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Abstract
Background: There is a growing trend towards the production of "hospital report-cards" in which
hospitals with higher than acceptable mortality rates are identified. Several commentators have
advocated for the use of Bayesian hierarchical models in provider profiling. Several researchers
have shown that some degree of misclassification will result when hospital report cards are
produced. The impact of misclassifying hospital performance can be quantified using different loss
functions.

Methods: We propose several families of loss functions for hospital report cards and then develop
Bayes rules for these families of loss functions. The resultant Bayes rules minimize the expected
loss arising from misclassifying hospital performance. We develop Bayes rules for generalized 1-0
loss functions, generalized absolute error loss functions, and for generalized squared error loss
functions. We then illustrate the application of these decision rules on a sample of 19,757 patients
hospitalized with an acute myocardial infarction at 163 hospitals.

Results: We found that the number of hospitals classified as having higher than acceptable
mortality is affected by the relative penalty assigned to false negatives compared to false positives.
However, the choice of loss function family had a lesser impact upon which hospitals were
identified as having higher than acceptable mortality.

Conclusion: The design of hospital report cards can be placed in a decision-theoretic framework.
This allows researchers to minimize costs arising from the misclassification of hospitals. The choice
of loss function can affect the classification of a small number of hospitals.

Background
Public reporting of comparative health care performance
by hospitals is part of current public policy in a range of
jurisdictions. Several jurisdictions have released public
report cards comparing hospital or physician-specific out-
comes. California [1], Pennsylvania [2], Scotland [3], and
Ontario, Canada [4] have released hospital-specific

reports for mortality following admission for acute myo-
cardial infarction (AMI). New Jersey [5], New York [6],
Pennsylvania [7], and Massachusetts [8] have published
hospital and surgeon-specific mortality rates following
coronary artery bypass graft (CABG) surgery, while
Ontario has published hospital-specific mortality rates
[9].
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It has been suggested that there are two main goals behind
public reporting [10]. The first is providing information
that can guide purchasing decisions by individual con-
sumers or group purchasers such as employers or health
maintenance organizations (HMOs). The alternative
rationale for public performance reporting is to identify
hospitals that require investment in quality improvement
initiatives. Implicit in this theoretical framework for hos-
pital report cards is the ability to identify hospitals from
which one does not want to seek care, or that require
investment in quality improvement initiatives. Further-
more, it implies that we are interested not just in a point
estimate of a hospital's mortality rate or relative ranking,
but in making a decision about whether to seek care from
that hospital or about whether to invest in quality
improvement initiatives at that hospital. Normand and
Shahian discuss statistical and clinical issues related to
provider profiling [11].

Several authors have demonstrated that even if perfect
risk-adjustment was possible, random error will result in
some hospitals being misclassified [12-14]. Different par-
ticipants in the health care arena will place different val-
ues or costs on different types of misclassifications and on
the degree of misclassification. There are two types of mis-
classifications: false positives (hospitals that truly had
acceptably mortality but that were classified as having
unacceptably high mortality) and false negatives (hospi-
tals that truly had unacceptably high mortality but were
classified as having acceptable mortality). A health care
consumer might place higher value on information that
minimizes false negatives – they want to avoid purchasing
or receiving care from a hospital with unacceptably high
mortality. On the other hand, hospitals might put a
higher value on information that minimizes false posi-
tives – they want to avoid losing business if they are not
low performers. The same argument could be made
regarding targeting hospitals for quality improvement –
false negatives would lead to lost opportunities to invest
in quality improvement and false positives would lead to
unneeded investment in quality improvement.

Several investigators have suggested the use of Bayesian
methods in provider profiling [15-17]. Spiegelhalter et al.
used Bayesian methods to examine hospital-specific mor-
tality rates following paediatric cardiac surgery [18]. Tho-
mas et al. used an empirical Bayes model to estimate
hospital-level mortality rates for Medicare patients in the
United States [19]. Investigators have argued for these
methods since they allow profiling to be guided by medi-
cal rather than statistical standards, allow hospitals with
small caseloads to be included, eliminate regression to the
mean bias, and allow the probability of acceptable pro-
vider performance to be calculated. Recently Austin exam-
ined the reliability and validity of four different Bayesian

measures of hospital performance using Monte Carlo sim-
ulation methods [20]. Furthermore, the agreement
between four different Bayesian methods was examined
empirically [21].

Normand et al. proposed a method for provider profiling
based upon posterior tail probabilities [16]. Recently,
Austin and Brunner used Monte Carlo simulations to
assess the accuracy of posterior tail probabilities derived
from Bayesian hierarchical regression models for identify-
ing hospitals with higher than acceptable mortality [13].
In doing so, they demonstrated that the use of posterior
tail probabilities was the Bayes Rule associated with gen-
eralized 1-0 loss functions. However, beyond this initial
result, Bayes rules for more complex loss functions have
not been derived for hospitals report cards. Furthermore,
the impact of assuming different loss functions on the
identification of hospitals with higher than acceptable
mortality when Bayesian methods are employed has not
been explored in the literature.

Accordingly, the objective of the current manuscript is
two-fold. First, to develop Bayes rules for several families
of loss functions for hospitals report cards when Bayesian
hierarchical models are used. Second, to demonstrate the
impact of assuming different loss functions on the
number of hospitals identified as having unacceptably
high mortality.

Statistical model for classifying hospitals as mortality 
outliers
In this study, we used methods for provider profiling
based on a Bayesian hierarchical regression model. Let pij
denote the probability of mortality for the ith patient
treated at the jth hospital. Furthermore, let Xij denote the
illness severity of this patient, which was assumed to be
centered around the cohort average. Then the following
model describes the relationship between mortality and
illness severity:

logit(pij) = β0j + β1jXij,

In this model, it is assumed that , the hospital-spe-

cific vector of regression coefficients followed a multivar-
iate normal distribution:

 . Here, β0j denotes

the hospital-specific log-odds of death for an average

patient, β1j denotes the hospital-specific regression slope

relating illness severity to the log-odds of death, and
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 denotes the variance-covariance matrix for

the hospital-specific random effects. β0 denotes the mean

hospital-specific log-odds of mortality for a patient, with
average disease severity, in the population of hospitals.

Finally, β1 denotes the mean hospital-specific slope relat-

ing illness severity and the log-odds of mortality, in the
population of hospitals.

Bayes Rules for provider profiling
In this section, we develop Bayes rules for specific cost
functions. The resultant Bayes rules minimize the poste-
rior expected cost due to incorrectly classifying hospital
performance.

Notation

Let π (θ, X) denote the prior distribution of the parameter

θ, which denotes an individual hospital's random inter-

cept. Let βthresh denote the threshold for defining accepta-

ble quality of care. Then θ0 = {θ |θ <βthresh} denotes the

space of random effects that define hospitals with accept-

able mortality, and  denotes the space

of random effects that define hospitals with unacceptably

high mortality. Our definition of profiling is based on θ =

β0j, the hospital-specific random intercept, which denotes

the hospital-specific log-odds of death for an average
patient in the population of patients. We exclude the ran-

dom slopes, β1j, from the definition of mortality outliers

due to a lack of consensus on how to identify performance
outliers using both random intercepts and random slopes.
Furthermore, the intercept has a readily understandable
interpretation that is related to mortality. As discussed by

Gajewski et al., the choice of βthresh is primarily a clinical,

rather than a statistical, decision [22]. For instance, the

choice of βthresh can be informed by expert opinion as to

what constitutes acceptable mortality for an average AMI
patient.

Let the decision rule d be 1 if one decides that the hospital
has poor performance and 0 if one decides that the hospi-
tal has acceptable performance. Then, we define a general
loss function

L(θ, d) = f1(θ)dI(θ <βthresh) + f2(θ)(1-d)I(θ > βthresh)

Here dI(θ <βthresh) denotes a false positive: classifying a
hospital as having higher than acceptable mortality when
in reality it has acceptable mortality. f1(θ) is the cost

occurred for false positives. Similarly, (1-d)I(θ > βthresh)
denotes a false-negative: classifying a hospital as having
acceptable performance when in reality it has poor per-
formance. f2(θ) is the cost occurred for false negatives. In
the above, I denotes the indicator function that takes the
value 1 if the condition is true and 0 otherwise. Let H0
denote the null hypothesis that the hospital has an accept-
able mortality rate. In the following sections, we shall
derive Bayes rules for different families of cost functions.

Identifying Bayes Rules
Let R(x, d = 0) denote the cost associated with deciding
that the hospital has acceptable mortality, while R(x, d =
1) denotes the cost associated with deciding that the hos-
pital has unacceptably high mortality. Then

R(x, d = 0) = ∫ f2(θ)I(θ > βthresh)π (θ |x)dθ

and

R(x, d = 1) = ∫ f1(θ)I(θ <βthresh)π (θ |x)dθ

In each case, the integral is over the space of the random
effects. Then, to minimize cost, we reject H0 only if R(x, d
= 1) <R(x, d = 0). A decision is said to be optimal if it min-
imizes the posterior expected loss under a specified loss
function [23,24].

Cost functions
We consider three different families of loss functions. The
first is the family of generalized 1-0 loss functions. The
second is the family based on absolute error loss func-
tions, while the third is based on squared error loss.
Within each family, we consider symmetric and asymmet-
ric loss functions. Among the set of asymmetric loss func-
tions, we will consider loss functions that penalize false
positives more heavily than false negatives, and loss func-
tions that penalize false negatives more heavily than false
positives. Symmetric loss functions penalize false posi-
tives and false negatives equally.

Generalized 1-0 loss functions
In this section, we assume a generalized 1-0 loss function.
Let H0 denote the null hypothesis that the hospital deliv-
ers acceptable quality care, cI be the penalty associated
with a type I error, and cII be the penalty associated with a
type II error. Then the loss function for generalized 1-0
loss is

cI dI(θ <βthresh) + cII (1-d)I(θ > βthresh)

In an earlier paper, Austin and Brunner derived Bayes
rules for generalized 1-0 loss functions [13]. It was shown
that to minimize risk, we reject H0 only if
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Here P0 is the optimum posterior tail probability. Thus,
the use of a generalized 1-0 loss function results in a Bayes
Rule based on posterior tail probabilities. For instance, if
cI = cII = 1, then P0 = 0.5. Thus, the use of a 1-0 loss function
results in a Bayes Rule that says that a hospital should be
classified as having unacceptably high mortality if the
posterior tail probability that the hospital-specific ran-
dom intercept exceeds the threshold of acceptable care
with a probability of at least 0.5. The reader is referred to
the original article for greater details. One should observe
that this result is independent of the distribution of the
random effects and of the prior distributions.

We re-express the generalized 1-0 loss function as follows
for consistency with the subsequent sections:

dI(θ <βthresh) + k(1-d)I(θ > βthresh)

Here  denotes the relative loss incurred by false

negatives compared to that incurred by false positives. We
now derive the Bayes rules as an expectation so as to main-
tain consistency with subsequent sections.

Similarly,

Then,

We have now expressed the Bayes Rule for a generalized 1-
0 loss function as an expectation of a function of the
model parameters and the cost penalty for false negatives.

These Bayes rules can be evaluated using Markov Chain
Monte Carlo (MCMC) methods. To do so, for each hospi-

tal, one evaluates the expression  at

each iteration of the MCMC simulation. One then deter-
mines the expectation or mean of this quantity over all the
iterations of the MCMC simulations. If the mean of this
quantity is larger than zero, the hospital is classified as a
high-mortality outlier. If the mean of the quantity is less
than zero, the hospital is classified as a low-mortality out-
lier.

Generalized absolute error loss functions

Let H0 denote the null hypothesis that the hospital deliv-
ers acceptable quality care. Let βthresh denote the threshold
that denotes acceptable quality of care, and let θ denote a
given hospital's log-odds of death for an average patient.
We define d = 1 to be the decision that a hospital has
unacceptably high mortality, while d = 0 is the decision
that a hospital has acceptable mortality. We then define
the following loss function:

|θ - βthresh |dI(θ <βthresh) + k|θ - βthresh | (1-d)I(θ > βthresh)

In this loss function, the penalty for misclassification is a
linear function of the absolute difference between the
threshold for acceptable mortality and the hospital's
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actual random effect. False negatives are penalized with a
penalty of k | θ - βthresh |, whereas false positives are penal-
ized with a penalty of | θ - βthresh |. Thus, this loss function
allows for the possibility of asymmetry. We describe it as
a generalized absolute error loss function. Then we have
that

Similarly,

Then,

The final inequality above is the Bayes Rule for a general-
ized absolute error loss function. As with the generalized
1-0 loss function, the Bayes Rule has been expressed as an
expectation of the model parameters, the threshold for
acceptable mortality, and the loss parameter k.

In the special case in which false positives and false nega-
tives are penalized equally, which corresponds to allow-
ing k to be 1 in the above formulas, the Bayes Rule reduces
to:

E [(θ - βthresh)I(βthresh - θ)] + E [(θ - βthresh)I(θ - βthresh)] > 0 ⇔

E [(θ - βthresh)(I(βthresh - θ)] + I(θ - βthresh))] > 0 ⇔

E [θ - βthresh] > 0

Therefore, in the case of symmetric linear loss, the result-
ant Bayes rule is that a hospital is classified as a high-mor-
tality outlier if and only if the posterior mean of the

hospital random intercept parameter is greater than the
chosen threshold.

As with generalized 1-0 loss, these Bayes rules can be eval-
uated using Markov Chain Monte Carlo (MCMC) meth-
ods. To do so, for each hospital, one evaluates the
expression (θ - βthresh)I(βthresh - θ)] + kE [(θ - βthresh)I(θ -
βthresh)] at each iteration of the MCMC simulation. One
then determines the expectation or mean of this quantity
over all the iterations of the MCMC simulations. If the
mean of this quantity is larger than zero, the hospital is
classified as a high-mortality outlier. If the mean of the
quantity is less than zero, the hospital is classified as a
low-mortality outlier.

Generalized squared error loss functions

Let βthresh and θ be as above. We define the following loss
function:

(θ - βthresh)2dI(θ <βthresh) + k(θ - βthresh)2(1 - d)I(θ > βthresh)

In this loss function, the penalty for misclassification is a
quadratic function of the difference between the thresh-
old for acceptable mortality and the hospital's actual ran-
dom effect. False negatives are penalized with a penalty of
k(θ - βthresh)2, whereas false positives are penalized with a
penalty of (θ - βthresh)2. Thus, this loss functions allows for
the possibility of asymmetry. Then

Similarly,
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The final inequality above is the Bayes Rule for a general-
ized squared error loss function. In the special case in
which false positives and false negatives are penalized
equally, which corresponds to allowing k to be 1 in the
above formulas, the Bayes Rule reduces to:

E [(θ - βthresh)2(I(θ > βthresh)] - I(θ <βthresh))] > 0

As with generalized 1-0 loss and generalized absolute
error loss, this decision rule can be computed using
Markov Chain Monte Carlo (MCMC) methods.

Case study
In this section we apply the Bayes rules derived above to a
specific dataset to examine the impact of assuming differ-
ent loss functions on the identification of hospitals with
unacceptably high mortality.

Data sources
We used data on all 19,757 patients discharged from hos-
pital with a most responsible diagnosis of acute myocar-
dial infarction (AMI) between April 1, 2000 and March
31, 2001 from the 163 acute care hospitals in Ontario,
Canada that treated at least 1 AMI patient during the 12
month period. Creation of this dataset is described in
detail elsewhere [4,25].

Adjustments for differences in case-mix were done using
the Ontario AMI mortality prediction rule for 30-day mor-
tality, whose derivation and validation are described else-
where [26]. The variables comprising the prediction rule
consisted of age, gender, cardiac severity (e.g., congestive
heart failure, cardiogenic shock, arrhythmia, and pulmo-
nary edema), and comorbid status (e.g., diabetes mellitus
with complications, stroke, acute and chronic renal dis-
ease, and malignancy), as derived from the ICD-9 codes
present in the 15 secondary diagnostic fields of the hospi-
talization database.

An illness severity score was derived as the predicted prob-
ability of 30-day mortality using age, gender and the 9 risk
factors and comorbidities comprising the Ontario AMI
mortality prediction rule. This method of constructing an
illness severity score has been used elsewhere [27,28]. The

illness severity scores were then standardized so as to have
mean 0 and variance 1. Thus, a patient with average dis-
ease severity had a disease severity score of 0.

Cost functions
In this case study we consider 9 different loss functions:
three generalized 1-0 loss functions, 3 generalized abso-
lute error loss functions, and 3 generalized squared error
loss functions. We used values of k of 1, 2, and 0.5. Thus,
with k = 1, false positives and false negatives are equally
penalized, with k = 2, false negatives are penalized twice
as heavily as false positives, and with k = 0.5, false posi-
tives are penalized twice as heavily as false negatives.

Acceptable mortality
In the case study, the threshold βthresh was chosen so that a
hospital is defined to have higher than acceptable mortal-
ity if the odds of death are 50% higher at this hospital
than at an average hospital, which is consistent with anal-
yses described by Normand et al. [16]. Therefore, βthresh =
β0 + log(1.5)

Model estimation
The following model was fit to the data:

The model was estimating using the Gibbs sampling
implementation of Markov Chain Monte Carlo (MCMC)
[29], using the BUGS software program [30]. The follow-
ing proper prior distributions were assumed:

the mean vector ,

the variance-covariance matrix

 ,

. The mean vector  was chosen based on

fitting the random effects model to OMID data from 1999
(the year prior to the data used in this case study).
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Twelve parallel MCMC chains were run starting from dif-
ferent initial values drawn from an over-dispersed distri-
bution. Each of the 12 MCMC chains was run for an initial
5,000 burn-in iterations. Each Gibbs sampler was then
monitored for an additional 10,000 iterations using a
thinning interval of 10, resulting in 1,000 iterations for
analysis from each sampler. Convergence of the Gibbs
sampler was assessed using the Gelman-Rubin criterion
for parallel runs from a Gibbs sampler [31]. The Gelman
and Rubin shrink factors for the median and 97.5th per-
centiles were all no larger than 1.01, indicating that the
parallel chains had converged. All analyses were then con-
ducted using the last 500 iterations from each of the 12
parallel chains. The 6000 sampled values (500 iterations/
chain × 12 chains) from the posterior distribution were
used for the subsequent analyses.

The MCMC estimate of each Bayes Rule for each of the
163 hospitals was determined using the 6000 samples
from the posterior distribution of the model parameters.
We then determined which hospitals were classified as
having unacceptably high mortality using each of the dif-
ferent Bayes rules. This was done by evaluating the appro-
priate Bayes Rule at each iteration of the Gibbs sampler
using the current sample from the posterior distribution.
The posterior expectation was computed using the mean
of these sampled values from the posterior distribution. If
the posterior mean was greater than zero, then the hospi-
tals was classified as having unacceptably high mortality.

Results
The number of hospitals classified as having unacceptably
high mortality ranged from a low of 1 to a high of 8,
depending on which loss function was used.

When false positives and false negatives were equally
penalized (k = 1 in the associated loss function), then
three hospitals (hospitals A, B, and C) were classified as
having unacceptably high mortality, regardless of whether
1-0 loss, absolute error loss, or squared error loss was
employed.

When false positives incurred twice the penalty that false
negatives incurred (k = 0.5 in the loss functions), then
only one hospital (hospital A) was classified as having
unacceptably high mortality when 1-0 loss and absolute
error loss were employed. However, when squared error
loss was employed, two hospitals were classified as having
unacceptably high mortality (hospitals A and B).

When false negatives incurred twice the penalty that false
positives incurred (k = 2 in the loss functions), then the
number of hospitals classified as having unacceptably
high mortality was either 4, 5, or 8, depending on the loss
function employed. When generalized 1-0 loss was used,

then eight hospitals (hospitals A, B, C, D, E, F, G, and H)
were classified as having higher than acceptable mortality.
When absolute error loss was used, then 5 hospitals (hos-
pitals A, B, C, D, and E) were classified as having higher
than acceptable mortality. Finally, when squared error
loss was used, then four hospitals (hospitals A, B, C, and
E) were classified as having unacceptably high mortality.

One hospital (hospital A) was classified as having unac-
ceptably high mortality in all 9 analyses. In examining
these results, one could conclude that hospital A would be
classified as having unacceptably high mortality by all
participants in the health care system.

For a given family of loss functions (generalized 1-0 loss
family; generalized absolute error loss family; generalized
squared error loss), the largest number of hospitals were
classified as having unacceptably high mortality when
false negatives were penalized more heavily than false
positives (scenarios with k = 2) than when either false pos-
itives were penalized more heavily than false negatives (k
= 0.5) or when false negatives and false positives were
equally penalized (k = 1). Similarly, penalizing false neg-
atives and false positives equally (k = 1) resulted in the
identification of at least one additional high-mortality
hospital compared to when false positives were penalized
more heavily than false negatives (k = 0.5), regardless of
which family the loss function came from (generalized 1-
0 loss family; generalized absolute error loss family; gen-
eralized squared error loss).

In Figure 1, we depict the posterior distribution of the ran-
dom intercepts for each of the 163 hospitals in the sam-
ple. The posterior distribution of the random effects for
the 155 hospitals that were not classified as high-mortal-
ity outliers under any of the loss functions are depicted
using dotted lines. The posterior distribution of the ran-
dom effects for the 8 hospitals that were classified as high-
mortality outliers under at least one loss function are
depicted using heavy solid lines. We have added a solid
vertical line to depict the posterior mean of the threshold
for defining unacceptable high mortality (β0 + log(1.5)),
along with dashed vertical lines depicting the end points
of the 95% credible interval for this threshold. In Figure 2,
we display the posterior distribution of the random inter-
cepts for the eight hospitals that were classified as high-
mortality outliers using at least one loss function. One
notes that of the eight hospitals that were classified as
high-mortality outliers at least once, those hospitals that
were identified as such more frequently tend to have pos-
terior distributions that are shifted further to the right
compared to hospitals that were identified less frequently.

For comparative purposes, model-based indirect stand-
ardization was used to identify hospitals that had higher
Page 7 of 11
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than expected mortality [32]. This method has been used
in several cardiovascular hospital report cards [2,4,7,9].
The logistic regression model adjusted for the 11 demo-
graphic and clinical variables contained in the Ontario
AMI mortality prediction model that was described above.
For each hospital, the ratio of observed to expected mor-
tality (O/E ratio) was determined. Those hospitals whose
O/E ratio was significantly higher than 1 were classified as
having higher than expected mortality. Using this proce-
dure, 15 out of the 169 hospitals were classified as having
higher than expected mortality (hospitals A to H, in addi-
tion to seven other hospitals). Model-based indirect
standardization identified substantially more hospitals as
being performance outliers than did the Bayesian hierar-
chical method using any of the different cost functions.

Discussion
There is a growing interest in the publication of health
care report cards in which the outcomes of medical or sur-
gical care are compared across hospitals or physicians.
Several commentators have advocated for the use of Baye-
sian hierarchical models in provider profiling. In the cur-
rent study we developed Bayes rules for identifying

hospitals with higher than acceptable mortality when
Bayesian hierarchical regression models are employed.
We adapted three of the most commonly used loss func-
tions (generalized 1-0 loss functions; absolute error loss;
squared error loss) to the setting of provider profiling.
Each of the Bayes rules that we derived was based on the
posterior expectation of a function of the model parame-
ters, the threshold for acceptable mortality, and the cost
function being larger than zero. The posterior expectation
of each of these functions can be calculated using MCMC
methods. We illustrated our findings on a sample of
19,757 patients hospitalized with an AMI at 163 hospitals
in Ontario. We found that the number of hospitals iden-
tified as having unacceptably high mortality was affected
by the relative penalty assigned to false negatives com-
pared to false positives. The choice of family of loss func-
tion tended to have less of an impact on which hospitals
were classified as having higher than acceptable mortality
compared to the choice of the relative penalty for false
negatives compared to false positives.

The Bayes Rules for estimating parameters for generalized
1-0 loss functions, for squared error loss, and for absolute

Posterior distributions of the hospital-specific random intercepts at the 163 hospitalsFigure 1
Posterior distributions of the hospital-specific random intercepts at the 163 hospitals.
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error loss are well known [24]. The latter two Bayes Rules
are the mean and median of the sampled values, while the
Bayes Rule for the first is the ratio of one cost of misclassi-
fication to the sum of the two costs of misclassification.
While Bayes Rules are well known for estimating simple
parameters, their use has not been explored in the context
of using hierarchical models to identify hospitals with
higher than acceptable mortality rates. In this setting, one
is not estimating a parameter, but whether a parameter
(the hospital-specific random effect) exceeds a specified
threshold. Furthermore, the Bayes Rules that we derived
for linear and quadratic loss functions are different than
those for estimating simple parameters. This illustrates
that prior results on Bayes Rules for simple parameters are
not applicable in the setting of provider profiling.

In hospital profiling it is important to be able to correctly
identify those hospitals that have unacceptably high mor-
tality rates. For reasons of patient safety, it is important
that hospitals with higher than acceptable mortality rates
be correctly identified, so that the reasons for their poor
performance can be investigated. However, it is also

important that those hospitals that truly have acceptable
mortality rates not be incorrectly identified as having
higher than acceptable mortality rates. Hospitals that are
incorrectly identified as having unacceptably high mortal-
ity rates face undue public criticism and damage to their
reputation. Furthermore, resources are needlessly wasted
in seeking to determine the reasons for the hospital's poor
performance. Additionally, closing a hospital that is
incorrectly identified as providing poor quality care can
result in patients being denied local treatment at a hospi-
tal that truly provides acceptable quality of care. In hospi-
tal profiling there is a delicate balance that must be
maintained between correctly identifying those hospitals
that truly are performance outliers and not falsely labeling
as outliers those hospitals that are not truly performance
outliers. Different participants in health care are likely to
have different perspectives on this trade-off. We have
demonstrated that the choice of loss function for quanti-
fying the cost incurred due to misclassifying hospitals can
have an impact upon which hospitals are identified as
having higher than acceptable mortality. There is a need
for all participants in the health care system; physicians,

Posterior distributions of the hospital-specific random intercepts for the 8 hospitals that were classified as high-mortality out-liers under at least one cost functionFigure 2
Posterior distributions of the hospital-specific random intercepts for the 8 hospitals that were classified as 
high-mortality outliers under at least one cost function.
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patients, administrators, and funders; to debate the trade-
offs that have been explicitly incorporated into the analy-
ses described in this study. Once this has been done,
report cards can be explicitly produced using methodol-
ogy that minimizes the cost arising from misclassification.

There is a paucity of research into developing decision-
theoretic frameworks for hospital report cards. Working
from a frequentist perspective and a simple model for hos-
pital performance, Austin and Anderson derived optimal
p-values required for classifying hospitals with higher
than expected mortality so as to minimize the expected
loss due to incorrect classification [33]. Austin and Brun-
ner used Monte Carlo simulations to determine the accu-
racy of posterior tail probabilities, as measured using
sensitivity and specificity, for identifying hospitals with
higher than acceptable mortality [13]. In doing so, they
demonstrated that the Bayes rules for generalized 1-0 loss
functions were based on posterior tail probabilities. How-
ever, beyond this initial result, Bayes rules had not been
developed for other, more realistic loss functions. In our
case study, we found that the choice between generalized
1-0 loss, absolute error loss, and squared error loss had
minimal impact upon which hospitals were identified as
having unacceptably high mortality.

In conclusion, we have explicitly developed Bayes rules
for several families of loss functions when Bayesian hier-
archical regression models are used to identify hospitals
with unacceptably high mortality. We also examined the
impact of assuming different loss functions on the
number of hospitals that are identified as having unac-
ceptably high mortality.

Conclusion
The design of hospital report cards can be placed in a deci-
sion-theoretic framework. This allows researchers to min-
imize costs arising from the misclassification of hospitals.
The choice of loss function can affect the classification of
a small number of hospitals. We found that the number
of hospitals classified as having higher than acceptable
mortality is affected by the relative penalty assigned to
false negatives compared to false positives. However, the
choice of loss function family had a lesser impact upon
which hospitals were identified as having higher than
acceptable mortality.
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