A NOTE ON POWER INVARIANT RINGS

JOONG HO KIM
Department of Mathematics East Carolina University Greenville, N.C. 27834 U.S.A.
(Received September 1, 1980)

ABSTRACT. Let R be a commutative ring with identity and $R(n))=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ the power series ring in n independent indeterminates X_{1}, \ldots, X_{n} over R. R is called power invariant if whenever S is a ring such that $R\left[\left[X_{1}\right]\right] \cong S\left[\left[X_{1}\right]\right]$, then $R \cong S . \quad R$ is said to be forever-power-invariant if S is a ring and n is any positive integer such that $R^{((n))} \cong S^{((n))}$, then $R \cong S$. Let $I_{c}(R)$ denote the set of all $a \in R$ such that there is R - homomorphism $\sigma: R[[X]] \rightarrow R$ with $\sigma(X)=a$. Then $I_{c}(R)$ is an ideal of R. It is shown that if $I_{c}(R)$ is $n i l, R$ is forever-power-invariant. KEY WORDS AND PHRASES. Power series ring, Power invariant ring, Forever-powerinvariant, Ideal-adic topology.

1980 Mathematics Subject Classification Codes. $13 F 25$

1. INTRODUCTION.

In this paper all rings are assumed to be commutative and to have identity elements. Throughout this paper the symbol ω and ω_{0} are used to denote the sets of positive and negative integers, respectively. Let $R^{((n))}=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the formal power series ring in n indeterminates X_{1}, \ldots, X_{n} over a ring R and let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of $R^{((n))}$. Let $\left(R^{((n))},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ denote the topological ring $R^{((n))}$ with the $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ - adic topology where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the ideal of $R^{((n))}$ generated by $\alpha_{1}, \ldots, \alpha_{n}$. It is well known that $\left(R^{((n))},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right.$ is Hausdorff if and only if $n_{j \in \omega}\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{j}=(0)$. In this case, the topological ring $R^{((n))}$ is metrizable, and we say that $\left(R^{((n))},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right.$) is complete if
each Cauchy sequence of $R^{((n))}$ converges in $R^{((n))}$. Clearly, ($\left.R^{((n))},\left(X_{1}, \ldots, X_{n}\right)\right)$ is a complete Hausdorff space. If $\alpha \in R^{((n))}$, then α is uniquely expressible in the form $\sum_{j=0}^{\infty} \alpha_{j}$, where $\alpha_{j} \in R\left[X_{1}, \ldots, X_{n}\right]$ for each $j \in \omega_{0}$ such that α_{j} is 0 or a homogenous polynomial (that is form) of degree j in X_{1}, \ldots, X_{n} over R. We call $\Sigma_{j=0}^{\infty} \alpha_{j}$ the homogenous decomposition of α, and for each $j \in \omega_{0}, \alpha_{j}$ is called the $j-t h$ homogenous component of α.

Coleman and Enochs [3] raised the following question: Can there be non-isomorphic rings R and S whose polynomial rings $R[X]$ and $S[X]$ are isomorphic? Hochster [8] answered the question in the affirmative. The analogous question about formal power series rings was raised by 0^{\prime} Malley [13]: If $R[[X]] \cong S[[X]]$, must $A \cong B$? Hermann [7] showed that there are non-isomorphic rings R and S whose formal power series ring $R[[X]]$ and $S[[X]]$ are isomorphic. Then what is necessary and sufficient conditions on a ring R in order that whenever S is a ring such that $R[[X]] \cong S[[X]]$, then $R \cong S ?$ Several authors $[7,10,13]$ investigated sufficient conditions on R so that R should be power invariant, but we do not know the necessary conditions on R. The fact that rings with nilpotent Jacobson radical are power invariant is known in [10] and Hamann [7] proved that a ring R is power invariant, if $J(R)$, the Jacobson radical of R, is nil. In this paper we impose more relaxed condition on $J(R)$ so that R should be power invariant and forever-powerinvariant. Let $I_{c}(R)$ denote the set of all $a \in R$ such that there is an R-homomorphism $\sigma: R[[X]] \rightarrow R$ with $\sigma(X)=a$. Then $I_{c}(R)$ is an ideal of R contained in $J(R)$ and contains the nil-radical of R (by Theorem E, [4]). Then $I_{c}(R)$ may be properly contained in $J(R)$ and it may properly contain the nil-radical of R. For example, if $A=Z /(4)[X]$, then $M=(2, X)$ is a maximal ideal of A. Let $R=A_{M}[[Y]]$, then the nil-radical of R is $2 R$ and $I_{c}(R)=(2, Y)$ and $J(R)=(2, X, Y)$. Also it is easy to see that the nil-radical of A_{M} is (2) and $I_{c}\left(A_{M}\right)=(2)$ and $J\left(A_{M}\right)=(2, X)$. This shows that for some ring $R, I_{c}(R)$ is nil, but $J(R)$ is not nil. It is well known that $J\left(R^{((n))}\right)=J(R)+{ }_{i=1}^{n} X_{i} R^{((n))}$. Analogously, the following relation was proved in [6]: $\quad I_{c}\left(R^{((n))}\right)=I_{c}(R)+\sum_{i=1}^{n} X_{i} R^{((n))}$; therefore, for any ring R and any positive integer $n, I_{c}\left(R^{((n))}\right)$ can not be nil.

2. SOME POWER INVARIANT RINGS.

Let $\alpha=\sum_{i=0}^{\infty} a_{i} X_{i} \in R[[X]]$. If ${ }_{n=1}^{\infty}\left(a_{0}^{n}\right)=(0)$ (or ${ }_{n}^{n}{ }_{n}^{\infty}\left(\alpha^{n}\right)=(0)$) and R is complete with respect to the (a_{0})-adic topology (or $\mathrm{R}[[\mathrm{X}]$] is complete with respect to the (α-adic topology), then there is an R-endomorphism ϕ of $R[[X]]$ such that $\phi(X)=\alpha,([14]$ and [15]).

The following theorem from [15] will be needed for our main results.
THEOREM 1. Let $\alpha={ }_{i=0}^{\infty}{ }_{=} a_{i} X^{i} \in R[[X]]$. Then there exists an R-automorphism ϕ of $R[[X]]$ such that $\phi(X)=\alpha$ if and only if the following conditions are satisfied:
(1) (R[[X]], (α)) is a complete Hausdorff space;
(2) a_{1} is a unit of R.

The next theorem (Theorem 5.6, [5]) is the more generalized form of Theorem 1.
THEOREM 2. Let $\alpha_{i}=j_{j=0}^{\infty} \alpha_{j}^{(i)} \in R^{((n))}$ for $i=1, \ldots, n$, be homogeneous decompositions of elements of $R^{((n))}$. There exists an R-automorphism ϕ of $R^{((n))}$ such that $\phi\left(X_{i}\right)=\alpha_{i}$ for each if and only if the following conditions are satisfied:
(1) ($\left.R^{((n))},\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ is a complete Hausdorff space;
(2) $R \alpha_{1}^{(1)}+\ldots+R \alpha_{1}^{(n)}=R X_{1}+\ldots+R X_{n}$.

Moreover, if such an automorphism ϕ exists, then it is unique.
Also, we need the following proposition:
PROPOSITION 3. Let M be a unitary free R-module of finite rank n and let $\left\{x_{i}\right\}_{i=1}^{n}$ be a free basis for M. Let $M_{n}(R)$ denote the ring of $n x$ matrices over R, and let z_{1}, \ldots, z_{n} be elements of M such that $z_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ for each $i=1, \ldots, n$ where $a_{i j} \in R$ for each i and j. Then the following conditions are equivalent:
(1) $R z_{1}+\ldots+R z_{n}=R x_{1}+\ldots+R x_{n}$
(2) det (A), the determinant of A, is a unit of R where $A=\left(a_{i j}\right)$ is the $\mathrm{n} \times \mathrm{n}$ matrix.
(3) $\left\{z_{i}\right\}_{i=1}^{n}$ is a free basis for M.

The proof of the proposition is stralghtforward so we omit its proof.
Finally, we list the theorem from [4] which plays a particularly important role in this paper.

THEOREM 4. Let
$I_{1}=\{a \in R \mid$ there exists an R-automorphism $\sigma: R[[X]] \rightarrow R[[X]]$ with $\sigma(x)=X+a$ and $I_{2}=\left\{a \in R \mid\right.$ there exists an R-homomorphism $\sigma: R\left[\left[X_{1}, \ldots, X_{n}\right]\right] \rightarrow R\left[\left[Y_{1}, \ldots, Y_{m}\right]\right]$ such that $\sigma\left(X_{i}\right)=a+f$ for some X_{i} and $\left.f \in \Sigma_{j=1}^{m} Y_{j} R\left[\left[Y_{1}, \ldots, Y_{m}\right]\right]\right\}$.
Then $I_{c}(R)=I_{1}=I_{2}$.
Now we are ready for our first result.
THEOREM 5. If R is a ring such that $I_{c}(R)$ is $n i l$, then R is power invariant. PROOF. Suppose that $I_{c}(R)$ is nil. Let ϕ be an isomorphism of $R[[X]]$ onto $S[[\mathrm{X}]]$. Then $\phi(\mathrm{R})[[\phi(\mathrm{X})]]=\mathrm{S}[[\mathrm{X}]]$; therefore, in order to show power invariance of R, it suffices to show that $R[\mid X]]=S[[Y]]$ implies $R \cong S$, where Y is an indeterminate over a ring S. Let $W=R[[X]]=S[[Y]]$ and let $Y=a_{0}+X U$ and $X=b_{0}$ $+Y V$ where $a_{0} \in R, b_{0} \in S$ and $U, V \in W$. Clearly (W, (Y)) is a complete Hausdorff space; therefore, there is an R-endomorphism σ of $R[[X]]$ such that $\sigma(X)=Y=a_{0}$ $+X U$. Then by Theorem 4, $a_{0} \in I_{c}(R)$ and so a_{0} is a nilpotent element of R. Let $a_{0}={ }_{i}{\underset{=}{=}}_{\infty}^{\infty} c_{i} Y^{i}$ where $c_{i} \in S$ for each $i \in \omega_{0}$, then c_{i} is nilpotent for each $i \in \omega_{0}$ and we have

$$
\begin{equation*}
Y={ }_{i}{ }_{i}^{\infty}{ }_{=0} c_{i} Y^{i}+b_{0} U+Y V U \tag{1}
\end{equation*}
$$

The Y coefficients in both sides of (1) yields $1=c_{1}+b_{0} u_{1}+v_{0} u_{0}$ where u_{0} and v_{0} are constant terms of U and V considered as elements of $S[[Y]]$, respectively and u_{1} is the Y coefficient of U considered as an element of $S[[Y]]$. Since X is an element of $J(R[[X]])=J(W), b_{0}+Y V$ is an element of $J(S[[Y]])$ and so b_{0} is an element of $J(S)$. Recall that c_{1} is a nilpotent element of S, then $c_{1}+b_{0} u_{1} \in J(S)$; therefore, $v_{0} u_{0}=1-c_{1}-b_{0} u_{1}$ is a unit of S. This forces U and V to be units of $\mathrm{W}=\mathrm{S}[[\mathrm{Y}]]$. If we consider U as an element of $\mathrm{R}[\mathrm{X}]]$ and let $\mathrm{U}={ }_{i=1}^{\stackrel{E}{E}_{0}} \mathrm{a}_{\mathrm{i}+1} \mathrm{X}^{1}$, $a_{i+1} \in R$ for each $i \in \omega_{0}$, then the constant term a_{1} is a unit of R. Then $Y={ }_{i=0}^{\infty}{ }_{=0} a_{i} X^{i}$ where a_{1}, the X coefficient, is a unit of R, and ($W,(Y)$) is a complete Hausdorff Space. Then by Theorem 1, there exists an R-automorphism ψ of $R[[X]]$ which maps X onto $Y=a_{0}+X U={ }_{i} \stackrel{D}{E}_{0} a_{i} X^{i}$.
Then $R \cong R[[X]] /(X) \cong W /\left(a_{0}+X U\right)=W /(Y) \cong S$. This completes the proof.
Let $R[t]$ be the polynomial ring in an indeterminate t over a ring R, then $J(R[t])$ coincides with the nil-radical of $R[t]$; therefore, $I_{c}(R[t])$ is a nil ideal
of ($R[t]$) and by Theorem 5, $R[t]$ is power invariant. Similarly, if $R\left[t_{1}, \ldots, t_{n}\right]$ is the polynomial ring in n indeterminates t_{1}, \ldots, t_{n} over R, then $R\left[t_{1}, \ldots, t_{n}\right]$ is power invariant.

It is natural to raise the following question: For what kind of ring R, is R isomorphic to S whenever $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ and $S\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ are isomorphic for some positive integer n ? To wit, we give the following definition.

DEFINITION. A ring R is said to be forever-power-invariant provided R is isomorphic to S whenever there is a ring S and a positive integer n such that $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ and $S\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ are isomorphic where X_{1}, \ldots, X_{n} are independent indeterminates over R and S.

EXAMPLE. If R is a quasi-local ring then so is $R\left[\left[X_{1}, \ldots, X_{n}\right]\right.$ for any positive integer n. Since any quasi-local ring is power invariant [7], $R\left[\left[X_{1}, \ldots, X_{n}\right]\right.$ is power invariant if R is a quasi-local ring. Then clearly every quasi-local ring is forever-power-invariant.

THEOREM 6. If R is a ring such that $I_{c}(R)$ is nil, then R is forever-powerinvariant.

PROOF. Suppose that R is a ring such that $I_{c}(R)$ is nil. Let $W=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ $=S\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$. To prove this theorem, it suffices to show that R and S are isomorphic. Let $Y_{i}=a_{0}^{(i)}+X_{1} U_{1}^{(i)}+\ldots+X_{n} U_{n}^{(i)}$ and $X_{i}=b_{0}^{(i)}+Y_{1} V_{1}^{(i)}+\ldots+Y_{n} V_{n}^{(i)}$ for each $i=1, \ldots, n$ where $U_{k}^{(i)}$ and $V_{k}^{(i)}$ are elements of W for each $i=1, \ldots, n$ and $k=1, \ldots, n$ and $a_{0}{ }^{\text {(i) }} \epsilon R, b_{0}{ }^{(i)} \epsilon S$ for each $i=1, \ldots, n$. Since $\left(W,\left(Y_{i}\right)\right.$) is a complete Hausdorff space, there is a R-homomorphism ϕ of $R\left[\left[X_{1}\right]\right]$ into $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ such that $\phi\left(X_{1}\right)=\left(Y_{i}\right)=a_{0}^{(i)}+X_{1} U_{1}^{(i)}+\ldots+$ $X_{n} U_{n}^{(i)}$. Then by Theorem 4, $a_{0}{ }^{(i)} \in I_{c}(R)$ for each $i=1, \ldots, n$ and so $a_{0}^{(i)}$ are nilpotent for each $i=1, \ldots, n$. The relation defined between $Y_{i} s$ and $X_{i} s$ yields the following:

$$
\begin{align*}
Y_{i}= & a_{0}^{(i)}+{ }_{k}^{n} \underline{\underline{=}} 1_{n} b_{0}^{(k)} U_{k}^{(i)}+\left(\sum_{k=1}^{n} V_{1}^{(k)} U_{k}^{(i)}\right) Y_{1}+\ldots \\
& +\left({ }_{k=1}^{n} V_{i}^{(k)} U_{k}^{(i)}\right) Y_{i}+\ldots+\left({ }_{k=1}^{n} V_{n}^{(k)} U_{k}^{(i)}\right) Y_{n} \tag{1}
\end{align*}
$$

Let $a_{0}^{(i)}={ }_{k} \sum_{0}^{\infty} C_{k}{ }^{(i)}$ be a homogenous decomposition in $S\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$. Then since
$a_{0}^{(i)}$ is nilpotent, $C_{k}{ }^{(i)}$ is nilpotent for each $k=1, \ldots, n$. Let $C_{1}{ }^{(i)}=c_{11}{ }^{(i)} Y_{1}+$ $\ldots+c_{1 n}{ }^{(i)} Y_{n}$, then $c_{1 j}{ }^{(i)}$ is a nilpotent element of S for each $j=1, \ldots, n$. Let $U_{k}^{(i)}=j_{j}^{\infty} \sum_{0} U_{k j}^{(i)}$ and $V_{k}^{(i)}=\sum_{j=0}^{\infty} V_{k j}^{(i)}$ be homogeneous decompositions of elements $U_{k}^{(i)}$ and $V_{k}^{(i)}$ in $S\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$ and $\operatorname{let} U_{k 1}^{(i)}=u_{k 11} Y_{1}+\ldots+u_{k 1 n} Y_{n}$ and $V_{k 1}^{(i)}=$ $v_{k 11} Y_{1}+\ldots+v_{k 1 n} Y_{n}$. Then the Y_{j} coefficient of the right side of (1) is

$$
c_{1 j}^{(i)}+\sum_{k=1}^{n} b_{0}^{(k)} u_{k 1 j}^{(i)}+\sum_{k=1}^{n} v_{j 0}^{(k)} U_{k 0}^{(i)}
$$

which is equal to 1 if $j=i$, otherwise, 0 . Since $c_{1 j}{ }^{\text {(i) }}$ is nilpotent and $\sum_{k=1}^{n} b_{0}^{(k)} u_{k 1 j}^{(i)} \in J(S), \sum_{k}^{\infty} \sum_{1} V_{j 0}{ }^{(k)} U_{k 0}^{(i)}$ is a unit of S if $i=j$ and it is in $J(S)$ if $i \neq j$. Let $A=\left(V_{j 0}{ }^{(k)}\right)_{j k}$ and $B=\left(U_{k 0}{ }^{(i)}\right)_{k i}$ be $n x n$ matrices over S, then $A B=\left({ }_{k=1}^{n} V_{j 0}(k) U_{k 0}^{(i)}\right)_{j i}$ in which every diagonal entry is a unit of S and the rest of entries are elements of $J(S)$. So $A B$ is invertible in $M_{n}(S)$: therefore, both A and B are invertible in $M_{n}(S)$. Clearly, $\left(W,\left(X_{1}, \ldots, X_{n}\right)\right.$) is a complete Hausdorff space. Recall that the linear homogeneous component of $X_{i}=b_{0}{ }^{(i)}$ $+Y_{1} V_{1}^{(i)}+\ldots+Y_{n} V_{n}^{(i)}$ considered as an element of $S\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$ is $Y_{1} V_{10}^{(i)}+\ldots$ $+Y_{n} V_{n 0}^{(i)}$ for each $i=1, \ldots, n$ and the $n x n$ matrix $A=\left(V_{j 0}^{(i)}\right)_{j i}$ is invertible in $M_{n}(S)$. Then by Theorem 2 and Proposition 3, there is an S-automorphism ψ of $S\left[\left[Y_{1}, \ldots, Y_{n}\right]\right]$ such that $\psi\left(Y_{i}\right)=b_{0}^{(i)}+Y_{1} V_{1}^{(i)}+\ldots+Y_{n} V_{n}^{(i)}$ for each $i=1, \ldots, n$. Then $\mathrm{S} \cong \mathrm{S}\left[\left[\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right]\right] /\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right) \cong \mathrm{W} /\left(\psi\left(\mathrm{Y}_{1}\right), \ldots, \psi\left(Y_{n}\right)\right)=\mathrm{W} /\left(X_{1}, \ldots, X_{n}\right)$
$=R\left[\left[X_{1}, \ldots, X_{n}\right]\right] /\left(X_{1}, \ldots, X_{n}\right) \cong R$. This completes the proof.
CORROLLARY 7. If $R\left[t_{1}, \ldots, t_{n}\right]$ is the polynomial ring in indeterminates t_{1}, \ldots, t_{n} over a ring R, then it is a forever-power-invariant.

It is easy to see that if R is a ring such that $R\left[\left[X_{1}, \ldots, X_{n}\right]\right.$ is power invariant for any positive integer n. Then R is forever-power-invariant. This raises the following open question: If R is a ring such that $I_{c}(R)$ is nil then for any positive integer, is $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ power invariant?

REFERENCES

1. S. Abhyanker, W. Heinzer, and P. Eakin, On the uniqueness of the coefficient ring in polynomial rings, J. Algebra 23 (1972), 310-342.
2. N. Bourbaki, Algebrè Commutative, Chap. 3 and 7, Paris, Hermann, 1965.
3. D. Coleman and E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247-252.
4. P. Eakin and A. Sathaye, R-endomorphisms of $R[[X]]$ are essentially continuous, Pacific J. Math. 66 (1976), 83-87.
5. R. Gilmer and M. O'Malley, R-endomorphisms of $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, J. Algebra 48 (1977), 30-45.
6. R. Gilmer and M. 0^{\prime} Malley, On R-homomorphisms of power series rings, Advances in Math., (to appear).
7. E. Hamann, On power-invariance, Pacific J. Math., 61 (1975), 153-159.
8. M. Hochster, Non-uniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc., 34 (1972), 81-82.
9. I. Kaplansky, Commutative rings, Boston, Allyn and Bacon, 1970.
10. J. H. Kim, Power invariant rings, Pacific J. Math. 51 (1974), 207-213.
11. J. H. Kim, R-automorphisms of $R[t]\left[\left[X_{1}, \ldots, X_{n}\right]\right.$, J. Algebra (to appear).
12. M. Nagata, Local Rings, New York, Interscience, 1962.
13. M. O'Malley, Isomorphic power series rings, Pacific J. Math., 41 (1972), 503-512.
14. M. O'Malley, R-automorphisms of $R[[X]]$, Proc. London Math. Soc., 20 (1970), 60-78.
15. M. O'Malley and C. Wood, R-endomorphisms of R[[X]], J. Algebra, 15 (1970), 314-327.
16. O. Zariski and P. Samuel, Commutative Algebra, Vol.II, Princeton, N.J.: Van Nostrand, 1960.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
$\xrightarrow{\square}$
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

