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We study the excited muon production at the FCC-based muon-hadron colliders. We give the excited muon decay widths and
production cross-sections. We deal with the 𝜇𝑝 → 𝜇⋆𝑞 → 𝜇𝛾𝑞 process and plot the transverse momentum and normalized
pseudorapidity distributions of final state particles to define the kinematical cuts best suited for discovery. By using these cuts,
we get the mass limits for excited muons. It is shown that the discovery limits obtained on the mass of 𝜇⋆ are 2.2, 5.8, and 7.5 TeV
for muon energies of 63, 750, and 1500GeV, respectively.

1. Introduction

Discovery of the Higgs boson by ATLAS and CMS collabora-
tions in 2012 [1, 2] has proved the accuracy and reliability of
the Standard Model (SM) of the particle physics. But, many
questions about dark matter, supersymmetric particles, extra
dimensions, neutrino masses, asymmetry between matter
and antimatter, existence of new fundamental interactions,
and fermion substructure are keeping their mystery and
waiting to be solved. Many theories beyond the SM (BSM)
have been proposed for these puzzling phenomena. Evidently,
it is necessary to perform the particle physics experiments in
more powerful colliders with higher energies and luminosi-
ties.

Compositeness is one of the BSM models that intend to
solve the problem of fermionic families replication, by
introducing more fundamental matter constituents called
preons. Excited fermions are predicted by preonic models
and their existence would be a strong evidence for fermion
substructure [3–5]. If known quarks and leptons present
composite structures, reasonable explanations could be given

for the still unanswered questions about the number and
replication of SM families and their mass hierarchy. The
appearance of excited states is an indisputable consequence of
composite structure of known fermions [6–9]. In composite
models, SM fermions are considered as ground states of a rich
and heavier spectrum of excited states. Charged (𝑒⋆, 𝜇⋆, 𝜏⋆)
and neutral (]⋆𝑒 , ]⋆𝜇 , ]⋆𝜏 ) excited leptons come on the scene
in the framework of composite models. Excited leptons with
spin-1/2 and weak-isospin-1/2 are considered as the lowest
radial and orbital excitations. Excited states with higher spins
also appear in composite models [10–14].

Considerable searches for the spin-1/2 charged and neu-
tral excited lepton signatures have been performed for the𝑒+𝑒− and 𝑒𝑝 colliders [15–18]; 𝛾𝛾 [19–22] and 𝑒𝛾[14, 23]
colliders; 𝑝𝑝 [24–27] and 𝑝𝑝 [28–30] colliders. Produc-
tion and decay properties of spin-1/2 excited leptons in
a left-right symmetric scenario are studied in [31]. Also,
spin-3/2 excited leptons are studied at various colliders in
[32–38].

Excited electrons (𝑒⋆) are extensively investigated in the
field of excited leptonic state studies. To perform a main
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Table 1: Main parameters of the FCC-based 𝜇𝑝 collider.

Collider 𝐸𝜇 (TeV) √𝑠 (TeV) 𝐿𝜇𝑝 (cm−2 s−1)
𝜇63-FCC 0.063 3.50 0.2 × 1031
𝜇750-FCC 0.75 12.2 50 × 1031
𝜇1500-FCC 1.5 17.3 50 × 1031

comparison it is necessary to study the other charged excited
leptons (𝜇⋆ and 𝜏⋆). In principle, 𝜇⋆ and 𝜏⋆ contributions
would differ from 𝑒⋆ contribution in the mass and decay
products of the SM leptons.

The mass limit for excited spin-1/2 muons obtained from
their pair production (𝑒+𝑒− → 𝜇+⋆𝜇−⋆) by OPAL collabora-
tion at √𝑠 = 189 − 209GeV is 𝑚𝜇∗ > 103.2GeV [39]. From
single production (𝑝𝑝 → 𝜇𝜇⋆𝑋), in eventswith three ormore
charged leptons at √𝑠 = 8TeV including contact interactions
in the 𝜇⋆ production and decay mechanism, the ATLAS
collaboration sets the mass limits as 𝑚𝜇∗ > 3000GeV [40].
Other studies on excited muon searches can be found in [41–
51].

Enormous efforts are being made for the research and
development of new particle colliders for the Large Hadron
Collider (LHC) era and post-LHC era. A staged approachwill
be taken into consideration for the planning of these energy
frontiers.Thefirst stage is low-energy lepton colliders tomake
the precision measurements of the LHC discoveries. These
projects are the International Linear Collider (ILC) [52] with
a center-of-mass energy of 0.5TeV and low-energy muon
collider (a 𝜇+𝜇− collider, shortly 𝜇C) [53]. Lepton-hadron
collider projects would be considered as a second stage,
including an 𝑒𝑝 collider under design, namely, Large Hadron
Electron Collider (LHeC) with √𝑠 = 1.3TeV (possibly
upgraded to √𝑠 = 1.96TeV) [54, 55], and a hypothetical𝜇𝑝 collider 𝜇-LHC at this stage. The ILC with an increased
center-of-mass energy (√𝑠 = 1TeV), the Compact Linear
Collider (CLIC) [56] with an optimal center-of-mass energy
of 3TeV, and the Plasma Wake-Field Accelerator-Linear
Collider project (PWFA-LC) [57] are high-energy linear 𝑒+𝑒−
colliders under consideration to be built after the LHC. On
the side of muon colliders, 𝜇Cwith √𝑠 up to 3 TeV is planned
as a high-energy muon collider [53].

The Future Circular Collider (FCC) [58] project investi-
gates the various concepts of the circular colliders at CERN
for the post-LHC era. The FCC is proposed as the future 𝑝𝑝
collider with √𝑠 = 100TeV and supported by the European
Union within the Horizon 2020 Framework Programme for
research and innovation. Besides the 𝑝𝑝 option, it is also
being planned to include the 𝑒+𝑒− collider option (TLEP or
FCC-ee) [59] and several 𝑒𝑝 collider options [60, 61].

Building a muon collider as a dedicated 𝜇-ring tangential
to the FCCwill give opportunity to handlemulti-TeV scale𝜇𝑝
and 𝜇𝐴 colliders [62, 63]. Assumed values for muon energy,
center-of-mass energy, and average instantaneous luminosity
for different FCC-based 𝜇𝑝 collider options are given in
Table 1.

Excited muon searches would provide complementary
information for the compositeness studies. This work is

dedicated to the search for excited muons at future FCC-
based muon-proton colliders. We introduce the effective
Lagrangian responsible for the gauge interactions of excited
muons and give their decay widths in Section 2. Production
cross-sections and the analysis for the 𝜇⋆ → 𝜇𝛾 decay mode
are presented in Section 3. We summarized our results in
Section 4.

2. Effective Lagrangian

A spin-1/2 excited lepton is the lowest radial and orbital
excitation according to the classification by 𝑆𝑈(2) × 𝑈(1)
quantum numbers. Interactions between excited spin-1/2
leptons and ordinary leptons are of magnetic transition type
[15, 16, 64]. The effective Lagrangian for the interaction
between a spin-1/2 excited lepton, a gauge boson (𝑉 =𝛾, 𝑍, 𝑊±), and the SM lepton is given by

𝐿 = 1
2Λ𝑙∗𝑅𝜎𝜇] [𝑓𝑔 ⃗𝜏

2 ⋅ 𝑊⃗𝜇] + 𝑓󸀠𝑔󸀠𝑌2 𝐵𝜇]] 𝑙𝐿 + h.c., (1)

where Λ is the new physics scale, 𝑊𝜇] and 𝐵𝜇] are the
field strength tensors, ⃗𝜏 denotes the Pauli matrices, 𝑌 is the
hypercharge, 𝑔 and 𝑔󸀠 are the gauge couplings, and 𝑓 and 𝑓󸀠
are the scaling factors for the gauge couplings of 𝑆𝑈(2) and𝑈(1); 𝜎𝜇] = 𝑖(𝛾𝜇𝛾]−𝛾]𝛾𝜇)/2with 𝛾𝜇 being theDiracmatrices.
An excited lepton has three possible decay modes: radiative
decay 𝑙⋆ → 𝑙𝛾, neutral weak decay 𝑙⋆ → 𝑙𝑍, and charged
weak decay 𝑙⋆ → ]𝑊. Neglecting the SM lepton mass, we
find the decay width of excited leptons as

Γ (𝑙⋆ 󳨀→ 𝑙𝑉) = 𝛼𝑚⋆3
4Λ2 𝑓2𝑉(1 − 𝑚2𝑉𝑚⋆2)

2

(1 + 𝑚2𝑉2𝑚⋆2) , (2)

where 𝑓𝑉 is the new electroweak coupling parameter cor-
responding to the gauge boson 𝑉, and 𝑓𝛾 = −(𝑓 + 𝑓󸀠)/2,
𝑓𝑍 = (−𝑓 cot 𝜃𝑊 + 𝑓󸀠 tan 𝜃𝑊)/2, and 𝑓𝑊 = 𝑓/√2 sin 𝜃𝑊; 𝜃𝑊
is the weak mixing angle, 𝑚𝑉 is the mass of the gauge boson,
and 𝑚⋆ is the mass of the excited lepton. Total decay widths
of excited leptons for Λ = 𝑚⋆ and Λ = 100TeV are given in
Figure 1.

3. Excited Muon Production at 𝜇𝑝 Colliders

The FCC-based 𝜇𝑝 colliders will provide the potential reach
for excited muon searches through the 𝜇𝑝 → 𝜇⋆𝑋 process.
Feynman diagrams for the subprocesses 𝜇𝑞(𝑞) → 𝜇⋆𝑞(𝑞) are
shown in Figure 2. We implemented excited muon interac-
tion vertices in high-energy physics simulation programme
CALCHEP [65–67] and used it in our calculations.



Advances in High Energy Physics 3

Γ
(G

eV
)

Λ = m⋆

Λ = 100TeV

10−4

10−3

10−2

10−1

100

101

102

2000 3000 4000 5000 6000 7000 8000 9000 100001000 

m⋆ (GeV)

Figure 1: Decay width of excited leptons for Λ = 𝑚⋆ and Λ = 100TeV.
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Figure 2: Leading-order Feynman diagrams for the 𝜇⋆ production at 𝜇𝑝 collider.
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Figure 3: Total cross-section as a function of the excited muon mass for the 𝜇𝑝 colliders with various center-of-mass energies for Λ = 𝑚∗ (a)
and Λ = 100TeV (b), respectively.

The total cross-section for the process 𝜇𝑝 → 𝜇⋆𝑋 as
a function of the excited muon mass is shown in Figure 3.
We used the CTEQ6L parton distribution function in our
calculations.

For the analysis we take into account the 𝜇𝛾 decay mode
of the 𝜇⋆. We deal with the process 𝜇𝑝 → 𝜇⋆𝑋 → 𝜇𝛾𝑋

(subprocess 𝜇𝑞(𝑞) → 𝜇𝛾𝑞(𝑞)) and impose generic cuts, 𝑝𝑇 >20GeV, for the final state muon, photon, and jets.
StandardModel cross-sections after the application of the

generic cuts are 𝜎𝐵 = 24.51 pb, 𝜎𝐵 = 89.69 pb, and 𝜎𝐵 =122.43 pb for √𝑠 = 3.50, 12.2, and 17.3TeV, respectively. We
show the transverse momentum distributions in Figure 4 (for
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Table 2: Discovery cuts.

Collider 𝑝𝜇𝑇 cut 𝑝𝛾𝑇 cut 𝜂𝜇 cut 𝜂𝛾 cut
𝜇63-FCC 𝑝𝜇𝑇 > 450GeV 𝑝𝛾𝑇 > 300GeV −4.5 < 𝜂𝜇 < −0.8 −4.8 < 𝜂𝛾 < −1.2
𝜇750-FCC 𝑝𝜇𝑇 > 1200GeV 𝑝𝛾𝑇 > 900GeV −3.5 < 𝜂𝜇 < 0.5 −4 < 𝜂𝛾 < 0.3
𝜇1500-FCC 𝑝𝜇𝑇 > 1500GeV 𝑝𝛾𝑇 > 1500GeV −3 < 𝜂𝜇 < 1 −4 < 𝜂𝛾 < 0.5
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Figure 4: Muon (a) and photon (b) 𝑝𝑇 distributions for the 𝜇63-FCC.
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Figure 5: Muon (a) and photon (b) normalized 𝜂 distributions for the 𝜇63-FCC.

𝜇63-FCC), in Figure 6 (for 𝜇750-FCC), and in Figure 8 (for𝜇1500-FCC); the normalized pseudorapidity distributions
are in Figure 5 (for 𝜇63-FCC), in Figure 7 (for 𝜇750-FCC),
and in Figure 9 (for 𝜇1500-FCC). We choose 𝑓 = 𝑓󸀠 = 1
and Λ = 𝑚⋆𝜇 in our calculations. As it is seen from Figures
4, 6, and 8 excited muons carry high transverse momentum
and these distributions show a peak around 𝑚𝜇⋆/2. Also,

normalized pseudorapidity distributions are so asymmetric.
Since pseudorapidity is defined to be 𝜂 = − ln(tan(𝜃/2)),
where 𝜃 is the polar angle, it is concluded that excited muons
are produced mostly in the backward direction.

By examining these distributions we determine the
discovery cuts presented in Table 2. To determine these
discovery cuts we specify the optimal regions where we cut
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Figure 6: Muon (a) and photon (b) 𝑝𝑇 distributions for the 𝜇750-FCC.
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Figure 7: Muon (a) and photon (b) normalized 𝜂 distributions for the 𝜇750-FCC.

off the most of the background but at the same time do not
affect the signal somuch. Since we choose the 𝜇⋆ → 𝜇𝛾 decay
mode of the excited muon (try to identify the excited muons
through its decay products), no further cut is made on jets.

The invariant mass distributions following these cuts are
shown in Figure 10. We define the statistical significance of
the expected signal yield as

𝑆𝑆 = 𝜎𝑆√𝜎𝐵√𝜖 ⋅ 𝐿 int, (3)

where 𝜎𝑆 denotes cross-section due to the excited muon
production and 𝜎𝐵 denotes the SM cross-section, 𝐿 int is the

integrated luminosity of the collider, and 𝜖 is the selection
efficiency to detect the signal in the chosen channel (𝜖 is
assumed to be the same both on signal and on background).
Taking into account the criteria 𝑆𝑆 > 3 (95% CL) and 𝑆𝑆 > 5
(99% CL), we derive the mass limits for excited muons. Our
results are summarized in Table 3.

4. Conclusion

It is shown that the FCC-based muon-proton colliders have a
significant potential in excited muon investigations. We have
studied the excited muon production and decay in various
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Figure 8: Muon (a) and photon (b) 𝑝𝑇 distributions for the 𝜇1500-FCC.
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Figure 9: Muon (a) and photon (b) normalized 𝜂 distributions for the 𝜇750-FCC 𝜇1500-FCC.

Table 3: Mass limits for 𝜇⋆ at FCC-based 𝜇𝑝 colliders.

Collider 𝐿𝜇𝑝 (cm−2s−1) Λ 𝑚𝜇⋆ (GeV)3𝜎 5𝜎
𝜇63-FCC 0.2 × 1031 𝑚𝜇⋆ 2330 2250

100TeV 2300 2180

𝜇750-FCC 50 × 1031 𝑚𝜇⋆ 6500 5950
100TeV 6000 5830

𝜇1500-FCC 50 × 1031 𝑚𝜇⋆ 8050 7540
100TeV 7930 7480

FCC-based𝜇𝑝 collider optionswithmuon energies of 63, 750,
and 1500GeV. Our analysis shows that taking into account

the 𝑆𝑆 > 5 criteria, for Λ = 𝑚⋆, excited muon mass limits
are 2250GeV, 5950GeV, and 7540GeV, for √𝑠 = 3.5, 12.2,
and 17.3TeV, respectively. Also, for the same criteria, forΛ = 100TeV, excited muon mass limits are 2180, 5830, and
7480GeV for √𝑠 = 3.5, 12.2, and 17.3TeV, respectively.
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Figure 10: Invariant mass distributions of the 𝜇𝛾 system after the discovery cuts for 𝜇63-FCC, 𝜇750-FCC, and 𝜇1500-FCC, respectively.
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[21] M. Köksal, “Analysis of excited neutrinos at the CLIC,” Interna-
tional Journal of Modern Physics A, vol. 29, no. 24, Article ID
1450138, 2014.

[22] A. Ozansoy and A. A. Billur, “Search for excited electrons
through 𝛾 scattering,” Physical Review D, vol. 86, no. 5, Article
ID 055008, 2012.
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