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1 Introduction and preliminaries
Let E be a real Banach space, and let E∗ be the dual space of E. Let R+ be a positive real
number set. Let ϕ : [,∞] := R+ → R+ be a continuous strictly increasing function such
that ϕ() =  and ϕ(t) → ∞ as t → ∞. This function ϕ is called a gauge function. The
duality mapping Jϕ : E → E∗ associated with a gauge function ϕ is defined by

Jϕ(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ϕ(‖x‖),∥∥f ∗∥∥ = ϕ

(‖x‖)}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. In the case that ϕ(t) = t, we write J for
Jϕ and call J the normalized duality mapping.
Following Browder [], we say that a Banach space E has a weakly continuous duality

mapping if there exists a gauge ϕ for which the duality mapping Jϕ(x) is single-valued and
weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in E weakly convergent
to a point x, then the sequence Jϕ(xn) converges weakly∗ to Jϕ). It is known that lp has a
weakly continuous duality mapping with a gauge function ϕ(t) = tp– for all  < p <∞.
Let UE = {x ∈ E : ‖x‖ = }. E is said to be smooth or is said to be have a Gâteaux dif-

ferentiable norm if the limit limt→
‖x+ty‖–‖x‖

t exists for each x, y ∈ UE . E is said to have a
uniformly Gâteaux differentiable norm if for each y ∈ UE , the limit is attained uniformly
for all x ∈ UE . E is said to be uniformly smooth or is said to have a uniformly Fréchet
differentiable norm if the limit is attained uniformly for x, y ∈UE .
It is well known that Fréchet differentiability of the norm of E implies Gâteaux differen-

tiability of the norm of E. It is known that if the norm of E is uniformly Gâteaux differen-
tiable, then the duality mapping J is single-valued and uniformly norm-to-weak∗ contin-
uous on each bounded subset of E.
Let D be a nonempty subset of a set C. Let ProjD : C →D. Q is said to be
() a contraction if ProjD = ProjD;

© 2014 Wang and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208525809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2014/1/282
mailto:hdwangsh@yeah.net
http://creativecommons.org/licenses/by/2.0


Wang and Li Journal of Inequalities and Applications 2014, 2014:282 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/282

() sunny if for each x ∈ C and t ∈ (, ), we have ProjD(tx + ( – t)ProjD x) = ProjD x;
() a sunny nonexpansive retraction if ProjD is sunny, nonexpansive and a contraction.
D is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from

C onto D. The following result, which was established in [–], describes a characteriza-
tion of sunny nonexpansive retractions on a smooth Banach space.
Let E be a smooth Banach space, and let C be a nonempty subset of E. Let ProjC : E → C

be a retraction and Jϕ be the duality mapping on E. Then the following are equivalent:
() ProjC is sunny and nonexpansive;
() ‖ProjC x – ProjC y‖ ≤ 〈x – y, Jϕ(ProjC x – ProjC y)〉, ∀x, y ∈ E;
() 〈x – ProjC x, Jϕ(y – ProjC x)〉 ≤ , ∀x ∈ E, y ∈ C.
It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction ProjC is

coincident with the metric projection from E onto C. Let C be a nonempty closed convex
subset of a smooth Banach space E, let x ∈ E and let x ∈ C. Then we have from the above
that x = ProjC x if and only if 〈x – x, Jϕ(y – x)〉 ≤  for all y ∈ C, where ProjC is a sunny
nonexpansive retraction from E onto C.
A Banach space E is said to be strictly convex if and only if

‖x‖ = ‖y‖ = ∥∥( – λ)x + λy
∥∥

for x, y ∈ E and  < λ <  implies that x = y.
E is said to be uniformly convex if for any ε ∈ (, ] there exists δ >  such that for any

x, y ∈UE ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex.
Let C be a nonempty closed convex subset of E. Let S : C → C be a mapping. In this

paper, we use F(S) to denote the set of fixed points of S. Recall that S is said to be nonex-
pansive iff ‖Sx–Sy‖ ≤ ‖x–y‖, ∀x, y ∈ C. For the existence of fixed points of a nonexpansive
mapping, we refer the readers to []. Let x be a fixed element inC, and let S be a nonexpan-
sive mapping with a nonempty fixed point set. For each t ∈ (, ), let xt be the unique solu-
tion of the equation y = tx+(–t)Sy. In the framework of uniformly smoothBanach spaces,
Reich [] proved that {xt} converges strongly to a fixed point ProjF(S) x, where ProjF(S) is
the unique sunny nonexpansive retraction from C onto F(S), of S as t → . Xu [] further
extended the results to the framework of reflexive Banach spaces; for more details, see []
and [] and the references therein.
Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈

E : Az = ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An
accretive operator A is said to be M-accretive if R(I + rA) = E for all r > . In this paper,
we use A–() to denote the set of zero points of A. For an accretive operator A, we can
define a nonexpansive single-valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for
each r > , which is called the resolvent of A. Set

�(t) =
∫ t


ϕ(τ )dτ , ∀t ≥ ,
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then

Jϕ(x) = ∂�
(‖x‖), ∀x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis.
Zero problems of accretive operators recently have been extensively studied (see [–]

and the references therein) because of their important applications in real world. Proximal
point algorithm, which was proposed by Martinet [, ] and generalized by Rockafellar
[, ], is a classical method for investigating zeros of monotone operators. In this paper,
we propose two proximal point algorithms for investigating common zeros of a family of
m-accretive operators. Weak and strong convergence theorems are established in Banach
spaces.
The first part of the next lemma is an immediate consequence of the subdifferential

inequality and the proof of the second part can be found in [].

Lemma . Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

�
(‖x + y‖) ≤ �

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

In particular, for all x, y ∈ E,

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
.

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.
Then the following identity holds:

lim sup
n→∞

�
(‖xn – y‖) = lim sup

n→∞
�

(‖xn – x‖) +�
(‖y – x‖), ∀x, y ∈ E.

Lemma . [] Let E be a reflexive Banach space and have a weakly continuous dual-
ity map Jϕ(x) with gauge ϕ. Let C be a closed convex subset of E, and let S : C → C be a
nonexpansive mapping. Fix x ∈ C and t ∈ (, ). Let xt ∈ C be the unique fixed point of
the mapping tx + ( – t)S. Then S has a fixed point if and only if {xt} remains bounded as
t → +, and in this case, {xt} converges as t → + strongly to a fixed point of S. Define a
mapping ProjF(S) : C → F(S) by ProjF(S) x := limt→ xt . Then ProjF(S) is the sunny nonexpan-
sive retraction from C onto F(S).

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space E. Let
N ≥  be some positive integer, and let Sm : C → C be a nonexpansive mapping. Sup-
pose that

⋂N
m= F(Sm) is nonempty. Then the mapping

∑N
m= βmSm, where {βm} is a real

number sequence in (, ) such that
∑N

m= βm = , is nonexpansive with F(
∑N

m= βmSm) =⋂N
m= F(Sm).

Lemma . [] Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying
bn+ ≤ (–an)bn+ancn, ∀n≥ n,where n is somepositive integer, {an} is a number sequence
in (, ) such that

∑∞
n=n an = ∞, {cn} is a number sequence such that lim supn→∞ cn ≤ .

Then limn→∞ an = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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Lemma . [] Let E be a uniformly convex Banach space, s >  be a positive number, and
Bs() be a closed ball of E. There exits a continuous, strictly increasing and convex function
g : [,∞) → [,∞) with g() =  such that

∥∥∥∥∥
N∑

m=

βmxm

∥∥∥∥∥


≤
N∑

m=

βm‖xm‖ – ββg
(‖x – x‖

)

for all x,x, . . . ,xN ∈ Bs() = {x ∈ E : ‖x‖ < s} and β,β, . . . ,βN ∈ (, ) such that∑N
m= βm = .

Lemma . [] Let E be a uniformly convex Banach space. Let C be a nonempty closed
convex subset of E, and let S : C → C be a nonexpansive mapping. Then I – S is demiclosed
at zero.

2 Main results
Theorem . Let E be a uniformly convex Banach space which has the Opial condition.
Let N ≥  be some positive integer, and let Am be an M-accretive operator in E for each  ≤
m ≤ N . Assume that

⋂N
m=D(Ai) is convex. Let {αn} and {βn,m} be real number sequences

in (, ), and let {rm} be a positive real number sequence. Assume that
⋂N

m=A–
m () is not

empty. Let {xn} be a sequence generated in the following manner: x ∈ ⋂N
m=D(Ai) and

xn+ = αnxn + ( – αn)
N∑

m=

βn,mJrmxn, ∀n≥ ,

where Jrm = (I + rmAm)–. Assume that the following restrictions are satisfied:
(a)  < a≤ αn ≤ b < ;
(b)

∑N
m= βn,m =  and  < c≤ βn,m < ,

where a, b and c are real numbers. Then the sequence {xn} converges weakly to x∗ ∈⋂N
m=A–

m ().

Proof We start the proof with the boundedness of the sequence {xn}. Fixing p ∈⋂N
m=A–

m (), we find that

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)

∥∥∥∥∥
N∑

m=

βn,mJrmxn – p

∥∥∥∥∥
≤ αn‖xn – p‖ + ( – αn)

N∑
m=

βn,m‖Jrmxn – p‖ ≤ ‖xn – p‖.

This shows that the limit limn→∞ ‖xn – p‖ exists. This implies that {xn} is bounded. Using
Lemma ., we find that

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)

∥∥∥∥∥
N∑

m=

βn,mJrmxn – p

∥∥∥∥∥


– αn( – αn)g

(∥∥∥∥∥xn –
N∑

m=

βn,mJrmxn

∥∥∥∥∥
)

≤ ‖xn – p‖ – αn( – αn)g

( N∑
m=

βn,m‖xn – Jrmxn‖
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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This implies that

αn( – αn)g

( N∑
m=

βn,m‖xn – Jrmxn‖
)

≤ ‖xn – p‖ – ‖xn+ – p‖.

In view of restriction (a), we find that limn→∞ g(
∑N

m= βn,m‖xn – Jrmxn‖) = . It follows
that limn→∞

∑N
m= βn,m‖xn – Jrmxn‖ = . Using restriction (b), we arrive at limn→∞ ‖xn –

Jrmxn‖ =  for eachm ∈ {, , . . . ,N}. Since {xn} is bounded, we see that there exists a subse-
quence {xni} of {xn} converging weakly to x∗. Using Lemma ., we obtain that x∗ ∈ F(Jrm ).
This proves that x∗ ∈ ⋂N

m=A–
m ().

Next we show that {xn} converges weakly to x∗. Supposing the contrary, we see that
there exists some subsequence {xnj} of {xn} such that {xnj} converges weakly to x̂ ∈ C,
where x̂ = x∗. Similarly, we can show x̂ ∈ ⋂N

m=A–
m (). Note that we have proved that

limn→∞ ‖xn – p‖ exists for every p ∈ ⋂N
m=A–

m (). Assume that limn→∞ ‖xn – x∗‖ = d,
where d is a nonnegative number. Since the space has the Opial condition [], we see
that

d = lim inf
i→∞

∥∥xni – x∗∥∥ < lim inf
i→∞ ‖xni – x̂‖ = lim inf

j→∞ ‖xnj – x̂‖ < lim inf
j→∞

∥∥xnj – x∗∥∥ = d.

This is a contradiction. Hence x∗ = x̂. This completes the proof. �

Theorem . Let E be a strictly convex and reflexive Banach space which has a weakly
continuous dualitymap Jϕ . Let N ≥  be some positive integer, and let Am be anM-accretive
operator in E for each  ≤ m ≤ N . Assume that

⋂N
m=D(Ai) is convex. Let {αn} and {βn,m}

be real number sequences in (, ), and let {rm} be a positive real number sequence for each
 ≤ m ≤ N . Assume that

⋂N
m=A–

m () is not empty. Let {xn} be a sequence generated in the
following manner: x ∈ ⋂N

m=D(Ai) and

xn+ = αnx + ( – αn)
N∑

m=

βn,mJrmxn, ∀n≥ ,

where x is a fixed element in
⋂N

m=D(Am) and Jrm = (I + rmAm)–.Assume that the following
restrictions are satisfied:
(a) limn→∞ αn = ,

∑∞
n= αn = ∞ and

∑∞
n= |αn+ – αn| <∞;

(b)
∑N

m= βn,m = , limn→∞ βn,m = βm and
∑∞

n= |βn+,m – βn,m| < ∞.
Then the sequence {xn} converges strongly to x∗ = Proj⋂N

m= A
–
m () x, where Proj⋂N

m= A
–
m () is

the unique sunny nonexpansive retract from
⋂N

m=D(Am) onto
⋂N

m=A–
m ().

Proof We start the proof with the boundedness of the sequence {xn}. Fixing p ∈⋂N
m=A–

m (), we find that

‖xn+ – p‖ ≤ αn‖x – p‖ + ( – αn)

∥∥∥∥∥
N∑

m=

βn,mJrmxn – p

∥∥∥∥∥
≤ αn‖x – p‖ + ( – αn)

N∑
m=

βn,m‖Jrmxn – p‖

≤ αn‖x – p‖ + ( – αn)‖xn – p‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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This implies that ‖xn+ –p‖ ≤ max{‖x–p‖,‖x –p‖}. This shows that {xn} is bounded. Put
yn =

∑N
m= βn,mJrmxn. It follows that

‖yn – yn–‖ ≤
∥∥∥∥∥

N∑
m=

βn,mJrmxn –
N∑

m=

βn,mJrmxn–

∥∥∥∥∥
+

∥∥∥∥∥
N∑

m=

βn,mJrmxn– –
N∑

m=

βn–,mJrmxn–

∥∥∥∥∥
≤ ‖xn – xn–‖ +

N∑
m=

|βn,m – βn–,m|‖Jrmxn–‖.

This implies that

‖xn+ – xn‖ ≤ ( – αn)‖yn – yn–‖ + |αn – αn–|‖x – yn–‖

≤ ( – αn)‖xn – xn–‖ +
N∑

m=

|βn,m – βn–,m|‖Jrmxn–‖

+ |αn – αn–|‖x – yn–‖.

In light of restrictions (a) and (b), we find that

lim
n→∞‖xn+ – xn‖ = . (.)

Set S =
∑N

m= βmJrm . It follows from Lemma . that S is nonexpansive with F(S) =⋂N
m= F(Jrm ) =

⋂N
m=A–

m (). Note that

‖Sxn – xn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Sxn‖

≤ ‖xn – xn+‖ + αn‖x – Sxn‖ + βn

∥∥∥∥∥
N∑

m=

βn,mJrmxn – Sxn

∥∥∥∥∥
≤ ‖xn – xn+‖ + αn‖x – Sxn‖ +

N∑
m=

|βn,m – βm|‖Jrmxn‖.

In view of (.), we find from the restrictions (a) and (b) that

lim
n→∞‖Sxn – xn‖ = . (.)

Now, we are in a position to prove

lim sup
n→∞

〈
x – Proj⋂N

m= A
–
m () x, Jϕ(xn – Proj⋂N

m= A
–
m () x)

〉 ≤ . (.)

By Lemma ., we have the sunny nonexpansive retraction Proj⋂N
m= A

–
m () :

⋂N
m=D(Am) →⋂N

m=A–
m (). Take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
x – Proj⋂N

m= A
–
m () x, Jϕ(xn – Proj⋂N

m= A
–
m ())x

〉
= lim

k→∞
〈
x – Proj⋂N

m= A
–
m () x, Jϕ(xnk – Proj⋂N

m= A
–
m ())x

〉
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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Since E is reflexive, we may further assume that xnk ⇀ x̄ for some x̄ ∈ ⋂N
m=D(Am). Since

jϕ is weakly continuous, we have from Lemma .

lim sup
k→∞

�
(‖xnk – y‖) = lim sup

k→∞
�

(‖xnk – x̄‖) +�
(‖y – x̄‖), ∀y ∈ E.

Put f (y) = lim supk→∞ �(‖xnk – y‖), ∀y ∈ E. It follows that

f (y) = f (x̄) +�
(‖y – x̄‖), ∀y ∈ E. (.)

From (.), we have

f (Sx̄) = lim sup
k→∞

�
(‖xnk – Sx̄‖) = lim sup

k→∞
�

(‖Sxnk – Sx̄‖)
≤ lim sup

k→∞
�

(‖xnk – x̄‖) = f (x̄). (.)

Using (.), we have

f (Sx̄) = f (x̄) +�
(‖Sx̄ – x̄‖). (.)

Combining (.) with (.), we obtain that

�
(‖Sx̄ – x̄‖) ≤ .

Hence Sx̄ = x̄; that is, x̄ ∈ F(S) =
⋂N

m=A–
m (). It follows from (.) that

lim sup
n→∞

〈
x – Proj⋂N

m= A
–
m () x, jϕ(xn – Proj⋂N

m= A
–
m () x)

〉 ≤ .

Finally, we prove that xn → Proj⋂N
m= A

–
m () x as n → ∞. Using Lemma ., we find that

�
(‖xn+ – Proj⋂N

m= A
–
m () x‖

)

= �

(∥∥∥∥∥αn(x – Proj⋂N
m= A

–
m () x) + ( – αn)

( N∑
m=

βn,mJrmxn – Proj⋂N
m= A

–
m () x

)∥∥∥∥∥
)

≤ ( – αn)�
(‖xn – Proj⋂N

m= A
–
m () x‖

)
+ αn

〈
x – Proj⋂N

m= A
–
m () x, Jϕ(xn+ – Proj⋂N

m= A
–
m () x)

〉
.

Using Lemma ., we see that �(‖xn – Proj⋂N
m= A

–
m () x‖) → . This implies that

lim
n→∞‖xn – Proj⋂N

m= A
–
m () x‖ = .

This completes the proof. �

3 Applications
In this section, we give an application of Theorem . in the framework of Hilbert spaces.

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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LetC be a nonempty closed and convex subset of aHilbert spaceH . Let F be a bifunction
ofC×C intoR, whereR denotes the set of real numbers. Recall the following equilibrium
problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

To study the equilibrium problem (.), we may assume that F satisfies the following
restrictions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.

Lemma . [] Let F be a bifunction from C × C to R which satisfies (A)-(A), and let
AF be a multivalued mapping of H into itself defined by

AFx =

⎧⎨
⎩{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F (),

where EP(F) stands for the solution set of (.), and

Trx = (I + rAF )–x, ∀x ∈H , r > ,

where Ts is defined by

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, ∀x ∈H .

Corollary . Let C be a nonempty closed and convex subset of a Hilbert space H . Let
N ≥  be some positive integer, and let Fm : C × C → R be a bifunction satisfying (A)-
(A). Let {αn} and {βn,m} be real number sequences in (, ), and let {rm} be a positive real
number sequence.Assume that

⋂N
m= EP(Fm) is not empty. Let {xn} be a sequence generated

in the following manner: x ∈ C and

xn+ = αnxn + ( – αn)
N∑

m=

βn,mTrmxn, ∀n≥ ,

where Trm = (I + rmAFm )–. Assume that the following restrictions are satisfied:
(a)  < a≤ αn ≤ b < ;
(b)

∑N
m= βn,m =  and  < c≤ βn,m < ,

where a, b and c are real numbers. Then the sequence {xn} converges weakly to x∗ ∈⋂N
m= EP(Fm).

Corollary . Let C be a nonempty closed and convex subset of a Hilbert space H . Let
N ≥  be some positive integer, and let Fm : C × C → R be a bifunction satisfying (A)-
(A). Let {αn} and {βn,m} be real number sequences in (, ), and let {rm} be a positive real

http://www.journalofinequalitiesandapplications.com/content/2014/1/282
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number sequence.Assume that
⋂N

m= EP(Fm) is not empty. Let {xn} be a sequence generated
in the following manner: x ∈ C and

xn+ = αnx + ( – αn)
N∑

m=

βn,mTrmxn, ∀n≥ ,

where x is a fixed element in C and Trm = (I + rmAFm )–. Assume that the following restric-
tions are satisfied:
(a) limn→∞ αn = ,

∑∞
n= αn = ∞ and

∑∞
n= |αn+ – αn| <∞;

(b)
∑N

m= βn,m = , limn→∞ βn,m = βm and
∑∞

n= |βn+,m – βn,m| < ∞.
Then the sequence {xn} converges strongly to x∗ = Proj⋂N

m= EP(Fm) x, where Proj⋂N
m= EP(Fm) is

the metric projection from C onto
⋂N

m= EP(Fm).
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