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A method for estimating the background under each reflection during

integration that is robust in the presence of pixel outliers is presented. The

method uses a generalized linear model approach that is more appropriate for

use with Poisson distributed data than traditional approaches to pixel outlier

handling in integration programs. The algorithm is most applicable to data with

a very low background level where assumptions of a normal distribution are no

longer valid as an approximation to the Poisson distribution. It is shown that

traditional methods can result in the systematic underestimation of background

values. This then results in the reflection intensities being overestimated and

gives rise to a change in the overall distribution of reflection intensities in a

dataset such that too few weak reflections appear to be recorded. Statistical tests

performed during data reduction may mistakenly attribute this to merohedral

twinning in the crystal. Application of the robust generalized linear model

algorithm is shown to correct for this bias.

1. Introduction

In macromolecular crystallography (MX), integration

programs – such as MOSFLM (Leslie, 1999), XDS (Kabsch,

2010), d*TREK (Pflugrath, 1999) and DIALS (Waterman et

al., 2013) – are used to estimate the intensities of individual

Bragg reflections from a set of X-ray diffraction images. Whilst

details of the processing differ, these programs all follow the

same basic procedure to calculate the intensity estimates. For

each reflection, pixels in the neighbourhood of the predicted

Bragg peak are labelled as either ‘foreground’ or ‘background’

pixels through the application of a model of the shape of the

reflection on the detector. The reflection intensity may be

estimated by subtracting the sum of the estimated background

values from the sum of the total number of counts in the

foreground region. This is termed ‘summation integration’.

The background in the foreground region is unknown and is

therefore estimated from the surrounding background pixels

assuming smooth variation in the background counts.

An accurate estimate of the background is a prerequisite for

deriving an accurate estimate of the reflection intensity.

Integration programs typically assume that the background in

the vicinity of a reflection peak can be modelled either as a

constant value (Kabsch, 2010) or as a plane with a small

gradient (Leslie, 1999). Since the reflection peak typically

extends across an area containing a small number of pixels,

these assumptions generally hold true and the resulting simple

models have the advantage of being computationally inex-

pensive to calculate from the surrounding background pixels.

The situation is complicated by the presence of pixels whose

values appear not to be drawn from the same distribution as
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other pixels in the background region assuming the simple

background model. Typically these pixels contain a higher

number of counts relative to their neighbours than would be

expected if they were drawn from the same distribution. The

counts in these pixels can be the result of, for example, hot

pixels (defective pixels which always show a large number of

counts), zingers (random unmodelled spikes in intensity from,

for example, cosmic rays), intensity from adjacent reflections,

ice rings or other unmodelled intensity. Background estima-

tion routines in integration programs need to be resistant to

such outlier pixels. Therefore these programs implement

methods to exclude outliers from the background calculation.

In this paper we compare the use of different outlier

handling methods within the DIALS framework and intro-

duce a method based on generalized linear models. The

DIALS framework allows the user to choose from one of

several simple algorithms as well as implementations of

methods used in other integration packages. The following

methods have been implemented in DIALS:

(1) null. No outlier handling is used.

(2) truncated. This method excludes extreme pixel values by

discarding a fraction of the pixels (by default 5%) containing

the highest and lowest number of counts.

(3) nsigma. This method excludes extreme pixel values by

computing the mean and standard deviation (�) of the pixel

values and computing a threshold such that all pixels with

values outside �� N� are discarded, where the default value

for parameter N is 3. In our implementation, the procedure is

applied once; however, an alternative approach may be to

apply the procedure iteratively.

(4) tukey. Extreme pixel values are excluded by computing

the median and interquartile range (IQR). Pixels with values

<Q1 � N � IQR and values >Q3 þ N � IQR are discarded,

where the default value for N is 1.5.

(5) plane. This is an implementation of the method used in

MOSFLM (Leslie, 1999). The authors were fortunate to have

access to the MOSFLM source code and were therefore able

to verify that the algorithm implemented in DIALS gave

equivalent results. First a percentage of the highest-valued

pixels are discarded and a plane is computed from the

remaining background pixels such that the modelled back-

ground at each pixel position (x; y) is z ¼ aþ bxþ cy, where

the origin of x and y is at the peak position. The value of a is,

therefore, the mean background. Then all pixels are checked

and discarded if their absolute deviation from the plane

jzobs � zj>Na1=2, where the default value for N is 4.

(6) normal. This is an implementation of the method

described by Kabsch (2010). The method assumes that the

pixel values in the background region are approximated by a

normal distribution. The pixels are sorted by increasing value

and their distribution checked for normality. The highest-

valued pixels are then iteratively removed until the distribu-

tion of the remaining pixels is approximately normal. It should

be noted that the authors did not have access to the XDS

source code that implements this method so were unable to

verify that the algorithm implemented in DIALS gave

equivalent results. Additionally, newer versions of XDS

adapted for low-background data use a different method

(Diederichs, 2015).

(7) glm. The robust generalized linear model (GLM) algo-

rithm described in this paper.

Most of the methods for handling outliers described above

rely on the assumption that the pixel values are drawn from a

normal distribution, whereas in reality the data are Poisson

distributed. As the mean expected value increases, a Poisson

distribution is well approximated by a normal distribution;

however, as the mean tends towards zero, this approximation

becomes increasingly inappropriate. Therefore, although

successfully used for data collected on CCD detectors, tradi-

tional methods may have problems when used on data

collected on photon counting detectors such as the Dectris

Pilatus (Henrich et al., 2009). Data collected using these

detectors are associated with having a lower background than

data collected on CCD detectors. This is partly due to the

opportunity for collecting increasingly fine ’-sliced data

offered by these detectors because of the fast readout and

reduced noise associated with them (Mueller et al., 2012).

Additionally, new beamlines have been designed where the

whole experiment, including the sample and detector, is within

a vacuum (Wagner et al., 2016). Data from these beamlines are

associated with very low background owing to the absence of

scattering by the air. The design of beamlines has also

contributed to the ability to collect data with lower back-

ground. Evans et al. (2011) showed how, for small crystals,

matching the beam size to the size of the crystal could result in

a drastic reduction in the X-ray background by reducing the

volume of non-diffracting material that the X-rays impinge

upon.

Intuitively, outlier handling methods which remove values

purely from one side of the distribution will result in a biased

estimate of the Poisson mean. Since the Poisson distribution is

asymmetric, simple outlier handling techniques which remove

a fixed percentage of pixels from either side (as in the trun-

cated method described above) may also introduce bias. The

bias for the truncated estimator of the Poisson mean is given

below:

�� E½�trunc� ¼ ��

Pb
j¼a jPðy ¼ jÞPb
j¼a Pðy ¼ jÞ

¼ � 1�
Qðb; �Þ �Qða� 1; �Þ

Qðbþ 1; �Þ �Qða; �Þ

� �
: ð1Þ

Here E½�trunc� is the expected value of the truncated esti-

mator and Qðx; �Þ ¼ �ðx; �Þ=�ðxÞ is the regularized gamma

function. The bias of the estimator is dependent on the

Poisson mean �. In the case of the non-truncated estimate of

the mean of a Poisson distribution, a ¼ 0 and b ¼ 1.

Qð1; �Þ ¼ 1 and Qð0; �Þ ¼ Qð�1; �Þ ¼ 0; therefore the bias

of the non-truncated estimator is zero. Note that any method

which attempts to remove outliers from the data will system-

atically reduce the variance of the distribution even when no

outliers are present.

In this paper, it is shown how the use of inappropriate

outlier handling methods can lead to poor background

research papers

J. Appl. Cryst. (2016). 49, 1912–1921 James M. Parkhurst et al. � Robust background modelling in DIALS 1913



determination and systematic bias in the estimated back-

ground level. The use of a simple robust estimation method

using generalized linear models where the pixel values are

explicitly assumed to be drawn from a Poisson distribution is

proposed. It is shown that use of this algorithm results in

superior statistical behaviour compared to existing algorithms.

2. Algorithm

2.1. Generalized linear models

Generalized linear models, first described by Nelder &

Wedderburn (1972), are a generalization of ordinary linear

regression. In linear regression, the errors in the dependent

variables are assumed to be normally distributed. Generalized

linear models extend this to allow the errors in the dependent

variables to be drawn from a range of distributions in the over-

dispersed exponential family, including the Poisson distribu-

tion. In the generalized linear model framework, the linear

predictor, � ¼ Xb, is related to the distribution via a link

function, gð�Þ ¼ �. Here, X is the design matrix – a matrix of

the explanatory variables – and b is a vector of the model

parameters. In the case of the Poisson model, the link function

is the natural logarithm, so that lnð�Þ ¼ �. The maximum

likelihood estimate is typically found using iteratively

reweighted least squares. This is done as it is computationally

flexible and allows a numerical solution to be found when it is

difficult to maximize the likelihood function directly.

2.2. Robust estimation

A method to apply robust estimation to the generalized

linear model framework is described by Cantoni & Ronchetti

(2001). The maximum likelihood function is replaced by a

quasi-likelihood estimator whose score function, U, is given by

U ¼
Xn

i¼1

 cðriÞwðxiÞ
l0i

ð’v�i
Þ

1=2
� aðbÞ

" #
¼ 0: ð2Þ

Here, xi is a row of the design matrix, l0i ¼ @�i=@b ¼
ð@�i=@�iÞ xi and ri ¼ ðyi � �iÞ=v1=2

�i
are the Pearson residuals

for each observation, yi, with respect to its expected value �i

and variance v�i
. ’ is the dispersion, which, for a Poisson

distribution is known to be equal to 1. The functions wðxiÞ and

 cðriÞ provide weights on the explanatory variables and

dependent variables, respectively. Here, since it is assumed

that each pixel has identical weighting, the weights for the

explanatory variables, x, are set to 1 [i.e. wðxiÞ ¼ 1]. The

weighting on the dependent variables,  cðriÞ, gives the esti-

mator its robust characteristics. In this application of the

algorithm, the Huber weighting function is used, as described

by Cantoni & Ronchetti (2001) and shown below:

 cðriÞ ¼
ri; jrij � c;
c sgnðriÞ; jrij> c:

�
ð3Þ

This weighting function has the effect of damping values

outside a range defined by the tuning constant, c. A value of

c ¼ 1:345 is used, corresponding to an efficiency of 95% for a

normal distribution (Heritier et al., 2009). The efficiency of an

estimator is a measure of how optimal the estimator is relative

to the best possible estimator. Increasing the value of the

tuning parameter increases the efficiency of the estimator but

decreases its robustness to outliers. A value of c ¼ 1 results

in the same estimator as for the normal GLM approach.

The constant aðbÞ is a correction term used to ensure Fisher

consistency; i.e. the correction term ensures that an estimate

based on the entire population, rather than a finite sample,

would result in the true parameter value being obtained

(Fisher, 1922). The estimator is said to be Fisher consistent if

E½U� ¼ 0. The correction term is computed simply by

expanding E½U� ¼
Pn

i¼1 fE½ cðriÞ�wðxiÞl
0
i=v1=2

�i
� aðbÞg ¼ 0

and is given by

aðbÞ ¼
1

n

Xn

i¼1

E½ cðriÞ�wðxiÞ
l0i

v
1=2
�i

: ð4Þ

The algorithm was implemented in C++ for use within

DIALS. It is available in the GLMTBX package within the

cctbx library (Grosse-Kunstleve et al., 2002). In this imple-

mentation, the parameter estimates are obtained by solving

equation (2) using iteratively reweighted least squares as

described by Cantoni & Ronchetti (2001) and Heritier et al.

(2009). The equations for asymptotic variance of the estimator

given by Cantoni & Ronchetti (2001, Appendix B) and

Heritier et al. (2009, Appendix E.2) contain an error (Cantoni,

2015). For completeness, a description of the algorithm,

including corrections, is provided in Appendix A.

2.3. Background models

In applying the GLM approach to modelling of the back-

ground, instead of modelling the expected background as a

constant or a plane, the logarithm of the expected background

is modelled as a constant or a plane. Note that, for a constant

background model, the two are equivalent. The rows of the

design matrix for the constant and planar models are xi ¼ ð1Þ

and xi ¼ ð1; pi; qiÞ, respectively, where ðpi; qiÞ is the coordi-

nate of the ith pixel on the detector.

Since the algorithm will be applied to each reflection in the

dataset independently and a typical X-ray diffraction dataset

contains many reflections (a high-multiplicity dataset may

have >106 reflections), there is a requirement for the algorithm

to be computationally efficient. Since the background models

being used are very simple, the general algorithm can be

simplified. Appendix B provides a simplification of the general

algorithm in the case of the constant background model.

3. Analysis

3.1. Experimental data

In order to evaluate the effect that different outlier hand-

ling methods have on the quality of the processed data, three

datasets were selected.

(1) A weak thaumatin dataset collected on Diamond

beamline I04 and available online (Winter & Hall, 2014). This

dataset was chosen as it is a standard test dataset used by the
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DIALS development team. The average background over all

resolution ranges is less than 1 count per pixel. In addition, it

has a low incidence of outliers in the background pixels; an

outlier handling algorithm should also be able to handle a

good dataset without degrading it. The dataset was processed

to a resolution of 1.2 Å.

(2) A ruthenium polypyridyl complex bound to duplex

DNA (Hall et al., 2011) collected at Diamond beamline I02

and available online (Winter & Hall, 2016). This dataset was

chosen because of the presence of a number of outliers in the

background that were observed to cause the wrong point

group to be found in the downstream data processing. The

dataset was processed to a resolution of 1.2 Å. The average

background is around 2.5 counts per pixel at low resolution

but decreases rapidly at high resolution.

(3) A weak thermolysin dataset collected on Diamond

beamline I03 and available online (Winter & McAuley, 2016).

This dataset was chosen because it is extremely weak, with an

average intensity of less than 0.15 counts per pixel across the

whole resolution range. Additionally, it was observed that

some data processing programs gave poor results for these

data, which was attributed to the poor handling of the low

background. The dataset was processed to a resolution of

1.5 Å.

The average background pixel value, binned by resolution,

for each dataset can be seen in Fig. 1. Additionally, a randomly

selected spot, observed at 3 Å, is shown for each dataset in

Fig. 2; in each case, the background is primarily composed of

pixels with 0 or 1 counts in them. Any algorithm which

assumes a normal distribution of pixel values is likely to

perform badly on these data.

3.2. Data analysis

Each dataset was processed with xia2 (Winter, 2010) using

DIALS (Waterman et al., 2013) as the data analysis engine.

Subsequent data reduction was performed in xia2 using the

programs POINTLESS (Evans, 2006), AIMLESS (Evans &

Murshudov, 2013) and CTRUNCATE (Winn et al., 2011).

Identical data processing protocols were used for each dataset

with the exception of the choice of outlier handling method.

Details of how data processing was performed are given in

Appendix C.

3.3. Background estimates

In general, for well measured data, pixel outliers in the

background region should only affect a minority of reflections.

This is the case for the three datasets considered here, where

most reflections are free from pixel outliers in the background

region. It is expected, therefore, that for the majority of

reflections the background estimates using a well behaved

outlier handling algorithm should be comparable to those

using no outlier handling. Fig. 3 shows histograms of the

normalized difference in background estimates with and

without outlier handling for five existing methods and the

GLM approach adopted here.

It can be seen that the traditional outlier handling methods

introduce negative bias into the background estimate; the

background level is systematically lower than that using no
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Figure 1
The average background level across the resolution range for each
dataset.

Figure 2
An example reflection shoebox with pixel values, observed at 3 Å, for (a) thaumatin, (b) DNA and (c) thermolysin.



outlier handling. Of additional concern is a feature shown in

Table 1. This gives the percentage of reflections whose back-

ground is estimated as exactly zero owing to all nonzero

valued pixels in the background being rejected by the outlier

handling algorithm. For some of the algorithms, particularly

when applied to the very weak thermolysin dataset, this

percentage is very high, indicating that for low background

levels the algorithm is rejecting all nonzero pixels as outliers.

In contrast, for the GLM method, it can be readily seen that

the background estimates show significantly less systematic

bias in the background level than seen for the other methods.

On average the background estimates resulting from the GLM

methods are approximately equal to those with no outlier

handling. The mean normalized difference between the esti-

mates from the GLM method and the estimates with no

outlier handling are �3:67� 10�5, �8:38� 10�4 and

3:38� 10�4 for the thaumatin, DNA and thermolysin datasets,

respectively.

To test the behaviour of the GLM method in the presence

of outlier pixels, we selected Bragg reflections whose back-

ground regions contained outliers as follows. Reflections

whose background pixels have an index of dispersion

ðvariance=meanÞ> 10 were selected and on this basis 15 out of

389 442 reflections were chosen for the thaumatin dataset, 60

of out 219 431 for the DNA dataset and 272 out of 3 322 808

for the thermolysin dataset. For Poisson distributed data, the

index of dispersion should be equal to 1 [with a variance of

2=ðN � 1Þ, where N is the sample size]; values much greater

than 1 indicate that the pixel values are over-dispersed relative
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Figure 3
Histograms of normalized differences between the mean background with outlier handling for each outlier algorithm and the mean background with no
outlier handling. For clarity, the plots for the GLM method are shown separately. The vertical black line indicates zero difference between the estimates.
The estimates using the GLM algorithm are distributed more symmetrically around the null estimates, while all the other algorithms show significant
systematic bias in the estimated background levels.

Table 1
The percentage of reflections (%) where all nonzero pixels were rejected
by the outlier handling algorithm resulting in a background estimate of
zero counts per pixel.

Thaumatin DNA Thermolysin

truncated 0.0 0.0 0.0
nsigma 31.3 0.9 76.3
tukey 77.9 56.8 95.0
plane 0.7 0.0 30.2
normal 37.0 0.0 78.2
glm 0.0 0.0 0.0



to a Poisson distribution. This indicates that the pixel values

are not all drawn from the same distribution and thus provides

a reasonable, straightforward, method of selecting reflections

with potential pixel outliers.

Fig. 4 shows the difference between the estimated back-

ground and the median background value (i.e. the most robust

estimate of the background) for no outlier handling and for

the GLM method. Note that whilst the median is the most

robust estimate, in the sense that it is the estimate of central

tendency least susceptible to outliers, it is not appropriate for

use here since, for very low background, the median is likely to

be equal to zero and the background will be systematically

underestimated. However, for a Poisson distribution with rate

parameter �, the bounds of the median are �� lnð2Þ �

median<�þ 1=3 (Choi, 1994); a robust estimate of the

background level should be within these bounds. As expected,

with no outlier handling, the background estimate is vastly

overestimated for increasing index of dispersion. With the

robust GLM algorithm, the estimated background value is

within the bounds given by the median background value,

indicating that the algorithm is adequately handling outliers.

3.4. Effects on data reduction

Since the background values are systematically under-

estimated for many of the algorithms, the intensities of the

reflections are systematically overestimated. This impacts on

the distribution of observed reflection intensities, resulting in

the appearance of too few weak reflections being recorded.

This can cause problems with statistics that test for twinning in

the data (Yeates, 1997). Two such statistics are the L test

(Padilla & Yeates, 2003) and the moments test (Stein, 2007).

Table 2 shows the twin fractions resulting from application of

the two twinning tests as implemented in CTRUNCATE for

each dataset and for each outlier handling algorithm. Table 2

shows that, in most cases, the traditional outlier handling

algorithms introduce, to varying degrees, the appearance of

twinning. In contrast, for the data processed with no outlier

handling, and for the GLM method, this effect is consistently

absent.

The impact on the distribution of intensities is illustrated in

more detail by Figs. 5 and 6. Fig. 5 shows the cumulative

distribution function for jLj as produced by CTRUNCATE for

each dataset and each outlier handling method. For clarity, the

results from the GLM algorithm are shown in a separate plot

in each case. Fig. 6 shows the fourth acentric moments of E,

the normalized structure factors, against resolution for each

dataset processed with each outlier handling method.

For error-free data, the fourth acentric moment of the

normalized structure factors at low resolution tends towards a
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Figure 4
The difference between the estimated background value either with no
outlier handling or with the GLM algorithm, and the median (i.e. most
robust) background estimate for Bragg reflections with large indices of
dispersion in the surrounding background pixels (an indication of the
presence of pixel outliers) for (a) thaumatin, (b) DNA and (c)
thermolysin. The horizontal black lines in each plot are at lnð2Þ and
�1=3; for a Poisson distribution, the bounds on the median are
�� lnð2Þ � median<�þ 1=3 (Choi, 1994).

Table 2
The twin fractions deduced from the L and fourth moments tests reported
by CTRUNCATE for each dataset processed using each outlier handling
algorithm.

Thaumatin DNA Thermolysin

Algorithm L test 4th moments L test 4th moments L test 4th moments

truncated 0.04 0.00 0.50 0.28 0.50 0.23
nsigma 0.50 0.27 0.50 0.50 0.50 0.50
tukey 0.50 0.50 0.50 0.50 0.50 0.50
plane 0.06 0.01 0.50 0.42 0.50 0.50
normal 0.50 0.30 0.50 0.50 0.50 0.50
glm 0.03 0.00 0.04 0.00 0.03 0.00
null 0.03 0.00 0.05 0.00 0.03 0.00



value of 2 for untwinned data and 1.5 for perfectly twinned

data (Stein, 2007). When the variances on the intensities are

taken into account, the value of the moment is inflated by

�ðIÞ2=hIi2. This is shown by the black theoretical curve in

Fig. 6; this curve was generated by the PHASER program

(McCoy et al., 2007). Here we can see that, as the resolution

increases, the data based on traditional methods show a

reduced spread in the distribution of intensities, which may be

interpreted as increasing amounts of twinning. In reality, the

plot probably results from a dual effect. The background level

decreases at high resolution, so the effect of the bias in the

background estimates becomes increasingly pronounced. At

the same time, the intensity of the reflections also decreases at

high resolution, meaning that the relative effect of the

systematically lower background estimates is amplified. In

contrast, the GLM method shows the expected behaviour. At
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Figure 5
Cumulative distribution function for jLj for thaumatin with (a) the traditional outlier handling methods and (b) the GLM method, for DNA with (c) the
traditional outlier handling methods and (d) the GLM method, and for thermolysin with (e) the traditional outlier handling methods and ( f ) the GLM
method.



low resolution, the fourth moment is around 2, indicating no

twinning. At high resolution, the moments increase as

expected owing to the decreasing signal-to-noise ratio; the

increase follows the theoretical curve.

4. Conclusion

The use of a robust generalized linear model algorithm for the

estimation of the background under the reflection peaks in

X-ray diffraction data has been presented. Traditional

methods for handling pixel outliers systematically under-

estimate the background level and consequently overestimate

the reflection intensities even in the absence of any pixel

outliers in the raw data. This can cause statistical tests to give

the false impression that a crystal is twinned. The GLM

method used here is robust against such effects. When no

outliers are present, the estimates given by the GLM algo-
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Figure 6
Fourth acentric moment of E versus resolution for thaumatin with (a) the traditional outlier handling methods and (b) the GLM method, for DNA with
(c) the traditional outlier handling methods and (d) the GLM method, and for thermolysin with (e) the traditional outlier handling methods and ( f ) the
GLM method. The theoretical curve for the acentric moments is shown in black.



rithm are, on average, the same as those with no outlier

handling; the mean normalized difference between the esti-

mates derived from the GLM method and those with no

outlier handling are �3:67� 10�5, �8:38� 10�4 and

3:38� 10�4 for the thaumatin, DNA and thermolysin datasets,

respectively. When outliers are present, the method gives

values within the expected bounds of the median. The method

is implemented in DIALS and is currently the default algo-

rithm when run standalone or through xia2.

APPENDIX A
Robust GLM algorithm implementation in DIALS

For convenience, the terms used in the following equations are

defined again in Table 3.

The background, �i, at each pixel is estimated from the

generalized linear model as lnð�iÞ ¼ Xb. Given initial model

parameter estimates bðtÞ, the parameter estimate for the next

iteration of the algorithm, t þ 1, is given by

bðtþ1Þ
¼ bðtÞ þ IIII�1U: ð5Þ

The scoring function, U, is given by

U ¼
Xn

i¼1

 cðriÞwðxiÞ
l0i

v
1=2
�i

� aðbÞ

" #

¼
Xn

i¼1

�
 cðriÞ � E½ cðriÞ�

�
wðxiÞ

l0i

v
1=2
�i

 !
: ð6Þ

The only additional term that needs to be calculated here is

the expectation E½ cðriÞ�. In order to compute this, let us

denote j1 ¼ b�i � cð’v�i
Þ

1=2
c and j2 ¼ b�i þ cð’v�i

Þ
1=2
c. For a

Poisson distribution

Xb

a

j

�
� 1

� �
Pðy ¼ jÞ ¼ Pðy ¼ a� 1Þ � Pðy ¼ bÞ: ð7Þ

The expectation, E½ cðriÞ�, is then given by

E½ cðriÞ� ¼
X1
j¼0

 c

j� �i

v
1=2
�i

 !
Pðyi ¼ jÞ

¼ c½Pðyi � j2 þ 1Þ � Pðyi � j1Þ�

þ
�i

v
1=2
�i

½Pðyi ¼ j1Þ � Pðyi ¼ j2Þ�: ð8Þ

The Fisher information matrix, IIII , is given by

IIII ¼ E �
@U

@b

����
b¼bðtÞ

" #
¼ XTBX: ð9Þ

The diagonal components of the matrix B are given by

bi ¼ E  cðriÞ
@

@�i

log Pðyi j xi; �iÞ
	 
� �

wðxiÞ @�i=@�ið Þ
2

v
1=2
�i

: ð10Þ

For a Poisson distribution, @�i=@�i ¼ @ expð�iÞ=@�i ¼

expð�iÞ ¼ �i and @ log½Pðyi j xi; �iÞ�=@�i ¼ ðyi � �iÞ=�i ¼

ðyi � �iÞ=v�i
. The expectation is given by

E  cðriÞ
@

@�i

log Pðyi j xi; �iÞ
	 
� �

¼ E  c

yi � �i

v
1=2
�i

 !
yi � �i

v�i

" #

¼
X1
j¼0

 c

j� �i

v
1=2
�i

 !
j� �i

v�i

Pðyi ¼ jÞ

¼ c
�i

v�i

½Pðyi ¼ j1Þ þ Pðyi ¼ j2Þ�

þ
�2

i

v
3=2
�i

½Pðyi ¼ j1 � 1Þ � Pðyi ¼ j2 � 1Þ

þ
1

�i

Pðj1 � yi � j2 � 1Þ � Pðyi ¼ j1Þ þ Pðyi ¼ j2Þ�: ð11Þ

APPENDIX B
Simplified algorithm for constant background model

In the case of the constant background model (i.e. where a

robust estimate of the mean of the background pixels is

calculated), the model only has a single parameter, �, and the

rows of the design matrix, X, are all defined as xi ¼ 1. The

estimate of the background is then �i ¼ � ¼ expð�Þ and the

iterative algorithm to estimate the model parameter, �, is

simplified to the following:

�ðtþ1Þ
¼ �ðtÞ þ U=I : ð12Þ

Since the expectations E½ cðriÞ� and E½ cðriÞ@ logfPðyi j xi; �Þg=
@�� do not depend on yi, and �i ¼ � is the same for each

point, they are constant for a given value of � as shown below:

C1ð�Þ ¼ E½ cðriÞ� ¼ c½Pðyi � j2 þ 1Þ � Pðyi � j1Þ�

þ �1=2½Pðyi ¼ j1Þ � Pðyi ¼ j2Þ�; ð13Þ
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Table 3
Definition of mathematical quantities used.

Item Definition

yi The value of the ith pixel.
X The design matrix describing the generalized linear model. A row in

the design matrix is given as xi; each row gives the explanatory
variables for pixel i.

b The vector of model parameters which are estimated from the quasi-
likelihood algorithm.

�i The estimated Poisson mean for the ith pixel, computed from the
model as lnð�iÞ ¼ Xb.

v�i
The variance for the ith pixel. For a Poisson distribution this is equal to

the mean, v�i
¼ �i.

’ The dispersion. For a Poisson distribution, ’ ¼ 1.
ri The residual for the ith pixel given by ri ¼ yi � �i=v1=2

�i
.

wðxiÞ The weights on each row of the design matrix. In our implementation
these weights are equal to 1.

 cðriÞ The weights on the residuals as defined in equation (3).
c The tuning constant specifying the robustness of the algorithm.

Smaller values increase the robustness of the algorithm.
aðbÞ The Fisher consistency correction as defined in equation (4).
U The scoring function for the quasi-likelihood estimator.
IIII The Fisher information matrix.



C2ð�Þ ¼ E  cðriÞ
@

@�
log Pðyi j x; �Þ
	 
� �

¼ c½Pðyi ¼ j1Þ þ Pðyi ¼ j2Þ�

þ �1=2½Pðyi ¼ j1 � 1Þ � Pðyi ¼ j2 � 1Þ

þ
1

�
Pðj1 � yi � j2 � 1Þ � Pðyi ¼ j1Þ þ Pðyi ¼ j2Þ�:

ð14Þ

The scoring function, U, and the Fisher information, I , are

then simplified to the following:

U ¼
Pn
i¼1

 cðriÞ � nC1ð�Þ

� �
�1=2; ð15Þ

I ¼ nC2ð�Þ��
1=2: ð16Þ

The updated value of the parameter estimate �ðtþ1Þ is then

given by

�ðtþ1Þ
¼ �ðtÞ þ

Pn
i¼1  cðriÞ � nC1ð�Þ

n�C2ð�Þ
: ð17Þ

APPENDIX C
Program operation

The command line parameters needed to invoke each method

are listed in Table 4. To set these parameters through xia2,

they should be saved to a file (e.g. parameters.phil) and xia2

called as follows:

# Call XIA2 with DIALS

xia2 -dials\

dials.integrate.phil_file=parameters.phil\

image=image_0001.cbf
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Table 4
The parameters required to invoke a particular background algorithm in
DIALS.

Algorithm Parameters

truncated integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=truncated

nsigma integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=nsigma

tukey integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=tukey

plane integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=plane

normal integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=normal

null integration.background.algorithm=simple

integration.background.simple.outlier.algorithm=null

glm integration.background.algorithm=glm
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