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Abstract
Let Q(x) = Q(x1, x2, . . . , xn) be a nonsingular quadratic form with integer coefficients,
n be even. Let V = VQ = Vp2 denote the set of zeros of Q(x) in Zp2 , p be an odd prime,
and |V| denote the cardinality of V . In this paper, we are interested in giving an upper
bound of the number of integer solutions of the congruence Q(x)≡ 0 (mod p2) in
small boxes of the type {x ∈ Zn

p2
|ai ≤ xi < ai +mi , 1≤ i ≤ n} centered about the

origin, where ai ,mi ∈ Z, and 0 <mi < p2 for 1≤ i ≤ n.
MSC: 11E04; 11E08; 11E12; 11P21
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1 Introduction
Let Q(x) =Q(x,x, . . . ,xn) =

∑
≤i≤j≤n aijxixj be a quadratic form with integer coefficients

in n-variables, andV = Vp (Q) the algebraic subset ofZn
p defined by the equationQ(x) = .

When n is even, we let �p(Q) = ((–)n/ detAQ/p) if p � detAQ and �p(Q) =  if p|detAQ,
where (·/p) denotes the Legendre-Jacobi symbol and AQ is the n × n defining matrix for
Q(x). Our interest in this paper is in the problem of finding points in V with the variables
restricted to a box of the type

B =
{
x ∈ Zn

p |ai ≤ xi < ai +mi, ≤ i ≤ n
}
, ()

where ai,mi ∈ Z, and  <mi < p for  ≤ i ≤ n. Consider the congruence

Q(x) ≡ 
(
mod p

)
. ()

The final result of this paper is stated in the following theorem.

Theorem  Suppose n is even, Q is nonsingular (mod p), and Vp,Z = Vp,Z(Q) is the set of
integer solutions of the congruence (). Then for any box B of type () centered about the
origin, if �p =±,

|B ∩Vp | ≤ γn

( |B|
p

+ pn
)
, ()
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where the brackets | | are used to denote the cardinality of the set inside the brackets, and

γn =

⎧⎨
⎩
n( + (n/)+

p ), � = –,

n( + (n/)+), � = +.

We shall devote the rest of Section  to the proof of Theorem . If V is the set of zeros
of a ‘nonsingular’ quadratic form Q(x) (mod p), then one can show that

|V ∩B| = |B|
p

+O
(
pn/(logp)n

)
, ()

for any box B (see []). It is apparent from () that |V ∩B| is nonempty provided

|B| � p(n/)+(logp)n.

For any x, y in Zn
p , we let x · y denote the ordinary dot product, x · y = ∑n

i= xiyi. For any
x ∈ Zp , let ep (x) = eπ ix/p .We use the abbreviation

∑
x =

∑
x∈Zn

p
for complete sums. The

key ingredient in obtaining the identity in () is a uniform upper bound on the function

φ(V ,y) =

⎧⎨
⎩

∑
x∈V ep (x · y) for y �= ,

|V | – p(n–) for y = .
()

In order to show that B ∩V is nonempty we can proceed as follows. Let α(x) be a com-
plex valued function on Zn

p such that α(x) ≤  for all x not in B. If we can show that∑
x∈V α(x) > , then it will follow that B ∩ V is nonempty. Now α(x) has a finite Fourier

expansion

α(x) =
∑
y

a(y)ep (y · x),

where

a(y) = p–n
∑
x

α(x)ep (–y · x),

for all y ∈ Zn
p . Thus

∑
x∈V

α(x) =
∑
x∈V

∑
y

a(y)ep (y · x)

=
∑
y

a(y)
∑
x∈V

ep (y · x)

= a()|V | +
∑
y �=

a(y)
∑
x∈V

ep (y · x).

Since a() = p–n
∑

x α(x), we obtain

∑
x∈V

α(x) = p–n|V |
∑
x

α(x) +
∑
y �=

a(y)φ(V ,y), ()
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where φ(V ,y) is defined by (). A variation of () that is sometimes more useful is

∑
x∈V

α(x) = p–
∑
x

α(x) +
∑
y

a(y)φ(V ,y), ()

which is obtained from () by noticing that |V | = φ(V ,) + p(n–), whence

∑
x∈V

α(x) = a()
[
φ(V ,) + p(n–)

]
+

∑
y �=

a(y)φ(V ,y)

= pn–a() +
∑
y

a(y)φ(V ,y).

Equations () and () express the ‘incomplete’ sum
∑

x∈V α(x) as a fraction of the ‘com-
plete’ sum

∑
x α(x) plus an error term. In general |V | ≈ p(n–) so that the fractions in the

two equations are about the same. In fact, if V is defined by a ‘nonsingular’ quadratic form
Q(x) then |V | = p(n–) +O(pn). (That is, |φ(V ,)| 	 pn.)
To show that

∑
x∈V α(x) is positive, it suffices to show that the error term is smaller in

absolute value than the (positive) main term on the right-hand side of () or (). One tries
to make an optimal choice of α(x) in order to minimize the error term. Special cases of ()
and () have appeared a number of times in the literature for different types of algebraic
setsV ; seeChalk [], Tietäväinen [], andMyerson []. The first case treatedwas to let α(x)
be the characteristic function χS(x) of a subset S of Zn

p , whence () gives rise to formulas
of the type

|V ∩ S| = p–|S| + Error.

Equation () is obtained in this manner. Particular attention has been given to the case
where S = B, a box of points in Zn

p . Another popular choice for α is to let it be a convolu-
tion of two characteristic functions, α = χS ∗ χT for S,T ⊆ Zn

p . We recall that if α(x), β(x)
are complex valued functions defined on Zn

p , then the convolution of α(x), β(x), written
α ∗ β(x), is defined by

α ∗ β(x) =
∑
u

α(u)β(x – u) =
∑
u+v=x

α(u)β(v),

for x ∈ Zn
p . If we take α(x) = χS ∗ χT (x) then it is clear from the definition that α(x) is the

number of ways of expressing x as a sum s + t with s ∈ S and t ∈ T . Moreover, (S +T)∩V
is nonempty if and only if

∑
x∈V α(x) > .

We make use of a number of basic properties of finite Fourier series, which are listed
below. They are based on the orthogonality relationship,

∑
x∈Zn

p

ep (x · y) =
⎧⎨
⎩
pn if y = ,

 if y �= ,

and they can be routinely checked. By viewing Zn
p as a Zmodule, the Gauss sum

Sp(Q,y) =
∑
x∈Zn

p

ep
(
Q(x) + y · x),

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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is well defined whether we take y ∈ Zn or y ∈ Zn
p . Let α(x), β(x) be complex valued func-

tions on Zn
p with Fourier expansions

α(x) =
∑
y

a(y)ep (x · y), β(x) =
∑
y

b(y)ep (x · y).

Then

α ∗ β(x) =
∑
y

pna(y)b(y)ep (x · y), ()

αβ(x) = α(x)β(x) =
∑
y

(a ∗ b)(y)ep (x · y), ()

∑
x

(α ∗ β)(x) =
(∑

x
α(x)

)(∑
x

β(x)
)
, ()

∑
x

∣∣(α ∗ β)(x)
∣∣ ≤

(∑
x

∣∣α(x)∣∣
)(∑

x

∣∣β(x)∣∣
)
, ()

∑
y

∣∣a(y)∣∣ = p–n
∑
x

∣∣α(x)∣∣. ()

The last identity is Parseval’s equality.

2 Fundamental identity
Let Q(x) = Q(x, . . . ,xn) be a quadratic form with integer coefficients and p be an odd
prime. Consider the congruence ():

Q(x)≡ 
(
mod p

)
.

Using identities for the Gauss sum S =
∑p

x= ep (ax + bx), one obtains the following.

Lemma  ([, Lemma .]) Suppose n is even,Q is nonsingular modulo p, and � =�p(Q).
For y ∈ Zn, put y′ = 

py in case p|y. Then for any y,

φ(V ,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn – pn– if p � yi for some i and p|Q∗(y),

–pn– if p � yi for some i and p‖Q∗(y),

 if p � yi for some i and p �Q∗(y),

–�p(n/)– + pn–(p – ) if p|yi for all i and p �Q∗(y′),

�(p – )p(n/)– + pn–(p – ) if p|yi for all i and p|Q∗(y′),

where Q∗ is the quadratic form associated with the inverse of the matrix for Q modp.

Back to (): we saw the identity

∑
x∈V

α(x) = p–
∑
x

α(x) +
∑
y �=

a(y)φ(V ,y).

Inserting the value φ(V ,y) in Lemma  yields (see []) the following.
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Lemma  (The fundamental identity) For any complex valued α(x) on Zn
p ,

∑
x∈V

α(x) = p–
∑
x

α(x) + pn
∑

p|Q∗(y)
a(y) – pn–

∑
p|Q∗(y)

a(y)

–�p(n/)–
p∑

y′ (mod p)

a
(
py′) +�p(n/)–

∑
p|Q∗(y′)

y′ (mod p)

a
(
py′). ()

3 Auxiliary lemma on estimating the sum
∑p

yi=1
a(py)

For later reference, we construct the following lemma on estimating the sum
∑p

yi a(py).
Let B be a box of points in Zn as in () centered about the origin with allmi ≤ p, and view
this box as a subset of Zn

p . Let χB be its characteristic function with Fourier expansion
χB(x) =

∑
y aB(y)ep (x · y). Let α(x) = χB ∗ χB =

∑
y a(y)ep (x · y). Then for any y ∈ Zn

p ,

a(y) = p–n
n∏
i=

sin πmiyi/p

sin πyi/p
, ()

where the term in the product is taken to bemi if yi = . In particular, if we take |yi| ≤ p/
for all i, then

a(y)≤ p–n
n∏
i=

min

{
m

i ,
(
p

yi

)}
.

Lemma  Let B be any box of type () and α(x) = χB ∗ χB(x). Suppose

m ≤m ≤ · · · ≤ml < p≤ml+ ≤ · · · ≤mn. ()

Then we have

∑
y∈Zn

p

a(py) ≤ n–lpl–n|B|
n∏

i=l+

mi.

Proof We first observe

p∑
yi=

a(py) =
p∑

yi=

p∑
xi=


pn

α(x)ep (–x · py)

=
p∑
xi=


pn

α(x)
p∑

yi=

ep(–x · y)

=
p∑
xi=

x≡ (mod p)

pn

pn
α(x)

=

pn

∑
x≡ (mod p)

α(x)

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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=

pn

∑
u∈B

∑
v∈B



u+v≡ (mod p)

≤ 
pn

n∏
i=

mi

([
mi

p

]
+ 

)
. ()

To obtain the last inequality in () we must count the number of solutions of the congru-
ence

u + v ≡  (mod p),

with u,v ∈ B. For each choice of v, there are at most
∏n

i=([mi/p] + ) choices for u. So the
total number of solutions is less than or equal to

n∏
i=

mi

([
mi

p

]
+ 

)
.

Using the hypothesis () then, continuing from (), we have

p∑
yi=

a(py)≤ 
pn

l∏
i=

mi

n∏
i=l+

mi

(
mi

p
+ 

)

≤ |B|
pn

n∏
i=l+

(
mi

p

)
≤ n–l|B|

pn–l

n∏
i=l+

mi.

The lemma is established. �

4 Proof of Theorem 1
As we mentioned before our interest in this paper is in determining the number of solu-
tions of the congruence ():

Q(x)≡ 
(
mod p

)
,

with x ∈ B, the box of points in Zn given by ():

B =
{
x ∈ Zn|ai ≤ xi < ai +mi, ≤ i≤ n

}
,

where ai,mi ∈ Z,  ≤mi ≤ p,  ≤ i ≤ n. Then |B| =∏n
i=mi, the cardinality of B. View the

box B as a subset of Zn
p and let χB be the characteristic function with Fourier expansion

χB(x) =
∑
y

aB(y)ep (x · y).

Lemma  Let p be an odd prime, Vp = Vp (Q) be the set of zeros of () in Zn
p , and B be a

box as given in () centered at the origin with all mi ≤ p. If �p = –, then

|B ∩Vp | ≤ nγ ′
n

( |B|
p

+ pn
)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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where

γ ′
n =  +

(n/)+

p
.

Proof We begin by writing (); we have the fundamental identity (mod p):

∑
x∈Vp

α(x) = p–
∑
x

α(x)+pn
p∑
yi=

p|Q∗(y)

a(y) – pn–
p∑
yi=

p|Q∗(y)

a(y)

–�p(n/)–
p∑

y′i=
a
(
py′) +�p(n/)–

p∑
y′i=

p|Q∗(y′)

a
(
py′).

Set α = χB ∗ χB =
∑

y a(y)ep (x · y). Then the Fourier coefficients of α(x) are given by
a(y) = pnaB(y) and, since B is centered at the origin, these are positive real numbers. By
Parseval’s identity we have

∑
y

∣∣a(y)∣∣ = pn
∑
y

∣∣aB(y)∣∣ =∑
y

∣∣χB(y)
∣∣ = |B|. ()

Thus, it follows from () that

pn
p∑
yi=

p|Q∗(y)

a(y)≤ pn
∑
y

∣∣a(y)∣∣ ≤ pn|B|. ()

Notice that the main term in () is

p–
∑
x

α(x) = p–
∑
x

χB ∗ χB(x) =
|B|
p

. ()

By Lemma , we have

p(n/)–
p∑

y′i=
a
(
py′) ≤ n–lpl–(n/)–|B|

n∏
i=l+

mi ()

and

p(n/)–
p∑

y′i=
p|Q∗(y′)

a
(
py′) ≤ p(n/)–

∑
y′

a
(
py′) ≤ n–lpl–(n/)–|B|

n∏
i=l+

mi, ()

where l, as defined before, is such that

m ≤m ≤ · · · ≤ml < p≤ml+ ≤ · · · ≤mn.

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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Now going back to (), if � = –, we have

∑
x∈Vp

α(x)≤ p–
∑
x

α(x)+pn
p∑
yi=

p|Q∗(y)

a(y) + p(n/)–
p∑

y′i=
a
(
py′). ()

Then, by the equality () and the inequalities in () and (), we obtain

∑
x∈Vp

α(x)≤ |B|
p

+ pn|B| + n–lpl–(n/)–|B|
n∏

i=l+

mi. ()

We next determine which of the terms |B|/p, pn|B|, and n–lpl–(n/)–|B|∏n
i=l+mi in ()

is the dominant term. We consider two cases:
Case (i): Suppose l ≤ n

 – . Then compare

n–lpl–(n/)–|B|∏n
i=l+mi

|B|/p

=


|B|p
l–(n/)n–l

n∏
i=l+

mi =
pl–(n/)n–l∏l

i=mi

≤ n–lpl–(n/) = n
(
p


)l

p–n/ ≤ n
(
p


)(n/)–

p–n/ ≤ (n/)+ · 
p
,

which implies that

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤ (n/)+

p
|B|
p

.

Case (ii): Suppose l ≥ n
 . Then compare

n–lpl–(n/)–|B|∏n
i=l+mi

pn|B|

= n–lpl–(n/)–
n∏

i=l+

mi

≤ n–lpl–(n/)–p(n–l) = n–lpn/––l ≤ n/

p
,

which leads to

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤ n/

p
pn|B|.

So for any l, always we have

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤
(
(n/)+

p
|B|
p

+
n/

p
pn|B|

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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Returning to (), we now can write

∑
x∈Vp

α(x)≤ |B|
p

+ pn|B| + n–lpl–(n/)–|B|
n∏

i=l+

mi

≤ |B|
p

+ pn|B| + (n/)+

p
|B|
p

+
n/

p
pn|B|

=
(
 +

(n/)+

p

) |B|
p

+
(
 +

n/

p

)
pn|B|

≤ γ ′
n

( |B|
p

+ pn|B|
)
, ()

where γ ′
n =  + ((n/)+/p). On the other hand,

∑
x∈Vp

α(x)≥ 
n

|B||Vp ∩B|. ()

Hence it follows by combining () and () we find that

|B ∩Vp | ≤ nγ ′
n

( |B|
p

+ pn
)
. �

Lemma  Let p be an odd prime, Vp = Vp (Q) be the set of zeros of () in Zn
p , and B be a

box as given in () centered at the origin with all mi ≤ p. If �p = +, then

|B ∩Vp | ≤ nγ ′′
n

( |B|
p

+ pn
)
,

where

γ ′′
n =  + (n/)+.

Proof If �p = +, again by (), we have

∑
x∈Vp

α(x)≤ p–
∑
x

α(x)+pn
∑
y

∣∣a(y)∣∣ + p(n/)–
∑

y (mod p)

a(py)

≤ |B|
p

+ pn|B| + n–lpl–(n/)–|B|
n∏

i=l+

mi. ()

We do a similar investigation (as before) to determine which of the terms |B|/p, pn|B|,
and n–lpl–(n/)–|B|∏n

i=l+mi of the inequality () is the dominant term. In case (i) we
find

n–lpl–(n/)–|B|∏n
i=l+mi

|B|/p ≤ (n/)+,

which means that

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤ (n/)+
|B|
p

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/290
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And in case (ii) we find

n–lpl–(n/)–|B|∏n
i=l+mi

pn|B| ≤ n//p,

which gives us that

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤
(
n//p

)
pn|B|.

Hence for any l, we always have

n–lpl–(n/)–|B|
n∏

i=l+

mi ≤
(
(n/)+

|B|
p

+
n/

p
pn|B|

)
.

Now on looking at (), one easily deduces

∑
x∈Vp

α(x)≤ (
 + (n/)+

) |B|
p

+
(
 +

n/

p

)
pn|B|

≤ γ ′′
n

( |B|
p

+ pn|B|
)
, ()

where γ ′′
n =  + (n/)+. Thus by (),

|B ∩Vp | ≤ n

|B|
∑
x∈Vp

α(x)≤ γ ′′
n 

n
( |B|
p

+ pn
)
.

This leads to the proof of the lemma. �

Proof of Theorem  This theorem follows immediately from Lemma  and Lemma  by
letting γn = nγ ′

n if � = – and γn = nγ ′′
n if � = +. Thus we see from () and () that

for � =±, one always has

|B ∩Vp | ≤ γn

( |B|
p

+ pn
)
. �
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