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1 Introduction and preliminaries

Let E be a real Banach space, and let E* be the dual space of E. Let R* be a positive real
number set. Let ¢ : [0,00] := R* — R* be a continuous strictly increasing function such
that ¢(0) = 0 and ¢(t) — oo as t — oco. This function ¢ is called a gauge function. The
duality mapping J, : E — E* associated with a gauge function ¢ is defined by

Jo@) = {f* € E*: (x,f*) = Ixllo(llxl),

7 = e(lIxll)}, VxeE,

where (-, -) denotes the generalized duality pairing. In the case that ¢(¢) = £, we write ] for
J, and call J the normalized duality mapping.

Following Browder [1], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ¢ for which the duality mapping J,(x) is single-valued and
weak-to-weak* sequentially continuous (i.e., if {x,} is a sequence in E weakly convergent
to a point x, then the sequence J,(x,) converges weakly* to J,). It is known that /¥ has a
weakly continuous duality mapping with a gauge function ¢(¢) = #?! for all 1 < p < co.

Let Ug = {x € E: ||x|| = 1}. E is said to be smooth or is said to be have a Géateaux dif-

ferentiable norm if the limit lim;_, w

exists for each x,y € Ug. E is said to have a
uniformly Gateaux differentiable norm if for each y € U, the limit is attained uniformly
for all x € Ug. E is said to be uniformly smooth or is said to have a uniformly Fréchet
differentiable norm if the limit is attained uniformly for x,y € U.

It is well known that Fréchet differentiability of the norm of E implies Gateaux differen-
tiability of the norm of E. It is known that if the norm of E is uniformly Géteaux differen-
tiable, then the duality mapping J is single-valued and uniformly norm-to-weak* contin-
uous on each bounded subset of E.

Let D be a nonempty subset of a set C. Let Proj, : C — D. Q is said to be

(1) a contraction if Proj? = Projp;
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(2) sunny if for each x € C and ¢ € (0,1), we have Proj,(tx + (1 — t) Proj, x) = Proj, «;

(3) asunny nonexpansive retraction if Proj,, is sunny, nonexpansive and a contraction.

D is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from
C onto D. The following result, which was established in [2—4], describes a characteriza-
tion of sunny nonexpansive retractions on a smooth Banach space.

Let E be a smooth Banach space, and let C be a nonempty subset of E. Let Proj : E — C
be a retraction and J, be the duality mapping on E. Then the following are equivalent:

(1) Proj is sunny and nonexpansive;

(2) || Projcx - Projeyl1® < (x - 5,J (Projc x - Projc.9)), Va, y € E;

(3) {(x—Projcx,J,(y —Proj-x)) <0,Vx € E,y € C.

It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction Proj is
coincident with the metric projection from E onto C. Let C be a nonempty closed convex
subset of a smooth Banach space E, let x € E and let xy € C. Then we have from the above
that % = Proj « if and only if (x — x9,/,(y — %9)) < 0 for all y € C, where Proj is a sunny
nonexpansive retraction from E onto C.

A Banach space E is said to be strictly convex if and only if

llll = Iyl = H(l —A)x+ky“
for x,y € E and 0 < A <1 implies that x = y.

E is said to be uniformly convex if for any € € (0,2] there exists § > 0 such that for any
x,y € U,

<1-34.

X+
lx—yll > e implies H Ty

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Let C be a nonempty closed convex subset of E. Let S : C — C be a mapping. In this
paper, we use F(S) to denote the set of fixed points of S. Recall that S is said to be nonex-
pansive iff || Sx—Sy|| < [[x—y||, Vx,y € C. For the existence of fixed points of a nonexpansive
mapping, we refer the readers to [5]. Let x be a fixed element in C, and let S be a nonexpan-
sive mapping with a nonempty fixed point set. For each ¢ € (0,1), let x; be the unique solu-
tion of the equation y = £x+ (1-£)Sy. In the framework of uniformly smooth Banach spaces,
Reich [6] proved that {x;} converges strongly to a fixed point Projg x, where Projg, is
the unique sunny nonexpansive retraction from C onto F(S), of S as ¢t — 0. Xu [7] further
extended the results to the framework of reflexive Banach spaces; for more details, see [7]
and [8] and the references therein.

Let I denote the identity operator on E. An operator A C E x E with domain D(A) = {z €
E: Az # 0} and range R(A) = [ J{Az: z € D(A)} is said to be accretive if for each x; € D(A)
and y; € Ax;, i = 1,2, there exists j(x; — x3) € J(x1 —x3) such that (y; — 5, /(%1 —x3)) > 0. An
accretive operator A is said to be M-accretive if R(I + rA) = E for all r > 0. In this paper,
we use A71(0) to denote the set of zero points of A. For an accretive operator A, we can
define a nonexpansive single-valued mapping J, : R(I + rA) — D(A) by J, = (I + rA)™! for
each r > 0, which is called the resolvent of A. Set

(1) :/ o(t)dr, VYt=0,
0
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then
Jo(x) = BCD(llxll), Vx €L,

where 9 denotes the sub-differential in the sense of convex analysis.

Zero problems of accretive operators recently have been extensively studied (see [6—21]
and the references therein) because of their important applications in real world. Proximal
point algorithm, which was proposed by Martinet [22, 23] and generalized by Rockafellar
[24, 25], is a classical method for investigating zeros of monotone operators. In this paper,
we propose two proximal point algorithms for investigating common zeros of a family of
m-accretive operators. Weak and strong convergence theorems are established in Banach
spaces.

The first part of the next lemma is an immediate consequence of the subdifferential
inequality and the proof of the second part can be found in [26].

Lemma 1.1 Assume that a Banach space E has a weakly continuous duality mapping J,
with gauge ¢.
(i) Forallx,y € E, the following inequality holds:

(e + 1) < D(llxll) + (3T (x + 3)).

In particular, for all x,y € E,
Il + y1 < llxl1® + 2{y,J (x + ).

(i) Assume that a sequence {x,} in E converges weakly to a point x € E.
Then the following identity holds:

limsup ®(||x, — yl|) = limsup ®(|lx, —x[|) + D(|ly —xll), Vx,y €E.

n—oo n— 00
Lemma 1.2 [7] Let E be a reflexive Banach space and have a weakly continuous dual-
ity map J,(x) with gauge ¢. Let C be a closed convex subset of E, and let S: C — C be a
nonexpansive mapping. Fix x € C and t € (0,1). Let x, € C be the unique fixed point of
the mapping tx + (1 — £)S. Then S has a fixed point if and only if {x,} remains bounded as
t — 0%, and in this case, {x;} converges as t — 0" strongly to a fixed point of S. Define a
mapping Projg : C — F(S) by Projp) x = lim,_, o x;. Then Projg, is the sunny nonexpan-
sive retraction from C onto F(S).

Lemma 1.3 [27] Let C be a closed convex subset of a strictly convex Banach space E. Let
N > 1 be some positive integer, and let S,, : C — C be a nonexpansive mapping. Sup-
pose that ﬂ%zl F(S,,) is nonempty. Then the mapping anlzl BimSm> where {B,,} is a real
number sequence in (0,1) such that 221[:1 Bm =1, is nonexpansive with F (Zly\é=1 BmSm) =
NN, F(Sm)-

Lemma 1.4 [28] Let {a,}, {b,} and {c,} be three nonnegative real sequences satisfying
bpn < (1-an)b,+a,c,,Yn > ny, where ny is some positive integer, {a,} is a number sequence
in (0,1) such that Zf:’no ay = 00, {¢,} is a number sequence such that limsup,_, . ¢, < 0.
Then lim,—, o a,, = 0.
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Lemma 1.5 [29] Let E be a uniformly convex Banach space, s > 0 be a positive number, and
B;(0) be a closed ball of E. There exits a continuous, strictly increasing and convex function
g:[0,00) — [0, 00) with g(0) = 0 such that

N
Z BimXm

m=1

2 N
<Y Bulxnll® - BiBog(llxs - %21))
m=1

for all x1,x;,...,x5 € Bs(0) = {x € E : ||x| < s} and B1,B2,...,8n € (0,1) such that
ZZ:I Bm =1.

Lemma 1.6 [30] Let E be a uniformly convex Banach space. Let C be a nonempty closed
convex subset of E, and let S : C — C be a nonexpansive mapping. Then I — S is demiclosed
at zero.

2 Main results

Theorem 2.1 Let E be a uniformly convex Banach space which has the Opial condition.
Let N > 1 be some positive integer, and let A,, be an M-accretive operator in E for each 1 <
m < N. Assume that ﬂjy\;zl D(A,) is convex. Let {o,} and {Bnm} be real number sequences
in (0,1), and let {r,,} be a positive real number sequence. Assume that ﬂi\n[zl A;X0) is not
empty. Let {x,} be a sequence generated in the following manner: x, € ﬂle D(A)) and

N
Xp+l = OpXy + (1 - Ol,,) Z /Sn,m]rmxm VYn>1,

m=1

where J,, = (I + rA,,) "L, Assume that the following restrictions are satisfied:

(@) O0<a<a,<b<l;

(b) an]:l Bum=land 0<c<B,,<1,
where a, b and c are real numbers. Then the sequence {x,} converges weakly to x* €
(M1 431 0).

Proof We start the proof with the boundedness of the sequence {x,}. Fixing p €
NY_ A;1(0), we find that

N
141 =PIl < aullx, = pll + (1 — o) Z/Sn,m]rmxn —-p
m=1
N
<yl = pll+ (1= 0n) Y Bumlnutn =l < l2n — .
m=1

This shows that the limit lim,,_, » ||%, — p|| exists. This implies that {x,} is bounded. Using
Lemma 1.5, we find that

N 2

Z ﬂn,m]rmxn 4

o]

N
<l —19||2 —a,(1- an)g (Z Bumll%n —]rmxn||>~

m=1

%1 = PI* < @l = plI* + (1 - )

—a,(1- ot,,)g(

N
Xy — Z ,Bn,m]rmxn
m=1
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This implies that

N
an(l—an)g<z Brum 1% —/,mxnn) < 1% = pII* = 101 = pII*.

m=1

In view of restriction (a), we find that lim,,_, o, g(Zi\n]:1 BumllXn = Jrxull) = 0. It follows
that lim,,_, o Zﬁ\nle Buml%n — Jr,, %4l = 0. Using restriction (b), we arrive at lim,,_, o ||, —
Jr%all =0 foreachm € {1,2,...,N}. Since {x,} is bounded, we see that there exists a subse-
quence {x,,} of {x,} converging weakly to x*. Using Lemma 1.6, we obtain that x* € F(J,,,).
This proves that x* € (_, A;1(0).

Next we show that {x,} converges weakly to x*. Supposing the contrary, we see that
there exists some subsequence {2} of {x,} such that {%4;} converges weakly to & € C,
where & # x*. Similarly, we can show & € (\_, A;1(0). Note that we have proved that
lim,, o ||, — p|| exists for every p € ﬂfnlzlA;nl(O). Assume that lim,_,  ||x, — x*|| = d,
where d is a nonnegative number. Since the space has the Opial condition [31], we see
that

d = liminf]x,, - x*|| <liminf }x,, — %] = liminf [lx,, - | < liminf|x,, - 2" = d.
i—00 i—00 Jj—00 j—>00

This is a contradiction. Hence x* = x. This completes the proof. d

Theorem 2.2 Let E be a strictly convex and reflexive Banach space which has a weakly
continuous duality map J,. Let N > 1 be some positive integer, and let A, be an M-accretive
operator in E for each 1 < m < N. Assume that ﬂﬁq{:l D(A;) is convex. Let {a,} and {Brm}
be real number sequences in (0,1), and let {r,,} be a positive real number sequence for each
1 <m < N. Assume that ﬂzzlA;nl(O) is not empty. Let {x,} be a sequence generated in the

following manner: x; € ﬂﬁzl D(A;) and

N
Xp+l = OpX + (1 - an) Z ﬁn,m]rmxm Vn>1,

m=1

where x is a fixed element in ﬂfnlzl D(4,,) and J,,, = (I + FAum) L. Assume that the following
restrictions are satisfied:

(@) limyooay =0, Y ooy =00andy o) ot — oty < 00;

(b) Xy B = L, 1iMyso B = Bn and 3501 | Brastom — Bram| < 00
Then the sequence {x,} converges strongly to x* = Projm%:1 A-L0)% where Projﬂﬁ{:1 A1) IS

the unique sunny nonexpansive retract from ﬂﬁzl D(A,,) onto ﬂﬁﬂ A 0).

Proof We start the proof with the boundedness of the sequence {x,}. Fixing p €
NY_ A;1(0), we find that

N

Z ,Bn,m]rmxn —P

m=1

lne1 — pll < ayllx—pll + (I-ay)

N
<ayllx=pll + A=) Y Bumllr,%n - pll

m=1

<anllx—pll + A —an)llx, - pll.
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This implies that ||x,,,; — p|| < max{|lx—p]l, |lx1 —pl|}. This shows that {x,} is bounded. Put
Yy = anle BumJr,xn. It follows that

N N
”yn _yn—l ” S Z ﬁn,m]rmxn - Z ﬁn,m]rmxn—l
m=1 m=1

+

N N
Z ,Bn,m]rmxn—l - Z lgn—l,m]rmxn—l
m=1 m=1

N
< ot = Xt + D 1B = Buctm s .

m=1
This implies that
1951 — %u |l < (1 — o) yn = -1l + laty = a1l = yu-1ll
N
< (1= %0 = %nct | + Y 1B = Busml |
m=1
+ oty — | 1% = yua -
In light of restrictions (a) and (b), we find that

lim %41 — %4 = 0. (21)
n—00

Set S = Z;{:l Bmly,,. It follows from Lemma 1.3 that S is nonexpansive with F(S) =
NN, F(,,) = NN, A;1(0). Note that

”an _xn” = ”xn _xn+1|| + ||xn+1 - an”

N
< ”xn - xn+l|| + an”x - an” + lgn Z,Bn,m]rmxn - an
m=1
N
< 1160 = Za | + 2l = Sxull + Y 1Bum = Bl .
m=1

In view of (2.1), we find from the restrictions (a) and (b) that
lim ||Sx, —x,|| = 0. (2.2)
n—00

Now, we are in a position to prove

lim sup(x - Projﬂﬁzlf\;}(o) %, J (% — Projﬂﬁ‘,ﬁ:lA;nl(o) x)) <0. (2.3)

n—00

By Lemma 1.2, we have the sunny nonexpansive retraction Proj AN, 4510 * ﬂ],\nlzl DA,,) —
ﬂZZIA;}(O). Take a subsequence {x,, } of {x,} such that

lim sup(x — PrOj a0y % (% — Projy 4-1(0)))
n—00 = m=1-"m

= ](lirgo (x - Projmfnz:1 A1) % Jo X, — Projmﬁz1 Al (0))x). (2.4)
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Since E is reflexive, we may further assume that x,, — X for some x € ﬂi\nlzl D(A,,). Since
jo is weakly continuous, we have from Lemma 1.1

limsup @ (||x,, — 1) = limsup ®(||x,, —x[|) + D(lly—xll), VyeE.

k— o0 k— o0

Put f(y) = limsup;_, o, ®(ll%,, — yIl), ¥y € E. It follows that

fO) =f® +@(ly-xl), VyeE. (2.5)
From (2.2), we have

£(S%) = lim sup @ (|1« — SxI|) = lim sup & (||Sx,,, — S|

k— 00 k— o0
< limsup <I>(||x,,k —5c||) = f(%). (2.6)
k—00
Using (2.5), we have
f(S%) =f(%) + P(|ISx - %[]). (2.7)

Combining (2.6) with (2.7), we obtain that
P(|ISx - x]) <0.

Hence Sx = x; that is, x € F(S) = ﬂi\n[zlA;nl(O). It follows from (2.4) that
h;?i S£p<x - Projm%:1 A1) % Je (#, — Proj AN 4510) x)) <0.

Finally, we prove that x,, — Projmzv?1 4:1(0) % as 1 — 00. Using Lemma 1.1, we find that

)

CD(”er-l - Projﬂ%:IA;nl(O) x”)

:@(

<(1- Oln)q)(”xn - Projﬂﬁ‘nleA;nl(o) x”)

N
(o = Proj 410 %) + (1 - ) (Z B ryn = PrOjon g x)

m=1

+ an(x - Projﬂfnfz1 A1) % Jo(Xni1 — Projﬁﬁ\”z:l A:10) x)).
Using Lemma 1.4, we see that ®(||x, — Proij_]A;nl(o) x||) = 0. This implies that
nlingo 1%, — Projm%dA;nl(O)xll =0.
This completes the proof. g

3 Applications

In this section, we give an application of Theorem 2.1 in the framework of Hilbert spaces.

Page 7 of 10
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Let C be a nonempty closed and convex subset of a Hilbert space H. Let F be a bifunction
of C x Cinto R, where R denotes the set of real numbers. Recall the following equilibrium
problem:

Find x € C such that F(x,y) >0, VyeC. (3.1)

To study the equilibrium problem (3.1), we may assume that F satisfies the following
restrictions:

(A1) F(x,x)=0forallx e C;

(A2) Fis monotone, i.e., F(x,y) + F(y,x) <0 forallx,y € C;

(A3) foreachx,y,z e C,limgyo F(tz+ (1 -t)x,9) < F(x,9);

(A4) for each x € C, y — F(x,y) is convex and lower semi-continuous.

Lemma 3.1 [32] Let F be a bifunction from C x C to R which satisfies (Al)-(A4), and let
Ar be a multivalued mapping of H into itself defined by

{ze H:F(x,y) > (y—x,2),YyeC}, x€C(C,
@, x¢C.

AF.?C:

Then Ar is a maximal monotone operator with the domain D(Ar) C C, EP(F) = A;l(O),
where EP(F) stands for the solution set of (3.1), and

Tx=(I+rAp) ', VxeH,r>0,

where T is defined by
1
Tx = {ze C:Flz,y)+-(y—z,z—x)>0,Vy € C}, Vx € H.
r

Corollary 3.2 Let C be a nonempty closed and convex subset of a Hilbert space H. Let
N > 1 be some positive integer, and let F,, : C x C — R be a bifunction satisfying (Al)-
(A4). Let {a,,} and {B,,m} be real number sequences in (0,1), and let {r,,} be a positive real
number sequence. Assume that ﬂﬁl[:l EP(F,,) is not empty. Let {x,,} be a sequence generated
in the following manner: x; € C and

N
Xp+l = OpXy + (1 - Ol,,) Z,Bn,m Trmxm Vn > 1;

m=1

where T,,, = (I + r,Af,, )"}, Assume that the following restrictions are satisfied:

(@ O<a<a,<b<l;

(b) szl Bum=land 0<c<B,,<1,
where a, b and c are real numbers. Then the sequence {x,} converges weakly to x* €
NN EP(E,).

Corollary 3.3 Let C be a nonempty closed and convex subset of a Hilbert space H. Let
N > 1 be some positive integer, and let F,, : C x C — R be a bifunction satisfying (Al)-
(A4). Let {a,,} and {B,,m} be real number sequences in (0,1), and let {r,,} be a positive real
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number sequence. Assume that ﬂi\nle EP(F,,) is not empty. Let {x,} be a sequence generated

in the following manner: x, € C and

N
KXpa1 = X + (L — ) Z ﬂn,m Trmxm Vn>1,

m=1

where x is a fixed element in C and T,, = (I + r,,Ar,, ). Assume that the following restric-
tions are satisfied:

() limyooay =0, Y o2 0, =00 and Y oo) oty — oty < 00;

(B) Yoot Buan = L it Bun = Bow and 252, Bt = Bl < 00
Then the sequence {x,} converges strongly to x* = Proj AN EPE) % where Proj A, EP(E) is

the metric projection from C onto ﬂfnle EP(F,,).
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