CORE

Limit theorems for delayed sums of random sequence

Ding Fang-qing ${ }^{1}$ and Wang Zhong-zhi ${ }^{2^{*}}$

[^0]
Abstract

For a sequence of arbitrarily dependent random variables $\left(X_{n}\right)_{n \in \mathbf{N}}$ and Borel sets $\left(B_{n}\right)$ $n \in \mathbb{N}$, on real line the strong limit theorems, represented by inequalities, i.e. the strong deviation theorems of the delayed average $S_{n \cdot k_{n}}(\omega)$ are investigated by using the notion of asymptotic delayed log-likelihood ratio. The results obtained popularizes the methods proposed by Liu. Mathematics Subject Classification 2000: Primary, 60F15.

Keywords: strong deviation theorem, likelihood ratio, delayed sums

1. Introduction

Let $\left(a_{n}\right)_{n \in \mathbf{N}}$ be a sequence of real numbers and let $\left(k_{n}\right)_{n \in \mathbf{N}}$ be a sequence of positive integers. The numbers

$$
\rho_{n, k_{n}}=\left\{\sum_{j=1}^{k_{n}} a_{n+j-1}\right\} / k_{n}
$$

are called the (forward) delayed first arithmetic means (See [1]). In [2], using the limiting behavior of delayed average, Chow found necessary and sufficient conditions for the Borel summability of i.i.d. random variables and also obtained very simple proofs of a number of well-known results such as the Hsu-Robbins-Spitzer-Katz theorem. In [3], Lai studied the analogues of the law of the iterated logarithim for delayed sums of independent random variables. Recently, Chen [4] has presented an accurate description the limiting behavior of delayed sums under a non-identically distribution setup, and has deduced Chover-type laws of the iterated logarithm for them.
Our aim in this article is to establish strong deviation theorems (limit theorem expressed by inequalities, see [5]) of delayed average for the dependent absolutely continuous random variables. By using the notion of asymptotic delayed log-likelihood ratio, we extend the analytic technique proposed by Liu [5] to the case of delayed sums. The crucial part of the proof is to construct a delayed likelihood ratio depending on a parameter, and then applies the Borel-Cantelli lemma.
Throughout, let $\left(X_{n}\right)_{n \in \mathbf{N}}$ be a sequence of absolutely continuous random variables on a fixed probability space $\{\Omega, \mathcal{F}, P\}$ with the joint density function $g^{1, n}\left(x_{1}, \ldots, x_{n}\right), n \in$ \mathbf{N}, and $f_{j}(x), j=1,2, \ldots$ be the the marginal density function of random variable X_{j}. (k_{n})

[^1]$n \in \mathbf{N}$ be a subsequence of positive integers, such that, for every $\varepsilon>0$, $\sum_{n=1}^{\infty} \exp \left(-k_{n} \varepsilon\right)<\infty$.
Definition 1. The delayed likelihood ratio is defined by
\[

\mathcal{L}_{n}(\omega)= $$
\begin{cases}\frac{\Pi_{j=n}^{n+k_{n}-1} f_{j}\left(X_{j}\right)}{g^{n, n+k_{n}-1\left(X_{n}, \ldots x_{n+k_{n}-1}\right)},}, & \text { if denominator }>0 \tag{1.1}\\ 0, & \text { otherwise }\end{cases}
$$
\]

Let

$$
\begin{equation*}
\mathcal{L}(\omega)=-\lim _{n} \inf \frac{1}{k_{n}} \log \mathcal{L}_{n}(\omega) \tag{1.2}
\end{equation*}
$$

$\mathcal{L}(\omega)$ is called asymptotic delayed log-likelihood ratio, where $g^{n, n+k_{n}-1}\left(x_{n}, \ldots, x_{n+k_{n}-1}\right)$ denotes the joint density function of random vector $\left(X_{n}, \ldots, X_{n+k_{n}-1}\right), \omega$ is a sample point (with $\log 0=-\infty$).
It will be shown in Lemma 1 that $\mathcal{L}(\omega) \geq 0$ a.e. in any case.
Remark 1. It will be seen below that $\mathcal{L}(\omega)$ has the analogous properties of the likelihood ratio in [5], Although $\mathcal{L}(\omega)$ is not a proper metric among probability measures, we nevertheless consider it as a measure of "discrimination" between the dependence (their joint distribution) and independence (the product of their marginals). Obviously, $\mathcal{L}_{n}(\omega)=1$, a.e. $n \in \mathbf{N}$ if $\left(X_{n}\right)_{n \in \mathbf{N}}$ is independent. In view of the above discussion of the asymptotic logarithmic delayed likelihood ratio, it is natural for us to think of $\mathcal{L}(\omega)$ as a measure how far (the random deviation) of $\left(X_{n}\right)_{n \in \mathbf{N}}$ is from being independent and how dependent they are. The closer $\mathcal{L}(\omega)$ approaches to 0 , the smaller the deviation is.

Lemma 1. Let $\mathcal{L}_{n}(\omega)$ be define as above, then

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}} \log \mathcal{L}_{n}(\omega) \leq 0 \text {, a.e. } \tag{1.3}
\end{equation*}
$$

Proof. Let $B=\left\{\left(x_{n}, \ldots, x_{n+k_{n}-1}\right): g^{n, n+k_{n}-1}\left(x_{n}, \ldots, x_{n+k_{n}-1}\right)>0\right\}$. Since

$$
\begin{aligned}
E & {\left[\mathcal{L}_{n}(\omega)\right] } \\
= & \int \ldots \int_{\left(x_{n}, \ldots, x_{n+k_{n}-1}\right) \in B} \frac{\prod_{j=n}^{n+k_{n}-1} f_{j}\left(x_{j}\right)}{g^{n, n+k_{n}-1}\left(x_{n}, \ldots, x_{n+k_{n}-1}\right)} \\
& . g^{n, n+k_{n}-1}\left(x_{n}, \ldots, x_{n+k_{n}-1}\right) d x_{n} \ldots d x_{n+k_{n}-1} \\
= & \iint_{\left(x_{n}, \ldots, x_{n+k k_{n}-1}\right) \in B} \prod_{j=n}^{n+k_{n}-1} f_{j}\left(x_{j}\right) d x_{n} \ldots d x_{n+k_{n}-1} \\
\leq & \int \ldots \int_{\left(x_{n}, \ldots, x_{n+k}-1\right.} \int_{\text {m }} \prod_{j=n}^{k_{n}} f_{j}^{n+k_{n}-1}\left(x_{j}\right) d x_{n} \ldots d x_{n+k_{n}-1}=1 .
\end{aligned}
$$

From Markov inequality, for every $\varepsilon>0$, we have

$$
P\left[\frac{1}{k_{n}} \log \mathcal{L}_{n}(\omega) \geq \varepsilon\right]=P\left[\mathcal{L}_{n}(\omega) \geq \exp \left(k_{n} \varepsilon\right)\right] \leq 1 \cdot \exp \left(-k_{n} \varepsilon\right)
$$

Hence

$$
\sum_{n=1}^{\infty} P\left[\frac{1}{k_{n}} \log \mathcal{L}_{n}(\omega) \geq \varepsilon\right] \leq \sum_{n=1}^{\infty} \exp \left(-k_{n} \varepsilon\right)<\infty
$$

By Borel-Cantelli lemma, we have

$$
P\left[\limsup _{n} \frac{1}{k_{n}} \log \mathcal{L}_{n}(\omega) \geq 2 \varepsilon\right]=0
$$

for any $\varepsilon>0$, (1.3) follows immediately.

2. Main results and proofs

Theorem 1. Let $\left(X_{n}\right)_{n \in \mathbf{N}}, \mathcal{L}_{n}(\omega), \mathcal{L}(\omega)$ be defined as above, $\left(B_{n}\right)_{n \in \mathbf{N}}$ be a sequence of Borel sets of the real line. Let $S_{n, k_{n}}(\omega)=\frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)$, and assume

$$
\begin{equation*}
c=\limsup _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1} P\left(X_{j} \in B_{j}\right), \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\limsup _{n} S_{n, k_{n}}(\omega) \leq(\sqrt{\mathcal{L}(\omega)}+\sqrt{c})^{2} \text {, a.e. } \tag{2.2}
\end{equation*}
$$

where $\mathbf{1}_{B_{n}}(\cdot)$ be the indicator function of B_{n}.
Proof. Assume $s>0$ to be a constant, and let

$$
\begin{equation*}
h_{j}\left(x_{j}\right)=\frac{s^{1_{B_{j}}\left(x_{j}\right)} f_{j}\left(x_{j}\right)}{1+(s-1) \int_{B_{j}} f_{j}\left(x_{j}\right) d x_{j}}, \quad j=1,2, \ldots \tag{2.3}
\end{equation*}
$$

It is not difficult to see that $\int h_{j}\left(x_{j}\right) d x_{j}=1, j=1,2, \ldots$ Let

$$
\Lambda_{n}(s, \omega)= \begin{cases}\frac{\Pi_{j=n}^{n+k_{n}-1} h_{j}\left(X_{j}\right)}{g^{n, n+k_{n}-1}\left(X_{n}, \ldots, X_{n+k_{n}-1}\right)}, & \text { if denominator }>0 \tag{2.4}\\ 0, & \text { otherwise }\end{cases}
$$

From Lemma 1, there exists $A(s) \in \mathcal{F}, P(A(s))=1$, such that

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}} \log \Lambda_{n}(s, \omega) \leq 0, \quad \omega \in A(s) \tag{2.5}
\end{equation*}
$$

Since $\int_{B_{j}} f_{j}\left(x_{j}\right) d x_{j}=P\left(X_{j} \in B_{j}\right)$, by (2.3) we have

$$
\begin{align*}
& \prod_{j=n}^{n+k_{n}-1} h_{j}\left(x_{j}\right) \\
= & \prod_{j=n}^{n+k_{n}-1} \frac{s^{\mathbf{1}_{B_{j}}\left(x_{j}\right)} f_{j}\left(x_{j}\right)}{1+(s-1) \int_{B_{j}} f_{j}\left(x_{j}\right) d x_{j}} \tag{2.6}\\
= & s^{\sum_{j=n}^{n+k_{n}-1}} \mathbf{1}_{B_{j}\left(x_{j}\right)}^{n+k_{n}-1} \prod_{j=n} \frac{f_{j}\left(x_{j}\right)}{1+(s-1) P\left(X_{j} \in B_{j}\right)}
\end{align*}
$$

It follows from (1.1), (2.4) and (2.6) that

$$
\begin{equation*}
\log \Lambda_{n}(s, \omega)=\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right) \log s-\sum_{j=n}^{n+k_{n}-1} \log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]+\log \mathcal{L}_{n}(\omega) \tag{2.7}
\end{equation*}
$$

(2.5) and (2.7) yield

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}}\left(\log s \sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]+\log \mathcal{L}_{n}(\omega)\right) \leq 0, \quad \omega \in A(s) \tag{2.8}
\end{equation*}
$$

Let $s>1$, dividing the two sides of (2.8) by $\log s$, we have

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}+\frac{\log \mathcal{L}_{n}(\omega)}{\log s}\right) \leq 0, \quad \omega \in A(s) \tag{2.9}
\end{equation*}
$$

By (1.2), (2.9) and the property $\lim \sup _{n}\left(a_{n}-b_{n}\right) \leq d \Rightarrow \lim \sup _{n}\left(a_{n}-c_{n}\right) \leq \lim \sup _{n}$ $\left(b_{n}-c_{n}\right)+d$, one gets

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}\right) \leq \frac{\mathcal{L}(\omega)}{\log s}, \quad \omega \in A(s) \tag{2.10}
\end{equation*}
$$

By (2.10) and the property of the superior above and the inequality $0<\log (1+x) \leq x$ $(x>0)$, we obtain

$$
\begin{align*}
& \limsup _{n} S_{n, k_{n}}(\omega) \\
& \leq \lim _{n} \sup \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s} \\
& \leq \lim _{n} \sup \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{(s-1) P\left(X_{j} \in B_{j}\right)}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s} \tag{2.11}\\
& \leq c\left(\frac{s-1}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s}, \quad \omega \in A(s)
\end{align*}
$$

(2.11) and the inequality $1-\frac{1}{s}<\log s(s>1)$ imply

$$
\begin{equation*}
\limsup _{n} S_{n, k_{n}}(\omega) \leq c \cdot s+\frac{s \mathcal{L}(\omega)}{s-1}, \quad \omega \in A(s) \tag{2.12}
\end{equation*}
$$

Let D be a set of countable real numbers dense in the interval $(1,+\infty)$, and let $A^{*}=$ $\mathrm{n}_{s \in D} A(s), g(s, x)=c s+s x /(s-1)$, then we have by (2.12)

$$
\begin{equation*}
\limsup _{n} S_{n, k_{n}}(\omega) \leq g(s, \mathcal{L}(\omega)), \quad \omega \in A^{*}, \quad s \in D \tag{2.13}
\end{equation*}
$$

Let $c>0$, it easy to see that if $\mathcal{L}(\omega)>0$, a.e., then, for fixed $\omega, g(s, \mathcal{L}(\omega))$ as a function of s attains its smallest value $g(1+\sqrt{\mathcal{L}(\omega) / c}, \mathcal{L}(\omega))=2 \sqrt{c \mathcal{L}(\omega)}+\mathcal{L}(\omega)+c$ on the interval $(1,+\infty)$, and $g(s, 0)$ is increasing on the interval $(1,+\infty)$ and $\lim _{s \rightarrow 1}+g$ $(s, 0)=0$. For each $\omega \in A^{*} \cap A(1)$, if $\mathcal{L}(\omega) \neq \infty$, take $\kappa_{n}(\omega) \in D, n=1,2, \ldots$, such that $\kappa_{n}(\omega) \rightarrow 1+\sqrt{\mathcal{L}(\omega) / c}$. We have by the continuity of $g(s, \mathcal{L}(\omega))$ with respect to s,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} g\left(\kappa_{n}(\omega), \mathcal{L}(\omega)\right)=(\sqrt{\mathcal{L}(\omega)}+\sqrt{c})^{2} \tag{2.14}
\end{equation*}
$$

By (2.13), we obtain

$$
\begin{equation*}
\limsup S_{n, k_{n}} \leq g\left(\kappa_{n}(\omega), \mathcal{L}(\omega)\right), \quad n=1,2, \ldots \tag{2.15}
\end{equation*}
$$

(2.14) and (2.15) imply

$$
\begin{equation*}
\limsup _{n} S_{n, k_{n}}(\omega) \leq(\sqrt{\mathcal{L}(\omega)}+\sqrt{c})^{2}, \quad \omega \in A^{*} \cap A(1) \tag{2.16}
\end{equation*}
$$

If $\mathcal{L}(\omega)=\infty,(2.16)$ holds trivially. Since $P\left(A^{*} \cap A(1)\right)=1,(2.2)$ holds by (2.16), when $c>0$.
When $c=0$, we have by letting $s=e$ in (2.11),

$$
\begin{equation*}
\limsup _{n} S_{n, k_{n}}(\omega) \leq \mathcal{L}(\omega), \quad \omega \in A(e) \tag{2.17}
\end{equation*}
$$

since $P(A(e))=1,(2.2)$ also holds by (2.17) when $c=0$.
Theorem 2. Let $\left(X_{n}\right)_{n \in \mathbf{N}}, \mathcal{L}_{n}(\omega), \mathcal{L}(\omega),\left(B_{n}\right)_{n \in \mathbf{N}}, S_{n, k_{n}}(\omega)$ be defined as in Theorem 1 and assume

$$
\begin{equation*}
c^{\prime}=\liminf _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1} P\left(X_{j} \in B_{j}\right), \tag{2.18}
\end{equation*}
$$

then, if $0 \leq \mathcal{L}(\omega) \leq c^{\prime}$ a.e., then

$$
\begin{equation*}
\liminf _{n} S_{n, k_{n}}(\omega) \geq c^{\prime}-2 \sqrt{c^{\prime} \mathcal{L}(\omega), \quad \text { a.e. }} \tag{2.19}
\end{equation*}
$$

Proof. Let $0<s<1$, dividing the two sides of (2.8) by $\log s$, we have

$$
\begin{equation*}
\liminf _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}+\frac{\log \mathcal{L}_{n}(\omega)}{\log s}\right) \geq 0, \quad \omega \in A(s) \tag{2.20}
\end{equation*}
$$

By (1.2), (2.20) and the property $\lim _{\inf _{n}\left(a_{n}-b_{n}\right) \geq d \Rightarrow \lim _{\inf _{n}}\left(a_{n}-c_{n}\right) \geq \lim _{\inf _{n}}\left(b_{n}, ~\right.}^{\text {n }}$ $\left.-c_{n}\right)+d$, one gets

$$
\begin{equation*}
\underset{n}{\lim \inf } \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}\right) \geq \frac{\mathcal{L}(\omega)}{\log s}, \quad \omega \in A(s) \tag{2.21}
\end{equation*}
$$

By (2.21) and the property of the inferior above and the inequality $\log (1+x) \leq x(-1$ $<x \leq 0$), we obtain

$$
\begin{align*}
& \liminf _{n} S_{n, k_{n}}(\omega) \\
& \geq \liminf _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s} \\
& \geq \liminf _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{(s-1) P\left(X_{j} \in B_{j}\right)}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s} \tag{2.22}\\
& \geq c^{\prime}\left(\frac{s-1}{\log s}\right)+\frac{\mathcal{L}(\omega)}{\log s}, \quad \omega \in A(s)
\end{align*}
$$

(2.22) and the inequality $1-\frac{1}{s}<\log s$ and $\log s<s-1(0<s<1)$ imply

$$
\begin{equation*}
\liminf _{n} S_{n, k_{n}}(\omega) \geq c^{\prime} \cdot s+\frac{\mathcal{L}(\omega)}{s-1}, \quad \omega \in A(s) \cap A(1) \tag{2.23}
\end{equation*}
$$

Let D^{\prime} be a set of countable real numbers dense in the interval (0,1), and let $A_{*}=\cap_{s \in D^{\prime}} A(s), h(s, x)=c^{\prime} s+x /(s-1)$, then we have by (2.23)

$$
\begin{equation*}
\liminf _{n} S_{n, k_{n}}(\omega) \geq h(s, \mathcal{L}(\omega)), \quad \omega \in A_{*} \quad s \in D^{\prime} \tag{2.24}
\end{equation*}
$$

Let $c^{\prime}>0$, it easy to see that if $0<\mathcal{L}(\omega)<c^{\prime}$, a.e., then, for fixed $\omega, h(s, \mathcal{L}(\omega))$ as a function of s attains its maximum value $h\left(1-\sqrt{\mathcal{L}(\omega) / c^{\prime}}, \mathcal{L}(\omega)\right)=c^{\prime}-2 \sqrt{c^{\prime} \mathcal{L}(\omega)}$, on the interval $(0,1)$, and $h(s, 0)$ is increasing on the interval $(0,1)$ and $\lim _{s \rightarrow 1}+h(s, 0)=$ c^{\prime}. For each $\omega \in A * \cap A(1)$, if $\mathcal{L}(\omega) \neq \infty$, take $l_{n}(\omega) \in D^{\prime}, n=1,2, \ldots$, such that $l_{n}(\omega) \rightarrow 1-\sqrt{\mathcal{L}(\omega) / c^{\prime}}$. We have by the continuity of $h(s, \mathcal{L}(\omega))$ with respect to s,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} h\left(l_{n}(\omega), \mathcal{L}(\omega)\right)=c^{\prime}-2 \sqrt{c^{\prime} \mathcal{L}(\omega)} \tag{2.25}
\end{equation*}
$$

By (2.24), we obtain

$$
\begin{equation*}
\liminf _{n} S_{n, k_{n}} \geq h\left(l_{n}(\omega), \mathcal{L}(\omega)\right), \quad n=1,2, \ldots \tag{2.26}
\end{equation*}
$$

(2.25) and (2.26) imply

$$
\begin{equation*}
\liminf _{n} S_{n, k_{n}}(\omega) \geq c^{\prime}-2 \sqrt{c^{\prime} \mathcal{L}(\omega)}, \quad \omega \in A_{*} \cap A(1) \tag{2.27}
\end{equation*}
$$

If $\mathcal{L}(\omega)=\infty$, (2.27) holds trivially. Since $P(A * \cap A(1))=1$, (2.19) holds by (2.27), when $c^{\prime}>0$. (2.19) also holds trivially when $c^{\prime}=0$.

Remark 2. In case $\mathcal{L}(\omega)>c^{\prime} \geq 0$, a.e., we cannot get a better lower bound of $\lim \inf _{n} S_{n, k_{n}}(\omega)$. This motivates the following problem: under the conditions of Theorem 2 , how to get a better lower bound of $\liminf _{n} S_{n, k_{n}}(\omega)$ in case of $\mathcal{L}(\omega)>c^{\prime} \geq 0$, a.e.?

Definition 2. (Generalized empirical distribution function) Let $\left(X_{n}\right)_{n \in \mathbf{N}}$ be identically distribution with common distribution function F, for each $m, n \in \mathbf{N}$, let

$$
F_{m, n}(x)=\frac{1}{n} \sum_{k=m}^{m+n-1} \mathbf{1}_{\left(X_{k} \leq x\right)} .
$$

$F_{m, n}=$ the observed frequency of values that are $\leq x$ from time m to $m+n-1$. The $F_{1, n}$ is the usual empirical distribution function, hence the name given above.

In particular, let $B=(-\infty, x], x \in R$ in Theorems 1 and 2 , we can get a strong limit theorem for the generalized empirical distribution function.

Corollary 1. Let $\left(X_{n}\right)_{n \in \mathbf{N}}$ be i.i.d. random variables with common distribution function F, let $B_{n}=(-\infty, x], n=1,2, \ldots$, then

$$
\lim _{n} F_{n, n+k_{n}-1}(x)=F(x), \text { a.e. }
$$

Corollary 2. Let $\left(X_{n}\right)_{n \in \mathbf{N}}$ be independent random variables and $\left(B_{n}\right)_{n \in \mathbf{N}}$ be as Theorem 1 , then

$$
\begin{equation*}
\lim _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1}\left[\mathbf{1}_{B_{j}}\left(X_{j}\right)-P\left(X_{j} \in B_{j}\right)\right]=0 \text {, a.e. } \tag{2.28}
\end{equation*}
$$

Proof. Note that $P\left(X_{j} \in B_{j}\right) \leq 1, j=1,2, \ldots$ and in this case, $0 \leq c, c^{\prime} \leq 1, \mathcal{L}(\omega)=0$ a. e., we have by (2.11)

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \mathbf{1}_{B_{j}}\left(X_{j}\right)-\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}\right) \leq 0, \quad \omega \in A(s) \tag{2.29}
\end{equation*}
$$

by (2.29) and the property of the superior above and the inequality $0 \leq \log (1+x) \leq x$ ($x>0$), we obtain

$$
\begin{align*}
& \limsup _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1}\left[\mathbf{1}_{B_{j}}\left(X_{j}\right)-P\left(X_{j} \in B_{j}\right)\right] \\
& \leq \limsup _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{\log \left[1+(s-1) P\left(X_{j} \in B_{j}\right)\right]}{\log s}-P\left(X_{j} \in B_{j}\right)\right) \tag{2.30}\\
& \leq \limsup _{n} \frac{1}{k_{n}}\left(\sum_{j=n}^{n+k_{n}-1} \frac{(s-1) P\left(X_{j} \in B_{j}\right)}{\log s}-P\left(X_{j} \in B_{j}\right)\right) \\
& \leq\left(\frac{s-1}{\log s}-1\right), \quad \omega \in A(s)
\end{align*}
$$

Analogously as in the proof of Theorem 1, we obtain

$$
\begin{equation*}
\limsup _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1}\left[\mathbf{1}_{B_{j}}\left(X_{j}\right)-P\left(X_{j} \in B_{j}\right)\right] \leq 0 \text {, a.e. } \tag{2.31}
\end{equation*}
$$

Similarly, we have $\liminf _{n} \frac{1}{k_{n}} \sum_{j=n}^{n+k_{n}-1}\left[\mathbf{1}_{B_{j}}\left(X_{j}\right)-P\left(X_{j} \in B_{j}\right)\right] \geq 0$, a.e. hence (2.28) follows immediately.
Remark 3. Let $B_{n}=B$, Corollary 2 implies that $\frac{\lim S_{n, k_{n}}}{k_{n}}=P\left(X_{1} \in B\right)$ which gives the strong law of large numbers for the delayed arithmatic means.

Acknowledgements

This work is supported by The National Natural Science Foundation of China (Grant No. 11071104) and the An Hui University of Technology research grant: D2011025. The authors would like to thank two referees for their insightful comments which resulted in improving Theorems 1, 2 and Corollary 2 significantly.

Author details

${ }^{1}$ Department of Mathematics \& Physics, HeFei University, HeFei 230601, P. R. China ${ }^{2}$ Faculty of Mathematics \& Physics, AnHui University of Technology, Ma'anshan 243002, P. R. China

Authors' contributions

WZ and DF carried out the design of the study and performed the analysis. DF drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 29 October 2011 Accepted: 31 May 2012 Published: 31 May 2012

References

1. Zygmund, A: Trigonometric Series 1. Cambridge Universitiy Press, Cambridge (1959)
2. Chow, YS: Delayed sums and Borel summability for independent, identically distributed random variables. Bull Inst Math Academia Sinica. 1, 207-220 (1972)
3. Lai, TL: Limit theorems for delayed sums. Ann Probab. 2(3), 432-440 (1974). doi:10.1214/aop/1176996658
4. Chen, PY: Limiting behavior of delayed sums under a non-identically distribution setup. Ann Braz Acad Sci. 80(4), 617-625 (2008)
5. Liu, W: Strong deviation theorems and analytical method. Academic press, Beijing (2003) (in Chinese)
doi:10.1186/1029-242X-2012-124
Cite this article as: Fang-qing and Zhong-zhi: Limit theorems for delayed sums of random sequence. Journal of Inequalities and Applications 2012 2012:124.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$

 journal and benefit from:- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: * Correspondence: wzz30@ahut. edu.cn
 ${ }^{2}$ Faculty of Mathematics \& Physics, AnHui University of Technology, Ma'anshan 243002, P. R. China Full list of author information is available at the end of the article

[^1]: © 2012 Fang-qing and Zhong-zhi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

