushing the limits
of the achievable accuracy of haplotype assembly. Note
that ParticleHap is consistentlymuch faster thanHapCUT
and ReFHap in all the considered scenarios. As expected,
the running time of ParticleHap increases with both the
haplotype length and sequencing coverage.
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Table 2 The performance comparison on a simulated data set for ge = 0.04

ParticleHap HapCUT ReFHap

n c ImpGeAc ReconRate Time(s) ReconRate Time(s) ReconRate Time(s)

100 4 0.6254 0.9785 0.02 0.9598 0.66 0.9497 0.11

6 0.6252 0.9794 0.02 0.9570 0.84 0.9481 0.25

8 0.5977 0.9792 0.03 0.9590 1.01 0.9524 0.56

10 0.5737 0.9780 0.03 0.9582 1.17 0.9517 1.23

200 4 0.5935 0.9779 0.07 0.9594 1.78 0.9499 0.26

6 0.5977 0.9783 0.08 0.9597 2.26 0.9518 0.88

8 0.5840 0.9757 0.09 0.9596 2.71 0.9524 2.56

10 0.5758 0.9777 0.11 0.9593 3.13 0.9528 5.80

300 4 0.6013 0.9715 0.17 0.9591 3.39 0.9493 0.53

6 0.5848 0.9720 0.20 0.9596 4.34 0.9511 2.12

8 0.5842 0.9695 0.22 0.9598 5.14 0.9525 6.35

10 0.5671 0.9703 0.24 0.9599 5.90 0.9537 14.68

A comparison of reconstruction rate(ReconRate) and running time(Time) for different haplotype assembly algorithms, ParticleHap, HapCUT and ReFHap, on the simulated
data for ge = 0.04. For ParticleHap, the improvement rates of genotyping accuracy (ImpGeAc) are also reported

Conclusions
In this paper, we presented a novel deterministic sequen-
tial Monte Carlo (i.e., particle filtering) algorithm for solv-
ing the haplotype assembly problem. ParticleHap sequen-
tially infers the haplotype sequence, one SNP site at a time,
by exhaustively searching for the most likely extension of
the partially assembled haplotype in each step, examining
both the possible genotypes and phase. We tested the per-
formance of ParticleHap on 1000 Genomes Project data,
showing that it achieves better minimum error correction
scores and phases more heterozygous sites than two of the
most accurate existing methods while being significantly

more computationally efficient. The results of testing Par-
ticleHap on the simulated dataset also demonstrate that
the proposed method can reconstruct haplotypes with
higher accuracy and efficiency than those of competing
techniques over a wide range of the haplotype assembly
problem parameters.
The main goal of ParticleHap is accurate haplotype

assembly rather than genotype calling. However, meth-
ods that can improve accuracy of genotype calling can be
incorporated in the proposed algorithm. For example, the
prior information about allele and genotype frequencies
or linkage disequilibrium patterns can be incorporated

Table 3 The performance comparison on a simulated data set for ge = 0.08

ParticleHap HapCUT ReFHap

n c ImpGeAc ReconRate Time(s) ReconRate Time(s) ReconRate Time(s)

100 4 0.6211 0.9618 0.02 0.9193 0.66 0.9009 0.11

6 0.5941 0.9610 0.02 0.9184 0.86 0.8997 0.25

8 0.5970 0.9585 0.03 0.9184 1.04 0.9017 0.56

10 0.5845 0.9572 0.03 0.9193 1.19 0.9041 1.26

200 4 0.6262 0.9615 0.08 0.9186 1.80 0.8979 0.27

6 0.5938 0.9418 0.09 0.9198 2.30 0.9021 0.89

8 0.6050 0.9389 0.10 0.9193 2.75 0.9019 2.53

10 0.5997 0.9438 0.12 0.9193 3.16 0.9039 5.84

300 4 0.6245 0.9432 0.18 0.9197 3.43 0.8995 0.53

6 0.6069 0.9397 0.21 0.9198 4.49 0.9009 2.11

8 0.6058 0.9315 0.23 0.9186 5.54 0.9009 6.29

10 0.5792 0.9192 0.27 0.9187 6.37 0.9029 15.00

A comparison of reconstruction rate(ReconRate) and running time(Time) for different haplotype assembly algorithms, ParticleHap, HapCUT and ReFHap, on the simulated
data for ge = 0.08. For ParticleHap, the improvement rates of genotyping accuracy (ImpGeAc) are also reported
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in the proposed algorithm, which may further improve
the accuracy of genotype calling and thus of haplotype
assembly. In conclusion, the proposed method provides a
framework for joint genotyping and haplotyping that leads
to accurate haplotype assembly.
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