A METHOD OF SOLVING $y(k)-f(x) y=0$

\author{

* P.J. O'HARA, R. OSTEEN, R.S. RODRIGUEZ
}

Department of Mathematics
University of Central Florida
Orlando, FL 32816
(Received June 4, 1991)

Abstract

An alternative method is shown for solving the differential equation $y^{(k)}-f(x) y=0$ by means of series. Also included is a result for a sequence of functions $\left\{S_{n}(x)\right\}_{n-1}^{\infty}$ which gives conditions under which $\lim _{n}\left(\frac{d^{*}}{d d^{k}} S_{n}(x)\right)=\frac{d^{k}}{d d^{k}}\left(\lim _{n} S_{n}(x)\right)$.

KEY WORDS AND PHRASES. Differential equations, sequence of functions.
1991 AMS SUBJECT CLASSIFICATION CODE. 40A30.

1. Introduction

Consider the differential equation $y^{\prime \prime}-f(x) y=0$ for $a<x<b$ where f is a given function continuous on $a \leq x \leq b$. If f is analytic then the method of power series may be used to solve for y. However, for more general f, heuristics suggest that one "iterate" to a solution by finding a sequence of functions $\left\{f_{n}(x)\right\}_{n-1}^{\infty}$ that satisfy $f_{n}^{\prime \prime}(x)-f_{n-1}(x) f(x)$. Then possibly $\sum_{n=1}^{\infty} f_{n}(x)$ is a solution. Under suitable hypothesis this is indeed the case. The results can be generalized to the differential equation $y^{(k)}-f(x) y=0$ as shown in Theorem A. The proof depends on an interesting result, Theorem 1, which gives conditions that insure that the limit of the $k^{\text {th }}$ derivative is the $k^{\text {th }}$ derivative of the limit. Theorem 1 generalizes the usual result found in Advanced Calculus books for differentiating the limit of a sequence of functions. We also include two examples that illustrate the method of solution when $k=2$.

2. Statement of Theorems

Theorem A. Suppose f is continuous on $[a, b], c \in[a, b]$, and k is a natural number. Define the sequence of functions $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\begin{aligned}
& f_{0}(x)=a_{0}^{(0)}+a_{1}^{(0)} x+\ldots+a_{k-1}^{(0)} x^{k-1} \neq 0, \\
& f_{n}(x)=\int_{c}^{x} \int_{c}^{u_{k-1}} \cdots \int_{c}^{u_{1}} f_{n-1}(u) \cdot f(u) d u d u_{1} \ldots d u_{k-1}+\sum_{j=0}^{k-1} a_{j}^{(n)} x^{j}, \quad n=1,2, \ldots .
\end{aligned}
$$

where $a_{0}^{(n)}, a_{1}^{(n)}, \ldots, a_{k-1}^{(n)}$, are constants, $n=0,1,2, \ldots$ (Note $f_{n}(x)$ is any $k^{\text {th }}$ antiderivative of $f_{n-1}(x) f(x)$.)
If the series $\sum_{n=0}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$ to some function $S(x)$ then $\sum_{n=0}^{\infty} f_{n}^{(i)}(x)$ converges uniformly to $S^{(j)}(x)$ for $a \leq x \leq b, j=1,2, \ldots, k$, and $S^{(k)}(x)=S(x) \cdot f(x)$ on $[a, b]$.

Remark: All derivatives at the endpoints a and b are necessarily one sided.
As mentioned, the proof of Theorem A depends on the following interesting result for sequences of differentiable functions:

Theorem 1. Suppose (i) $\left\{S_{n}(x)\right\}_{n=1}^{\infty}$ is a sequence of real functions defined on an interval $[a, b]$ and k is a natural number;
(ii) $\quad S_{n}{ }^{\prime}(x), S_{n}{ }^{\prime \prime}(x), \ldots, S_{n}^{(k)}(x)$ exist at each $x \in[a, b], n=1,2, \ldots$
(iii) $\quad\left\{S_{n}^{(k)}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$;
(iv) either there is a $c \in[a, b]$ such that each of $\left\{S_{n}(c)\right\}_{n-1}^{\infty},\left\{S_{n}{ }^{\prime}(c)\right\}_{n-1}^{\infty}, \ldots,\left\{S^{(k-1)}(c)\right\}_{n-1}^{\infty}$ converge or there are distinct points c_{1}, \ldots, c_{k} such that each of $\left\{S_{n}\left(c_{1}\right)\right\}_{n-1}^{\infty},\left\{S_{n}\left(c_{2}\right)\right\}_{n-1}^{\infty}, \ldots,\left\{S_{n}\left(c_{k}\right)\right\}_{n-1}^{\infty}$ converge.
Then
each of the sequences $\left\{S_{n}^{(j)}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$ to differentiable functions, $j=0,1,2, \ldots, k-1$, and

$$
\frac{d^{j}}{d x^{j}}\left(\lim _{n \rightarrow \infty} S_{n}(x)\right)=\lim _{n \rightarrow \infty}\left(\frac{d^{j}}{d x^{j}} S_{n}(x)\right), \quad j=1,2, \ldots, k .
$$

3. Discussion and Proofs

In order to prove Theorem 1 we need some preliminary results. First is a standard result from Advanced Calculus.

Theorem 0. Suppose that $\left\{S_{n}(x)\right\}_{n-1}^{\infty}$ is a sequence of real functions differentiable on an interval $a \leq x \leq b$ and such that
(i) $\left\{S_{n}{ }^{\prime}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$;
(ii) $\left\{S_{n}(c)\right\}_{n=1}^{\infty}$ converges for some $c \in[a, b]$.

Then $\left\{S_{n}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$ to a function $S(x)$, and $\frac{d}{d x}\left(\lim _{n \rightarrow \infty} S_{n}(x)\right)=S^{\prime}(x)=$ $\lim _{n \rightarrow \infty}\left(\frac{d}{d x} S_{n}(x)\right), a \leq x \leq b$.

For a justification of Theorem 0 , see [1], pp. 451-2.
Also required is the following
Lemma. Suppose k is a natural number, $\left\{p_{n}(x)\right\}_{n-1}^{\infty}$ is a sequence of polynomials each of degree $\leq k$, and c_{1}, \ldots, c_{k+1} are $k+1$ distinct numbers. If $\left\{p_{n}\left(c_{j}\right)\right\}_{n-1}^{\infty}$ converges for $j=1, \ldots, k+1$ then $\left\{p_{n}(x)\right\}_{n-1}^{\infty}$ converges
for each $x \in \mathbf{R}$ to a polynomial $h(x)$ where either $h(x)=0$ or degree of $h(x)$ is $\leq k$, and convergence is uniform on each bounded closed interval in \mathbf{R}. Moreover, $\lim _{n} p_{n}^{(v)}(x)=h^{(v)}(x), v=1, \ldots, k, x \in \mathbf{R}$.

Proof: Let $Q(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k+1}\right)$. Using the Lagrange Interpolation formula, we have for each n,

$$
\begin{equation*}
p_{n}(x)=\sum_{j=1}^{k+1} \frac{p_{n}\left(c_{j}\right) Q(x)}{Q^{\prime}\left(c_{j}\right)\left(x-c_{j}\right)} . \tag{2.1}
\end{equation*}
$$

Clearly for each x,

$$
h(x):=\lim _{n \rightarrow \infty} p_{n}(x)=\sum_{j=1}^{k+1} \sum_{\left[\begin{array}{l}
\lim p_{n}\left(c_{j}\right)
\end{array}\right] Q(x)}^{Q^{\prime}\left(c_{j}\right)\left(x-c_{j}\right)}
$$

exists and is finite; moreover $h(x)$ is a polynomial of degree $\leq k$. For each x in some interval $[a, b]$,

$$
\begin{equation*}
\left|p_{n}(x)-h(x)\right| \leq \sum_{j=1}^{k+1}\left|\frac{\left(p_{n}\left(c_{j}\right)-h\left(c_{j}\right)\right) Q(x)}{Q^{\prime}\left(c_{j}\right)\left(x-c_{j}\right)}\right| \leq M \sum_{j=1}^{k+1}\left|p_{n}\left(c_{j}\right)-h\left(c_{j}\right)\right| \tag{2.2}
\end{equation*}
$$

where $M>0$ is such that

$$
\max _{a \leq x \leq b}\left|\frac{Q(x)}{Q^{\prime}\left(c_{j}\right)\left(x-c_{j}\right)}\right| \leq M \text { for } j=1,2, \ldots, k+1
$$

Uniform convergence follows from inequality (2.2). By first differentiating (2.1) and then passing to the limit with n we obtain $\lim _{n} p_{n}^{(v)}(x)=h^{(v)}(x), x \in \mathbf{R}$.

We proceed to the
Proof of Theorem 1. We use induction on k. The case $k=1$ is given by Theorem 0 . So assume the theorem holds for $k-1 \geq 1$ and let $\left\{S_{n}(x)\right\}_{n-1}^{\infty}$ satisfy (i)-(iv). If $\left\{S_{n}(c)\right\}_{1}^{\infty},\left\{S_{n}{ }^{\prime}(c)\right\}_{1}^{\infty}, \ldots,\left\{S_{n}^{(k-1)}(c)\right\}_{1}^{\infty}$, each converge then $\left\{S_{n}^{(k-1)}(x)\right\}_{n-1}^{\infty}$ converges uniformly by Theorem 0 and hence the conclusion follows from the induction hypothesis and Theorem 0 . Next suppose $\left.\left\{S_{n}\left(c_{1}\right)\right\}_{1}^{\infty}, S_{n}\left(c_{2}\right)\right\}_{1}^{\infty}, \ldots,\left\{S_{n}\left(c_{k}\right)\right\}_{1}^{\infty}$ each converge and define

$$
\begin{aligned}
& G_{n, 1}(x)=\int_{c_{1}}^{x} S_{n}^{(k)}(u) d u=S_{n}^{(k-1)}(x)-S_{n}^{(k-1)}\left(c_{1}\right) \\
& G_{n, 2}(x)=\int_{c_{2}}^{x} G_{n, 1}(u) d u=S_{n}^{(k-2)}(x)-S_{n}^{(k-2)}\left(c_{2}\right)-S_{n}^{(k-1)}\left(c_{1}\right) \cdot\left(x-c_{2}\right)
\end{aligned}
$$

$$
G_{n, k}(x)=\int_{c_{k}}^{x} G_{n, k-1}(u) d u=S_{n}(x)-p_{n}(x)
$$

where $p_{n}(x):=S_{n}(x)-\int_{c_{k}}^{x} \ldots \int_{c_{2}}^{u_{3}} \int_{c_{1}}^{u_{2}} S_{n}^{(k)}\left(u_{1}\right) d u_{1} d u_{2} \ldots d u_{k}=S_{n}(x)-G_{n, k}(x)$ is a uniquely determined polynomial of degree $\leq k-1$, each n. Repeated use of Theorem 0 shows $\left\{G_{n, j}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$, for $j=1,2, \ldots, k$, and in particular $\left\{G_{n, k}(x)\right\}_{n-1}^{\infty}$ converges uniformly. Since $\left\{S_{n}\left(c_{j}\right)\right\}_{n-1}^{\infty}$ converges then $\left.p_{n}\left(c_{j}\right)\right\}_{n-1}^{\infty}$ converges, for $j=1, \ldots, k$. By the lemma the sequence of polynomials $\left\{p_{n}(x)\right\}_{n-1}^{\infty}$ converges uniformly to a polynomial $h(x)$ where either $h(x)=0$ or degree of $h(x)$ is $\leq k-1$, and $\left\{p_{n}^{(k-1)}(x)\right\}_{n-1}^{\infty}$ converges to $h^{(k-1)}(x)$. Because $p_{n}^{(k-1)}(x)=S_{n}^{(k-1)}\left(c_{1}\right), n=1,2, \ldots$ then $\left\{S_{n}^{(k-1)}\left(c_{1}\right)\right\}_{n-1}^{\infty}$ converges. It follows that $\left\{S_{n}^{(k-1)}(x)\right\}_{n-1}^{\infty}$ converges uniformly. Also $\lim _{n \rightarrow \infty} S_{n}^{(k)}(x)=\frac{d}{d x}\left(\lim _{n \rightarrow \infty} S_{n}^{(k-1)}(x)\right)$. Now the induction hypothesis can be used and the conclusion obtained.

We are now able to give the
Proof of Theorem A. Apply Theorem 1 to the sequence of real functions

$$
S_{n}(x)=f_{0}(x)+f_{1}(x)+\ldots+f_{n}(x), \quad n=0,1,2, \ldots .
$$

Note that each $S_{n}(x)$ has k derivatives and

$$
\begin{aligned}
S_{n}^{(k)}(x) & =\left(f_{0}(x)+f_{1}(x)+\ldots+f_{n-1}(x)\right) \cdot f(x) \\
& =S_{n-1}(x) \cdot f(x) \text { for } n \geq 1 .
\end{aligned}
$$

By hypothesis $\left\{S_{n}(x)\right\}_{n-1}^{\infty}$ converges uniformly on $[a, b]$ to $S(x)$. Hence $\left\{S_{n}^{(k)}(x)\right\}_{n-1}^{\infty}$ converges uniformly to $S(x) \cdot f(x)$. By Theorem 1, we obtain that the sequence of functions $\left\{S_{n}^{(j)}(x)\right\}_{n-1}^{\infty}$ converges uniformly and $\frac{d^{\prime}}{d t^{\prime}}\left(\lim _{n} S_{n}(x)\right)=\lim _{n}\left(\frac{d}{d t^{\prime}} S_{n}(x)\right)$ for $j=1,2, \ldots, k$. Thus for $a \leq x \leq b$,

$$
\begin{aligned}
S^{(k)}(x)=\frac{d^{k}}{d x^{k}}\left(\lim _{n} S_{n}(x)\right) & =\lim _{n}\left(\frac{d^{k}}{d x^{k}} S_{n}(x)\right) \\
& =\lim _{n}\left(S_{n-1}(x) \cdot f(x)\right)=S(x) f(x) .
\end{aligned}
$$

This proves Theorem A.

4. Examples and Remarks

We give some applications of Theorem A.
Example 1: Consider $y^{\prime \prime}-\left(A x^{k}\right) y=0, a \leq x \leq b$, where A, k are constants, $k \geq 0$, and $f(x)=A x^{k}$ is continuous and bounded by M on $[a, b]$. We may assume $c=0 \in[a, b]$ and $|a| \leq|b|$. Let $f_{0}(x)=1$ and for $n \geq 1$ let

$$
\begin{aligned}
& f_{1}(x)=\frac{A x^{k+2}}{(k+1)(k+2)}, \quad f_{2}(x)=\frac{A^{2} x^{2 k+4}}{(k+1)(k+2)(2 k+3)(2 k+4)}, \cdots \\
& f_{n}(x)=\frac{A^{n} x^{n k+2 n}}{(k+1)(k+2)(2 k+3)(2 k+4) \ldots(n k+2 n-1)(n k+2 n)}, \cdots
\end{aligned}
$$

Thus $f_{n}^{\prime \prime \prime}(x)=f_{n-1}(x) \cdot f(x)$ and $\left|f_{n}(x)\right| \leq \frac{M^{n}|x| x^{2 x}}{(2 n)!} \leq \frac{M^{n} b^{2 n}}{(2 n)!}$ for $a \leq x \leq b, n=1,2, \ldots$. The series $\sum \frac{M^{n} b^{2 x}}{(2 n)!}$ converges by the ratio test so $\sum_{0}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$ to a function $S(x)$ by the Weierstrass M-test. Now let $g_{0}(x)=x$ and for $n \geq 1$, let

$$
\begin{aligned}
& g_{1}(x)=\frac{A x^{k+3}}{(k+2)(k+3)}, \quad g_{2}(x)=\frac{A^{2} x^{2 k+5}}{(k+2)(k+3)(2 k+4)(2 k+5)}, \ldots \\
& g_{n}(x)=\frac{A^{n} x^{n k+2 n+1}}{(k+2)(k+3)(2 k+4)(2 k+5) \ldots(n k+2 n)(n k+2 n+1)}, \cdots
\end{aligned}
$$

As before $g_{n}{ }^{\prime \prime}(x)=g_{n-1}(x) \cdot f(x)$ and $\left|g_{n}(x)\right| \leq \frac{\left.M^{n}| |\right|^{2 n+1}}{(2 n+1)!}, a \leq x \leq b, n=1,2, \ldots$ so that $\sum_{n=0}^{\infty} g_{n}(x)$ converges uniformly on $[a, b]$ to a function $T(x)$. By Theorem $1, S(x)$ and $T(x)$ are solutions to $y^{\prime \prime}-A x^{k} y=0$. Since
the Wronskian of $S(x)$ and $T(x)$ is $W(x)=S(x) T^{\prime}(x)-T(x) \cdot S^{\prime}(x)$ and $W(0) \neq 0$ then $S(x)$ and $T(x)$ are linearly independent on $[a, b]$, see e.g. [2], pp. 111-113. It follows that the general solution is $C_{1} S(x)+C_{2} T(x)$ for constants C_{1}, C_{2}. In particular if $k=0$ and $A>0$ then

$$
S(x)=\sum_{n=0}^{\infty} \frac{(\sqrt{A} x)^{2 n}}{(2 n)!}=\cosh (\sqrt{A} x) \quad \text { and } \quad T(x)=\frac{1}{\sqrt{A}} \sum_{0}^{\infty} \frac{(\sqrt{A} x)^{2 n+1}}{(2 n+1)!}=\frac{\sinh (\sqrt{A} x)}{\sqrt{A}}
$$

and if $k=0$ and $A<0$ then

$$
S(x)=\sum_{0}^{\infty} \frac{(-1)^{n}(\sqrt{|A|} x)^{2 n}}{(2 n)!}=\cos (\sqrt{|A| x}) \quad \text { and } \quad T(x)=\frac{1}{\sqrt{|A|}} \sum_{0}^{\infty} \frac{(-1)^{n}(\sqrt{| | x})^{2 n+1}}{(2 n+1)!}=\frac{\sin (\sqrt{|A| x})}{\sqrt{|A|}}
$$

These solutions are the same as those obtained by elementary methods.
Example 2: Consider $y^{\prime \prime}-A e^{k x} y=0,-a<x<a$, where A, k are constants, $a>0, k \neq 0$ and $f(x)=A e^{k x}$.

Let $f_{0}(x)=1$,

$$
\begin{aligned}
& f_{1}(x)=\frac{A}{k^{2}} e^{k x}, \quad f_{2}(x)=\frac{A^{2} e^{2 k x}}{\left(k^{2}\right)(2 k)^{2}}, \ldots \\
& f_{n}(x)=\frac{A^{n} e^{n k x}}{[(k)(2 k) \ldots(n k)]^{2}}, \ldots
\end{aligned}
$$

 the Ratio Test so $\sum_{n=0}^{\infty} f_{n}(x)=1+\sum_{n=1}^{\infty} \frac{A^{n} e^{n k x}}{\left[\left(k^{n}\right)(n!!)\right]^{2}}$ converges uniformly on $[-a, a]$ to a function $S(x)$. Now let $c=0, g_{0}(x)=x$,

$$
\begin{aligned}
& g_{1}(x)=\frac{A e^{k x}}{k^{2}}\left(x-\frac{2}{k}\right), \quad g_{2}(x)=\frac{A^{2} e^{2 k x}}{(k)^{2}(2 k)^{2}}\left\{x-\frac{2}{k}\left(1+\frac{1}{2}\right)\right\}, \ldots \\
& g_{n}(x)=\frac{A^{n} e^{n k x}}{\left[\left(k^{n}\right)(n!)\right]^{2}}\left[x-\frac{2}{k}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)\right], \ldots
\end{aligned}
$$

Then $g_{n}{ }^{\prime \prime}(x)=g_{n-1}(x) \cdot f(x)$ and $\left|g_{n}(x)\right| \leq \frac{\left(|A| e^{|n a|}\right)^{n}}{\left[\left(k^{n}\right)(n!)\right]^{2}}\left[|a|+\frac{2}{k}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)\right]:=b_{n}$ for $|x| \leq a, n=1,2, \ldots$. Since $\sum b_{n}$ converges by the Ratio Test then $\left(x+\sum_{n=1}^{\infty} g_{n}(x)\right)$ converges uniformly on $[-a, a]$ to some $T(x)$. To see that $S(x)$ and $T(x)$ are linearly independent let $x=x(u)=k^{-1} \ln u \Leftrightarrow \dot{u}=e^{k x}$. Then

$$
S(x(u))=1+\sum_{n=1}^{\infty} \frac{A^{n} u^{n}}{\left(k^{n} \cdot n!\right)^{2}}
$$

and

$$
\begin{aligned}
T(x(u)) & =\frac{\ln u}{k}+\sum_{n=1}^{\infty} \frac{A^{n} u^{n}}{\left(k^{n} \cdot n!\right)^{2}}\left[\frac{\ln u}{k}-\frac{2}{k}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)\right] \\
& =\left(\frac{\ln u}{k}\right) \cdot S(x(u))-\frac{2}{k} \sum_{n=1}^{\infty}\left\{\frac{A^{n} u^{n}}{\left(k^{n} \cdot n!\right)^{2}}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)\right\} .
\end{aligned}
$$

Note $S(x(u))$ has a Maclaurin Series but $T(x(u))$ does not; hence $S(x)$ and $T(x)$ are linearly independent.
Thus $C_{1} S(x)+C_{2} T(x), C_{1}, C_{2}$ constants, is the general solution to

$$
y^{\prime \prime}-A e^{k x} y=0, \quad-a \leq x \leq a
$$

We conclude with some remarks. Theorem 1 is a generalization of Theorem 0 and is of interest by itself. It is possible to improve Theorem 1 by generalizing hypothesis (iv) e.g., to include in (iv) a third alternative as follows: c_{1}, \ldots, c_{k-1} are distinct points and each of $\left\{S_{n}\left(c_{1}\right)\right\}_{1}^{\infty}, \ldots,\left\{S_{n}\left(c_{k-1}\right)\right\}_{1}^{\infty}$ and $\left\{S_{n}^{\prime}\left(c_{1}\right)\right\}_{1}^{\infty}$ converge. It may be possible to generalize Theorem A to differential equations that include intermediate derivatives, e.g., $y^{\prime \prime}+g(x) y^{\prime}+f(x) y=0, f(x)$ and $g(x)$ continuous on $[a, b]$; such a generalization would require an improvement of Theorem 1. As seen in the examples, linearly independent solutions to the differential equation are obtained by using linearly independent functions for $f_{0}(x)$. Finally, we note that difficulties in the application of Theorem A may occur when finding the $k^{\text {hh }}$ antiderivative of $f_{n-1}(x) f(x)$, and thus this method of solution may be impractical for such cases.
*Note: The first author is deceased.

References

1. OLMSTED, J. M. H. Advanced Calculus, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1961.
2. CODDINGTON, E. A. An Introduction to Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1961.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

