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Abstract

Many HIV prevalence surveys are plagued by the problem that a sizeable number of surveyed individuals do not
consent to contribute blood samples for testing. One can ignore this problem, as is often done, but the resultant bias
can be of sufficient magnitude to invalidate the results of the survey, especially if the number of non-responders is
high and the reason for refusing to participate is related to the individual’s HIV status. One reason for refusing to
participate may be for reasons of privacy. For those individuals, we suggest offering the option of being tested in a
pool. This form of testing is less certain than individual testing, but, if it convinces more people to submit to testing, it
should reduce the potential for bias and give a cleaner answer to the question of prevalence. This paper explores the
logistics of implementing a combined individual and pooled testing approach and evaluates the analytical
advantages to such a combined testing strategy. We quantify improvements in a prevalence estimator based on this
combined testing strategy, relative to an individual testing only approach and a pooled testing only approach.
Minimizing non-response is key for reducing bias, and, if pooled testing assuages privacy concerns, offering a pooled
testing strategy has the potential to substantially improve HIV prevalence estimates.
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Introduction
HIV prevalence estimates derived from national
population-based surveys are often considered the
gold standard of HIV prevalence estimation when non-
response rates are low [1-4]. However, finding and
obtaining a blood sample from all individuals surveyed
is a considerable, if not almost impossible, challenge.
Frequently, migrant or homeless populations are ignored
and a large proportion of the sample does not consent to
being tested, potentially inducing (unmeasured) bias in
the HIV prevalence estimators [4].
In this paper, we discuss a method for promoting

increased testing consent rates. Individual reluctance to
test may be influenced by several factors, including those
related to social stigma associated with HIV and difficulty
in accessing treatment for some testing individuals [5,6].
While no consensus has been reached on reasons for test
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refusal or failing to return for test results, fear is a com-
mon theme in such studies [7], and there is evidence that
those who are aware of their positive HIV status are less
likely to consent to testing [8].
Additionally, the HIV testing protocol is an important

factor in gaining test consent [9]. The method of asking
for consent, specifically convincing survey participants of
the importance of their contribution to fighting the HIV
epidemic while assuaging concerns about privacy of test
results, could be key in improving test consent rates. Pre-
vious studies have assessed the impact of anonymity in
testing by examining testing rate trends following tran-
sitions from anonymous to name-based reporting; there
is some evidence in the literature that eliminating truly
anonymous testing would impact individuals’ decisions to
test HIV, though the results are not consistent (see [10,11]
and references within).
One option for estimating prevalence while preserving

the nonidentifiability of individuals, at the cost of greater
uncertainty, is pooled testing [12], where individual sam-
ples are combined to form pooled samples. In this paper,
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we propose a testing protocol that supplements the pre-
sumably more informative individual testing with pooled
testing. Each sampled individual is asked to provide a
blood sample for disease testing, where the investigators
(and, by choice, the individual as well) learn the disease
status of the individual. If the individual rejects this testing
option, we ask if he will provide a non-identifiable blood
sample which will be combined with other samples in a
pooled test and, in which case, no one knows this indi-
vidual’s test result. If the individual does not consent to
pooled or individual testing, then he is not tested for the
disease, of course.
Ideally, by providing the pooled testing option, the

amount of missingness in the sample is substantially
reduced. Pooled testing strategies are frequently used in
practice [13-18], but to our knowledge, have never been
discussed in the context of improving survey response
rates by varying the testing options. In this paper, we
propose such an estimator and study its analytical prop-
erties. First, we discuss testing consent rates in HIV
prevalence estimation surveys and give examples of when
non-response bias is an issue in such surveys.We then dis-
cuss how to implement a new pooled testing strategy and
propose an estimator for prevalence based on this test-
ing strategy, assuming perfect sensitivity and specificity
of the test. We present results from a simulation study
examining small sample properties of this estimator and
illustrating the importance of pool size choice in such a
survey design.

Missingness in HIV prevalence estimation surveys
Surveys designed to estimate HIV prevalence can have low
testing consent rates, and test refusal is potentially asso-
ciated with risk of HIV infection. Depending on what is
driving test refusal in the population, missingness in a
sample may induce bias in the estimator of prevalence
[4]. Reviews of national HIV prevalence surveys have con-
cluded that, while those who refuse testing may have a
higher HIV prevalence, bias induced by missingness is
usually negligible because response rates are on average
sufficiently high [2,3]. However, the authors make strong
assumptions about missingness patterns in the survey
and also reference many surveys in which response rates
are low enough that it is difficult to believe that bias in
prevalence estimators is negligible. For instance, the HIV
testing consent rate is 62.2% in men and 68.2% in women
in the most recent national South African survey [19],
and consent rates are even lower in the longitudinal HIV
surveillance survey in rural KwaZulu Natal, South Africa,
described in [20].
A taxonomy of the types of patterns of missingness

is useful for analysis [21]. When missingness is at ran-
dom, survey calibration techniques (such as weight-class
adjustments, poststratification, and imputation) allow for

adjustment of prevalence estimators to remove bias [22].
All such methods depend on the assumption of missing
at random, which states that conditional on covariates,
the outcome of interest (HIV status) is independent of the
missingness mechanism (test refusal). Many studies have
shown that HIV test results are not missing completely at
random (see [7] and references within); further, assum-
ing missingness is at random is a strong and untestable
assumption.
When asking individuals to consent to HIV testing,

regardless of how much covariate information is available
on these individuals, one could reasonably infer that miss-
ingness is nonignorable, is associated with disease status,
and cannot be completely explained by individual charac-
teristics. For instance, individual covariate information is
likely to be unreliable or sparse when dealing with sensi-
tive topics, such as risky sexual behavior, fidelity, or drug
use [23]. Sensitive issues such as partaking in risky sex-
ual behavior are of course associated with HIV status, and
studies suggest that there are inconsistencies in reporting
of sexual behavior in Demographic Health Surveys (DHS)
[24,25]. Further, using DHS data from Zambia, one recent
study concluded that models based on observed covari-
ates (i.e. assume missingness is at random) are insufficient
to correct for selection bias in HIV prevalence estima-
tion surveys, though this study relied on strong, untestable
modeling assumptions [26]. Such studies reiterate that
the best way to ensure unbiased prevalence estimates is
through eliminating non-response.
When missingness is not at random, the (heuristically)

most conservative range of estimates for HIV prevalence
in a sample calculates the lower bound for prevalence by
assuming that all non-responders are HIV negative and
the upper bound by assuming all non-responders are HIV
positive. Such plausibility bounds are obviously very wide
when the proportion of non-responders is high but are
also arguably the most honest bounds for our certainty
regarding the sample prevalence estimates. Specifically, if
only a fraction r of the sample responds to the survey,
the prevalence of HIV in the sample is p = rpR + (1 −
r)pN , where pR is the sample prevalence in the responders
and pN denote sample prevalence in the non-responders.
Since we only know that pN is between 0 and 1, the lower
bound for prevalence in the sample is rpR and the upper
bound is rpR + (1 − q). The width of this interval is
1 − r, illustrating the importance of maximizing r in the
presence of nonignorable missingness.
As an example, consider the 2004 DHS survey in Malawi

[27]. The overall response rate for HIV testing was 70%
in women and 63% in men. Of those interviewed by
health workers, 22% refused HIV testing; the remainder
of the non-response was driven by inability to locate
sampled individuals for testing. In the Lilongwe district,
the response rate was only 39%, with 49% of subjects
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refusing HIV testing and the rest unable to be located. The
observed prevalence of HIV for the Lilongwe district was
3.7% with 95% CI [sic] (1.0%, 6.4%), whereas the observed
prevalence in the rest of the country was 13.2% with 95%
CI [sic] (12.3%, 14.2%). The HIV prevalence estimates for
Lilongwe were deemed “implausibly low” and prevalence
was imputed for everyone in the district of Lilongwe based
on demographic information obtained in the household
survey. The imputed prevalence for the Lilongwe district
was estimated at 10.3% with 95% CI [sic] (9.3%, 11.3%).
Consider the conservative plausibility bounds men-

tioned above for the Lilongwe district. There were 500
individuals eligible for HIV testing in the district of
Lilongwe, but only 193 of those eligible consented to HIV
testing. Based on this information, we deduce that about
seven out of the 193 consenters were HIV positive. If we
assume all 307 non-consenters were HIV negative, a lower
bound for HIV prevalence is 1.4% with 95% CI (0.4%,
2.4%); likewise, if we assume all 307 non-consenters were
HIV positive, an upper bound for HIV prevalence is 62.8%
with 95% CI (58.6%, 67.0%). By taking the lower con-
fidence bound when we assume all non-responders are
HIV negative and the upper confidence bound when we
assume all non-responders are HIV positive, we can obtain
the most conservative plausibility bounds at the 95% con-
fidence level. In the Lilongwe case, the heuristic “plausi-
bility bounds” for the prevalence of HIV are (0.4%, 67.0%),
which now includes the national prevalence estimate for
HIV in Malawi. While no one would ever present such
wide plausibility bounds, these extreme bounds show the
true amount of certainty we have when we know nothing
about non-responders. The Lilongwe example illustrates
the dangers of high non-response in an HIV prevalence
estimation survey.
In many HIV prevalence surveys, non-response rates

may be modest, and missing at random corrections will
suffice for producing nearly unbiased HIV prevalence esti-
mates. For instance, [3] list nonresponse rates by country
and sex for DHS/AIS surveys; response rates exceeded
90% for both males and females in the Rwanda and
Cambodia 2005 AIS surveys. Many other countries also
retained high testing rates. However, in locations such
as Malawi and South Africa, where prevalence and non-
response are both high, alternative testing strategies are
a viable tool for decreasing non-response and improving
prevalence estimates.

Testing logistics and pool size
In standard HIV testing surveys, individuals are only asked
to consent to an HIV test once. Using a pooled test-
ing option, we offer two opportunities to consent to HIV
testing. For those who select the non-identifiable pooled
testing option, individual blood samples are pooled with
k − 1 other blood samples (k > 1), and only the test

result of the pool is known to anyone.We delay discussion
about appropriate choice of k to below. Though we antici-
pate that some will still refuse both individual and pooled
HIV testing, the intent is to lower missingness in the sam-
ple (and the associated inherent bias in the estimator) by
including individuals who refuse individual testing but are
willing to provide a sample for pooled testing.We propose
a combined individual and pooled testing prevalence esti-
mator, for which privacy is preserved but prevalence can
be estimated more accurately than when using only those
willing to submit to individual testing.
Many possibilities exist for adapting testing protocols to

include a pooled testing option. For instance, participants
could first be asked to take a rapid test and learn their
status; alternatively, standard ELISA blood tests could be
administered, with the option of obtaining results at a
later date. For those who were not interested in either
method of individual testing, the pooled testing option
would be explained. A simple illustration of how pooling
works might aid in understanding how the protocol works
(for instance, pouring together vials of different colored
water into a cup).
Preserving privacy of the pooled testers is a primary

concern in our protocol. If a pool tests negative, we know
the test results of individuals in the pool (negative) within
the bounds of the sensitivity of the testing kit. Presumably,
individuals are not as concerned with the confidentiality
and identifiability of negative test results, and we are not
concerned with this situation. If a pool tests positive, indi-
vidual test results in the positive pool are non-identifiable
for pools of size 2 or bigger. Of course, the issue of trust is
important; those carrying out the survey need to convince
those surveyed that their privacy requests be respected
if we wish to lower the refusal rate as much as possible.
Furthermore, ethical non-identifiability for positive pools
may mandate larger pool sizes.
If a pool tests positive, the probability that an individual

is positive is p/(1 − (1 − p)k) in a population with preva-
lence p. For instance, when the population prevalence is
20%, the probability that an individual in a positive pool
is HIV positive is 1 when for pool size k = 1 (individual
testing), 0.56 when k = 2, 0.41 when k = 3, 0.34 when
k = 4, 0.30 when k = 5, 0.27 when k = 6, and 0.25 when
k = 7. Since the population prevalence is 20%, without
testing at all, the probability a person is infected is 20%. As
k increases, the probability that an individual tests positive
given the pool tests positive approaches the population
prevalence. Thus, as pool size and prevalence increase, we
gain less additional information about the disease status
of individuals in a pool when the pool tests positive.
However, using pool sizes that are too large decreases

accuracy of the pooled testing estimator (we further dis-
cuss the implications of pool size below). The key idea in
this confidentiality protection problem is “to balance the
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need for confidentiality protection with legitimate needs
of data users” [28]. The United States’ Federal Commis-
sion for Statistical Methodology lays out threshold rules
for identifiability of survey responses for tabular data
within U.S. Agencies; generally, at least 3-5 responses per
cell are required for non-identifiability, but this minimum
choice of responses per cell often varies with the sen-
sitivity of the information and potential for disclosure
[29]. In order to use the pooled samples, pool size must
be carefully selected by balancing the precision of the
pooled estimator with the ethical restraints imposed by
nondisclosure of individual test information.
In this paper, we consider pool sizes to be between 3 and

7. While a smaller pool size will always result in a better
estimator, pool size must be sufficiently large to protect
the confidentiality of the testers; we assume ethical limita-
tions would never mandate having a pool size larger than
7 and use this as our maximum pool size. In settings with
low prevalences and cost constraints, higher values of k
would be warranted.

Framework for combining individual and pooled
test results
To construct an estimator for HIV prevalence based on the
pooled testing strategy, we assume n individuals are ran-
domly sampled from a large population with HIV preva-
lence p. Further, we assume that the HIV test is a perfect
test, i.e. the sensitivity and specificity are 1 (we comment
further on this assumption in the Conclusion).
The sample can be partitioned into three separate

groups: 1) those who consent to testing for a disease, 2)
those who only consent to unidentifiable pooled testing,
and 3) those who refuse testing altogether. The preva-
lence in each of these three groups may differ. To estimate
prevalence, we can collapse across these partitions. For a
population with prevalence p,

p = r1p1 + r2p2 + r3p3,

where ri is the proportion of the population in testing con-
sent group i and pi is the prevalence of HIV in group i.
Individuals with i = 1 consent to individual testing, with
i = 2 consent to pooled testing only, and with i = 3 do
not consent to test.
Note that we can never know p3, the prevalence in the

non-consenters, and any estimator of p will always be
biased unless everyone consents (r3 = 0); or we adjust the
prevalence estimator based on some known and identifi-
able structure on p3, such as p3 = p2. However, we can
estimate the probability of having HIV given that one con-
sents to test, denoted pT . Conditioning on the subset of
the population who consents to some form of testing, we
define q1 as the proportion of the population who con-
sents to individual testing; and q2 as the proportion who

consents to pooled testing. We estimate HIV prevalence in
the testing consent group as pT = p1q1 + p2q2.
We estimate q1, q2, and p1 using sample quantities from

the data (e.g. q1 is the fraction of individuals who test indi-
vidually, and p1 is the fraction of the individual testers
who are HIV positive). Because of the desire to preserve
anonymity, we cannot directly calculate the fraction of
HIV positive individuals in the pooled testing popula-
tion, p2. Rather, we observe the number of pools that test
positive, denoted Z.
Among the pooled testers, we model Z using a binomial

distribution, with sample size np (the number of pools)
and proportion of positive pools pz = 1 − (1 − p2)k ,
where k is the number of samples per pool; intuitively, the
expression for pz is equivalent to 1-P(all samples in a pool
test negative). Inverting the formula for pz, it follows that
p2 = 1 − (1 − pz)1/k . Define p̂z = Z/np. We can esti-
mate the prevalence in the pooled testing population as
p̂2 = 1 − (1 − p̂z)1/k . This estimator is unbiased in large
samples [13], and, for a fixed sample size, the variance of
p̂2 increases as the pool size k increases.
We estimate pT using the sample quantities from the

data, p̂T = q̂1p̂1 + q̂2p̂2; we refer to p̂T as the com-
bined prevalence estimator. Further, p̂T is asymptotically
normally distributed with mean pT and variance:

m ∗ var(p̂T ) = q1p1(1 − p1) + q2 1
k (1 − p2)2

(
(1 − p2)−k − 1

)

+ q1q2(p1 − p2)2,

where m is the total number of testing individuals in
the sample. For more details, see Appendices 3-6 in
Additional file 1. We can obtain a variance estimate
for p̂T , ˆvar(p̂T ), by plugging in the sample estimates
into the above equation. Therefore, we can define a
100(1 − α)% Wald-type confidence interval for p̂T as
p̂T ± z1−α/2

√ ˆvar(p̂T ).

Comparing testing strategies with large sample
sizes
To assess the properties of our combined testing strat-
egy (assuming a perfect test), we consider relative low,
moderate, and high population prevalence settings where
individual testing consent rates are low. In the low preva-
lence setting, we assume the prevalence in the individual
testers is 5% and the prevalence in the pooled testers
is 10%; in the moderate setting, prevalence in individual
testers is 15% and in pooled testers is 20%; and in the high
prevalence setting, prevalence in the individual testers is
20% and in the pooled testers is 30%. These settings are
important to keep in mind and are referenced throughout
the paper as the low, moderate, and high prevalence set-
tings. We assume that the sub-population that consents
to individual testing constitutes 60% of the total testing
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population and the sub-population that will only con-
tribute a sample for pooled testing constitutes 40% of the
population.
We contrast the combined pooling and individual

testing estimator with alternatives using asymptotic
mean-squared error (MSE), defined as the sum of the
squared-bias and the variance of the estimator when sam-
ple sizes are large. It is important to balance both precision
and accuracy when contrasting estimators, and we select
MSE because it incorporates bias and variance. Later, we
address the scenario when sample sizes are not large and
finite-sample bias can arise.
First, we contrast the combined estimator to the preva-

lence estimator resulting from only offering individual
testing. If the pooled testing option is omitted and indi-
vidual testing is the sole testing option, an estimate of
the prevalence in the population is p̂1, the estimated HIV
prevalence in the individual testing population. Assuming
for now that r3 = 0, the bias in p̂1 is p1 − p = r2(p1 − p2),
which is non-zero when p1 �= p2 and r2 �= 0. However,
even if p1 ≈ p2, the estimator using pooled samples will
usually have a smaller variance than the estimator that
does not incorporate pooled testing, as long as a sufficient
proportion of the population consents to pooled testing.
Since the combined estimator is asymptotically unbi-

ased, the asymptotic mean-squared error of the estimator
is identical to the variance of the estimator. The estima-
tor using only individual testers has MSE equal to the
sum of the variance of p̂1 and the square of the bias
of the prevalence estimator when the pooled testers are
excluded. The ratio of the MSE using the pooled strategy
versus the MSE using individuals only is always less than
one when the pool size is less than 7 for the low, moder-
ate, and high prevalence settings (Figure 1), indicating that
the combined estimator outperforms the estimator using
only individuals. Indeed, in the situations in which pooled
testers have a higher prevalence than individual testers,
the MSE ratio ranges between 0.1 and 0.4, and the com-
bined estimator provides substantial improvement over
the estimator ignoring pooled testers. Even when the
prevalence is the same in the pooled and individual test-
ing populations, the MSE ratio ranges between 0.6 and
0.85, and the combined estimator still outperforms the
individuals-only estimator.
On the other hand, only offering pooled testing to

everyone in the sample, as suggested in [12], is cheaper
than offering an individual and pooled testing option,
because fewer tests are performed. For instance, we could
design a study which only offers a pooled testing option
and estimate prevalence using the maximum likelihood
estimator for pooled samples discussed previously. The
prevalence estimator resulting from pooling everyone is
asympotitcally unbiased, because we include the entire
testing population.

Testing using the combined estimator results in a
smaller asymptotic MSE than the estimator which only
offers pooled testing (Figure 2), assuming the sample size
is the same for both estimators. The MSE for the com-
bined estimator is 10% less than the MSE for the pooled
testing only estimator in the moderate and high preva-
lence settings, with less reduction in MSE in the low
prevalence setting. The combined estimator provides an
improvement in MSE because the variance of the pooled
prevalence estimator always decreases as the pool size
decreases; intuitively, individual test results provide more
information than pooled test results on the same num-
ber of people, so providing an individual testing option
is optimal. Further, if everyone is offered pooled testing,
individual results are no longer available to those who are
interested in learning their HIV status and thus may be
unethical [30]. And lastly, the survey protocol we suggest
gives individuals two opportunities to consent to testing
(pooled or individual), rather than only asking individu-
als to test once as in the pooled-testing only design, which
could help increase consent rates. Therefore, having both
pooled and individual testing options is advantageous.

Assessing the finite sample properties of the combined
estimator
Pooling has its limitations that are a function of preva-
lence. When the prevalence is high, then, to be informa-
tive, the pools must be so small as not to have all the
pools test positive [13,31]. [18] investigate the properties
of pooled estimators in high prevalence settings. On the
other hand, to retain anonymity, the pool sizes cannot be
too small. Statistically, pooled estimators are potentially
unstable when the prevalence in the pooled-sample pop-
ulation (p2) is high or when the number of individuals
consenting to pooled testing is small.
In the case of most diseases that are not extremely

rare, such as HIV, the disease prevalence is typically high
enough that some pools will test positive, and we are not
concerned with zero pools testing positive. However, in
moderate to high prevalence settings, the probability that
all pools will test positive must also be addressed. This
probability is P(Z = np) = (1 − (1 − p2)k)np , which
decreases as np increases and/or k and p2 decrease. There-
fore, choosing a sufficiently small pool size k and obtaining
a sufficiently large number of pools np are necessary to
ensure that the estimate of the population prevalence in
the pooled testing group is reasonable. Note that the lower
bound for k is determined by how large the pools should
be to assuage concerns about identifiability of test results.
Pooled prevalence estimators are biased in finite sam-

ples [13], and consequently, p̂T is only asymptotically
unbiased (see Appendix 5 in Additional file 1). While
replacing an estimator with a jackknifed version of the
estimator typically reduces finite sample bias [32-34], in
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Figure 1 Comparing the asymptotic properties of the combined estimator to the individuals-only estimator. Ratio of the asymptotic MSE for
the combined estimator to the ratio of the asymptotic MSE for the estimator using only individuals in the low, moderate, and high prevalence
settings for two scenarios: (a) pooled testers have a higher prevalence than individual testers,m = 1000; (b) the prevalence in the pooled testers
equals that in the individual testers (this ratio is independent ofm). The combined estimator always has lower MSE than the individuals only
estimator in these settings.

simulation, we find that the jackknife estimator provides
little improvement over the original estimator (results
not shown). Other suggestions for bias correction to the
pooled prevalence estimator have been suggested [35].
For instance, in high prevalence settings, [18] propose a
double grouping estimator.
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Figure 2 Comparing the asymptotic properties of the combined
estimator to the pooling-only estimator. Ratio of the MSE for the
combined estimator to the ratio of the MSE when everyone is offered
pooled testing, as a function of pool size for the low, moderate, and
high prevalence settings when pooled testers have a higher
prevalence than individual testers. The combined estimator always
has lower MSE than the estimator where everyone is offered pooled
testing in these settings.

Burrows [31] suggests the simple estimator (subse-
quently referred to as the Burrows estimator):

p̃2 = 1 −
[
2kZ + k − 1
2knp + k − 1

]1/k
.

We can use the Burrows estimator to define a new preva-
lence estimator p̃T , which is constructed by substituting
p̃2 for p̂2 in the combined estimator. This new estimator
p̃T has much smaller finite sample bias than p̂T in small
samples. In Figure 3, we plot the percent bias in the preva-
lence estimator for p̂T and p̃T for pool size k = 7 (the
size for which we see the greatest finite-sample bias). The
original estimator p̂T always overestimates the prevalence,
with the severity of the bias decreasing as the sample size
increases. The Burrows estimator p̃T has negligible bias,
even for sample sizes as small as 100. Consequently, we
recommend using p̃T in practice rather than p̂T .
In a simulation study, we evaluate maximum pool sizes

and minimum number of pools such that the bias and
standard error of p̃T are small and the 95% Wald confi-
dence interval coverage of p̃T is near 0.95. Individuals who
do not consent to testing at all are ignored throughout the
simulations. Simulation parameters are chosen to reflect
low, moderate, and high prevalence settings which have
low testing consent rates for individuals, as described pre-
viously. We perform the simulation study for pool sizes
3, 5, and 7 (with 5,000 iterations each). Wald 95% confi-
dence interval coverage is shown in Figure 4 for the low
and high prevalence settings (the moderate setting was
similar, but results are not shown). The 95% Wald confi-
dence interval performs well for the combined estimator,
with coverage lingering around 95% for moderate sample
sizes. The confidence interval coverage drops below 60%
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Figure 3 Percent bias in the combined estimator. Percent bias in
the MLE estimator p̂T (thin lines) and the Burrows estimator p̃T (bold
lines) for pool size k = 7 as a function of sample size for low,
moderate, and high prevalence settings. Using the Burrows estimator
results in a substantial reduction in finite sample bias.

very quickly when the pooled testers are ignored. As in
the Lilongwe example, confidence intervals are misleading
when selection bias exists in the sample.
In small sample sizes for the moderate and high preva-

lence settings, the empirical standard error for the com-
bined estimator is much larger than the derived standard
error (results not shown), due to the fact that all of the
pools test positive in a substantial proportion of the sim-
ulation runs. The derived large-sample standard error is
not valid when all pools test positive, and, in such set-
tings, using the pooled prevalence estimator in practice is

not advised. Further, finite sample bias is problematic in
small sample sizes when prevalence is moderate to high.
Before using the asymptotic normality and variance for-
mula for the combined estimator, it is important to know
how many pooled testers are required for these asymp-
totics to be valid. In order to assess when the large-sample
asymptotics hold and the combined prevalence estimator
is valid, we calculate the ratio of the empirical MSE and the
asymptotic MSE (see Figure 5 for the low and high preva-
lence settings). The asymptotic MSE is described above,
and the empirical MSE is defined as the square of the aver-
age empirical bias in the combined estimator added to the
empirical variance of the combined estimator in the 5000
simulations. Since both empirical variance and bias should
be higher than the asymptotic variance and bias in finite
samples, this ratio should provide a good metric for gaug-
ing the validity of our estimator. When this ratio is less
than 1.05, we declare the estimator to be valid.
Table 1 provides suggestions as to minimum sample size

and pool size required in the low, moderate, and high
prevalence settings in order to obtain a valid estimator.We
recommend not using pool sizes over 5 (preferably 3) in
the high prevalence setting.

Conclusion
When investigators designing a disease prevalence sur-
vey anticipate high refusal rates for individual testing due
to disease stigma, offering a pooled testing option and
combining pooled and individual sample results has the
potential to improve prevalence estimates. Ideally, every-
one sampled will consent to either individual or pooled
testing. In practice, we anticipate that some individuals
will refuse to participate. In Appendix 1 in Additional file
1, we propose several potential adjustments to the preva-
lence estimator to account for the refusers. We note that
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Figure 4 Confidence interval coverage for the combined estimator. 95% confidence interval coverage for p̃T as a function of sample size
calculated using various pool sizes in the (a) low and (b) high prevalence setting as a function of the sample size.
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Figure 5Assessing theMSE of the combined estimator in simulation. Plot of the ratio of the empirical to the true MSE of the combined estimator
as a function of sample size for the (a) low and (b) high prevalence settings. When asymptotic results are valid, this ratio will be close to one.

the prevalence in the group that refuses to test altogether
cannot be estimated without making strong modeling
assumptions.
The proposed testing strategy addresses non-response

rates in high prevalence, high non-response scenarios. In
lower prevalence settings, pooled testing becomes more
efficient and higher values of k are acceptable. In set-
tings with high response rates, the combined pooled and
individual testing strategy is not recommended, as the
additional logistics and cost of implementation would
not outweigh the small increase in the accuracy of the
prevalence estimates.
We have assumed that, for a given survey, the pool size

k does not vary. In high prevalence scenarios where it
is possible that all pools might test positive, allowing k
to vary could substantially improve the pooled estimator.
For instance, [17] partition individuals by risk when form-
ing groups. The form of the estimator for the prevalence
among pooled testers would change in this setting and
would no longer have a clean form.
Acquiring blood samples for pooled testing also allows

the investigator to compare the prevalence in the indi-
vidual testing population (p1) with the prevalence in the
pooled testing population (p2). A test of the hypothesis

Table 1 Recommended sample sizes

Pool size Prevalence setting

Low Moderate High

3 50 (20) 50 (20) 150 (60)

5 100 (40) 200 (80) 700 (280)

7 200 (80) 500 (200) > 2000 (> 800)

Sample size (number of pooled testers) required for an empirical MSE/true MSE

ratio < 1.05.

that p1 = p2 is simple to construct. This hypothe-
sis test and a corresponding 95% CI for (p1 − p2) can
help determine the extent of selection bias in the sam-
ple. Evidence that the consenting and part of the refusing
populations are not different with respect to disease sta-
tus is valuable for generalizability of results to the entire
population. Note that this is an association test which
does not take any covariates into account, though the test
could be conducted within strata if sample sizes are large
enough.
Techniques have also been developed for regression

analyses of disease status on covariates when blood sam-
ples are pooled [36-39]. Future work should investigate
extending this testing strategy to facilitate regression
modeling with the individual and pooled test results.
Though we do not want to identify individuals within
pooled samples, constructing pools that are homogeneous
with respect to the covariates of interest increases the
precision of the regression coefficient estimates [36]. Non-
random missingness in covariates would likely pose an
additional complication in designing a testing strategy to
facilitate regression modeling.
Our proposed estimator above assumes a perfect test,

but extending the estimator to imperfect tests is straight-
forward, as shown in [13], insofar as sensitivity and speci-
ficity do not vary with pool size. Sensitivity and specificity
are generally high for HIV tests. However, if sensitivity
and specificity are not close to 1, the merits of this test-
ing strategy should be re-evaluated; imperfect tests can
compromise the applicability of pooled testing in high
prevalence scenarios [18]. Details about how to extend the
estimator for imperfect tests are included in Appendix 2 in
Additional file 1. Additionally, if sensitivity and specificity
are a function of the pool size, the pooled test is subject to
the ’dilution effect,’ substantially complicating prevalence
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estimation [40]. Future work should investigate extend-
ing this testing strategy to account for the dilution
effect.
Many testing protocols are currently being used in

HIV surveillance programs which aim to optimize effi-
ciency and retain anonymity. There exists an ongoing
debate about the ethics of unlinked anonymous testing
(UAT) [30,41,42]. In sentinel populations such as pregnant
women at ANC clinics, UAT without informed consent
is a commonly used protocol. Blood samples that are
obtained for routine tests are also tested for HIV with-
out any informed consent and are not linked back to the
individual in any way. As treatment becomes more avail-
able, the ethics of such testing procedures become more
questionable, and our suggested protocol requires obtain-
ing informed consent from the individual. Voluntary UAT
(or UAT with informed consent) is a much more widely
accepted testing protocol and is currently used in DHS sur-
veys. Informed consent is obtained before testing blood
for HIV, but test results are not linked back to the individ-
uals and, those who test cannot learn their disease status.
Our testing protocol bypasses any of the ethical issues
associated with UAT, as sampled individuals have three
options: 1) test as an individual and learn their disease sta-
tus, 2) test as an individual and do not learn their disease
status, or 3) submit blood for pooled testing and do not
learn their disease status.
Lastly, in selecting survey design parameters, namely

pool size and total sample size, an a priori estimate of
r2 is necessary. This proportion can be estimated by
conducting a small pilot study in the population before
the survey is conducted. In constructing our estima-
tors, we assume the data were generated from a simple
random sample. The methodology can be extended to
stratified or cluster sampling surveys, insofar as pools
are composed within the strata and a sufficient propor-
tion of the sample consents to pooled testing within
each stratum.

Additional file

Additional file 1: Appendix for “Estimating HIV prevalence from
surveys with low individual consent rates: annealing individual and
pooled samples”.
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