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Due to large numbers of antennas and users, matrix inversion is complicated in linear precoding techniques for massive MIMO
systems. Several approximated matrix inversion methods, including the Neumann series, have been proposed to reduce the
complexity.However, theNeumann series does not converge fast enough. In this paper, to speed up convergence, a new jointNewton
iteration and Neumann series method is proposed, with the first iteration result of Newton iteration method being employed to
reconstruct the Neumann series. Then, a high probability convergence condition is established, which can offer useful guidelines
for practical massive MIMO systems. Finally, simulation examples are given to demonstrate that the new joint Newton iteration
and Neumann series method has a faster convergence rate compared to the previous Neumann series, with almost no increase in
complexity when the iteration number is greater than or equal to 2.

1. Introduction

Massivemultiple-inputmultiple-output (MIMO) [1–3] is one
of the promising technologies for the fifth-generation com-
munication system. Compared to traditional MIMO, hun-
dreds of antennas are equipped in base stations (BSs) in mas-
sive MIMO systems in order to achieve orders of magnitude
increases in spectral and energy efficiency [4–6]. Unfortu-
nately, the application of themassiveMIMO system still faces
several challenging problems in practice. For example, linear
precoding techniques, such as zero-forcing (ZF) precoding,
are always involved with complicated matrix inversion due to
large numbers of BS antennas and users.

In order to reduce the complexity, several approximated
approaches have been recently proposed to avoid the exact
matrix inversion. A low-complexity Richardson method has
been proposed in [7], but it has an uncertain parameter
which affects the convergence of the method. Conjugate
gradientmethodwas applied to reduce the complexity of data
detection and precoding in the massive MIMO system with
realistic antenna configurations [8]. However, many divisions
are involved in the approach. Gauss-Seidel (GS) method was

employed in [9] to speed up convergence. Unfortunately, the
matrix inversion is not obtained directly, which will add extra
complexity to the calculation of the transmitted signal after
precoding. Newton iteration method converges fast and the
complexity can be controlled just by the number of iterations
[10]. However, a complex calculation is always required to get
an initial input to ensure convergence [10]. Truncated Neu-
mann series in [11, 12] was proposed to obtain near-optimal
performance. It contains matrix multiplication and matrix
addition, which are preferable in hardware implementation.
Nevertheless, how to speed up the convergence rate of the
Neumann series is still a problem.

In this paper, we propose a new joint Newton itera-
tion and Neumann series method, where Newton iteration
method is utilized to provide an efficient searching direction
for the Neumann series. Specifically, the first iteration result
of Newton iteration method is employed to reconstruct
the Neumann series expansion to accelerate convergence.
Furthermore, a high probability convergence condition is
derived to guarantee the convergence of the new approach.
This condition is expected to contribute to the massive
MIMO system in practice.
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The remainder of the paper is organized as follows. First,
Section 2 introduces the background including the system
model, the Neumann series, and Newton iteration method.
Then, the new joint Newton iteration and Neumann series
method is proposed in Section 3. Simulation results are in
Section 4. Finally, conclusions are drawn in Section 5.

2. Background

In this section, the system model, the Neumann series, and
Newton iteration method are introduced.

2.1. System Model. Consider a downlink massive MIMO
system with𝑁 antennas at the BS and𝐾 ≪ 𝑁 single antenna
users. The received 𝐾 × 1 vector y can be expressed as

y = √𝜌Hx + n, (1)

where 𝜌 is the signal-to-noise ratio (SNR) in the downlink,
H ∈ C𝐾×𝑁 denotes the Rayleigh fading channelmatrix whose
entries are independent and identically distributed (i.i.d.)
zero-mean unit-variance complex Gaussian variables, n ∈
C𝐾×1 is the additive white Gaussian noise vector, and x ∈
C𝑁×1 presents the transmitted signal vector after precoding
and is obtained by

x = Ps, (2)

where s is 𝐾 × 1 vector of QAM symbols for transmission
[13] and P ∈ C𝑁×𝐾 denotes the precoding matrix which
specifically for ZF precoding can be represented as

P = 𝛽H†, (3)

where

H† = H𝐻 (HH𝐻)
−1

≜ H𝐻W−1 (4)

denotes the pseudoinverse of H and 𝛽 is a scalar which is
always chosen as

𝛽 = √
𝐾

tr (W−1)
, (5)

where tr(W−1) denotes the trace ofW−1. The main computa-
tion complexity for ZF precoding lies in the inversion of𝐾×𝐾
matrixW, so several approximated approaches including the
Neumann series have been investigated recently, which are
shown in Section 1.

2.2. Neumann Series. Based on the Neumann series, the
matrix inversion of 𝐾 × 𝐾 matrix W is transformed to the
sum of matrix polynomials as

W−1 =
+∞

∑

𝑛=0

(I
𝐾
−ΘW)𝑛Θ, (6)

where Θ is 𝐾 × 𝐾 matrix. Note that, according to [14], the
premise condition of (6) is

lim
𝑛→∞
(I
𝐾
−ΘW)𝑛 = 0

𝐾
. (7)

For practical use,W−1 is approximated as [14]

W−1 ≈
𝐿

∑

𝑛=0

(I
𝐾
−ΘW)𝑛Θ, (8)

where 𝐿 is the iteration number.

Remark 1. Based on (2), (3), and (4), x is obtained as

x = 𝛽H𝐻W−1s. (9)

Let f ≜ W−1s and f can be regarded as the solution of the
linear equation

Wf = s. (10)

Recently, Richardsonmethod [7], conjugate gradient method
[8], and GS method [9] are all applied to solve (10) in an iter-
ative way. But they approximate W−1s instead of W−1, while
the Neumann series approximatesW−1 directly.

2.3. Newton Iteration Method. Newton iteration method can
be employed to estimateW−1 in an iterative way. Suppose Z

0

is the original estimation ofW−1 and the following condition
is satisfied:

I𝐾 −WZ
0

 < 1. (11)

Then, the 𝑛th iteration estimation ofW−1 is expressed as

Z
𝑛
= Z
𝑛−1
(2I
𝐾
−WZ

𝑛−1
) . (12)

Newton iteration method converges fast, but formula (11)
usually needs a complex calculation to get an appropriate Z

0

[10].

3. Joint Newton Iteration and Neumann
Series Method

It can be seen from (7) that, as the first item of the series, Θ
greatly affects convergence. How to chooseΘ plays a key role
in the Neumann series. In [13], Θ is initially set as (1/(𝑁 +
𝐾))I
𝐾
and the Neumann series converges when 𝑁 and 𝐾

grow to infinity. In [11],Θ is then chosen as the matrix inver-
sion of 𝐾 × 𝐾 diagonal matrix D whose entries are the main
diagonal elements of W, resulting in a faster convergence
rate. In this paper, Newton iteration method is employed
to provide an appropriate Θ to speed up the convergence
of the Neumann series. Moreover, a high probability con-
vergence condition about 𝑁/𝐾 ratio is derived for the joint
Newton iteration and Neumann series method. Finally, the
complexity of the new approach is analyzed.

3.1. Joint Newton Iteration and Neumann Series Method and
Its Convergence Condition. The fast convergence property of
Newton iterationmethod inspired us to useZ

1
instead ofD−1

asΘ to speed up the convergence rate of the Neumann series.
Note that formula (11) must be satisfied before the application
of Newton iteration method. According to [10], setting Z

0
to
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beD−1 makes it easy to meet (11) for massive MIMO systems.
Therefore, we get the joint Newton iteration and Neumann
series method as follows.

First, let Z
0
= D−1 and then

Z
1
= Z
0
(2I
𝐾
−WZ

0
) = D−1 (2I

𝐾
−WD−1) . (13)

Second, use Z
1
to reconstruct the Neumann series as

follows:

W−1 ≈
𝐿

∑

𝑛=0

(I
𝐾
− Z
1
W)𝑛 Z

1
. (14)

It is worth pointing out that, in order to guarantee the
convergence of theNeumann series withΘ = Z

1
, the accurate

lower bound of 𝑁/𝐾 ratio needs to be determined. For this
end, a high probability convergence condition about 𝑁/𝐾
ratio is given in the following lemma.

Lemma 2. For downlink massive MIMO systems, the Neu-
mann series withΘ = Z

1
converges with high probability when

𝛼 ≜
𝑁

𝐾
>
1

(√2 − 1)
2
. (15)

Proof. ∑∞
𝑛=0
(I
𝐾
− Z
1
W)𝑛Z

1
converges:

⇔ lim
𝑛→∞
(I
𝐾
− Z
1
W)𝑛 = 0

𝐾
,

⇔ 𝜌(I
𝐾
− Z
1
W) < 1, where 𝜌(I

𝐾
− Z
1
W) denotes the

spectral radius of I
𝐾
− Z
1
W,

⇔ |𝜆(A)| < 1, where 𝜆(A) is any eigenvalue of A and
A = I
𝐾
− Z
1
W.

Note that

A = I
𝐾
− Z
1
W = I

𝐾
−D−1 (2I

𝐾
−WD−1)W

= I
𝐾
− 2D−1W + (D−1W)

2

= (I
𝐾
−D−1W)

2
(16)

and ∑∞
𝑛=0
(I
𝐾
− D−1W)𝑛D−1 converges⇔ |𝜆(B)| < 1, where

B = I
𝐾
−D−1W.

Since A = B2 and 𝜆(A) = (𝜆(B))2, ∑∞
𝑛=0
(I
𝐾
− Z
1
W)𝑛Z

1

converges⇔ ∑∞
𝑛=0
(I
𝐾
−D−1W)𝑛D−1 converges.

According to [14], for ∑∞
𝑛=0
(I
𝐾
− D−1W)𝑛D−1, a high

probability convergence condition in terms of 𝛼 is

𝛼 >
1

(√2 − 1)
2
. (17)

Thus, the Neumann series with Θ = Z
1
, that is, ∑∞

𝑛=0
(I
𝐾
−

Z
1
W)𝑛Z

1
, converges with a high probability when 𝛼 >

1/(√2 − 1)
2.

By (15), the maximum value of 𝐾 can be calculated for a
specific 𝑁 to achieve a high convergence probability for the
Neumann series withΘ = Z

1
. Figure 1 shows the convergence

probability with the configurations in Table 1.
As seen in Figure 1, the joint Newton iteration and

Neumann series method can achieve a very high probability

Table 1: Maximum𝐾 values corresponding to different BS antenna
numbers under the condition of (15).

𝑁 64 128 192 256 320 384 448 512
𝐾 10 21 32 43 54 65 76 87
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Figure 1: Convergence probability of Neumann series with Θ = Z
1

under configurations in Table 1.

of convergence under the condition of (15), with the conver-
gence probability as high as 0.999. Furthermore, when 𝑁 is
relatively small, the performance is slightly better. Also, as
Figure 1 is obtained with the smallest allowed 𝛼 under (15), it
can be deduced that the convergence probability will be
higher as 𝛼 increases.

Lemma 2 has potential applications in massive MIMO
systems. For the two typical downlink massive MIMO con-
figurations 𝑁 × 𝐾 = 256 × 16 and 𝑁 × 𝐾 = 256 × 32 with
𝛼 = 16 and 𝛼 = 8, respectively [9], by Lemma 2, it can be
concluded that the new joint Newton iteration and Neumann
series method is convergent in both of these scenarios.

3.2. Complexity Analysis. The number of complex-valued
multiplications is employed as a roughly estimated complex-
ity of an algorithm. When Θ = D−1 or Θ = (1/(𝑁 + 𝐾))I

𝐾
,

the complexity of (8) is𝑂(𝐾2) for 𝐿 = 1 and𝑂(𝐾3) for 𝐿 ≥ 2.
However, whenΘ = Z

1
, the complexity is𝑂(𝐾3) for 𝐿 ≥ 1. As

a relatively large number of iterations (e.g., 𝐿 ≥ 4) are usually
needed to avoid too much performance loss, the complexity
of the three approaches is comparable. Note that, for different
Θ and 𝐿 ≥ 2, the complexity of the Neumann series is 𝑂(𝐾3)
which is comparable to that of the exactmatrix inversion [10].
However, the Neumann series only contains matrix addition
and matrix multiplication which is strongly preferred over
matrix inversion in hardware since it does not require any
divisions [13].

3.3. Discussion. Compared with the new joint Newton itera-
tion andNeumann seriesmethod, conjugate gradientmethod
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[8] and GS method [9] converge faster, but they approximate
W−1s instead of W−1, as stated in Remark 1. However, W−1
is preferred in the computation of 𝛽 and other related calcu-
lations, such as the sum rate computation of ZF precoding
[9] and fast matrix inversion updates [15]. In comparison,
the new joint Newton iteration and Neumann series method
approximatesW−1 directly and thus can significantly reduce
the total complexity in those calculations. Furthermore, it
only involves matrix multiplication and matrix addition,
while conjugate gradient method contains many divisions
which are more difficult for hardware implementation.
Richardson method [7] was applied in minimum mean
square error (MMSE) signal detection, but the relaxation
parameter of the method still remains unknown for ZF
precoding. In other words, Richardson method [7] may not
converge for ZF precoding. By contrast, the new jointNewton
iteration and Neumann series method will have a very high
probability of convergence if (15) is satisfied.

4. Numerical Results

The bit error rate (BER) performances of different algorithms
are evaluated in order to compare their convergence rates.
For simplicity, algorithm 1, algorithm 2, and algorithm 3
represent the Neumann series with Θ = D−1, Θ = Z

1
, and

Θ = (1/(𝑁 + 𝐾))I
𝐾
, respectively. Moreover, ZF precoding

with exact matrix inversion of W is also included as the
benchmark. Newton iterationmethod usually needs complex
calculation for initial estimation, which limits its range
of application [10]. Therefore, Newton iteration method is
not involved in comparison. The typical downlink massive
MIMO configuration with 𝑁 × 𝐾 = 256 × 32 is considered
and 64QAM is employed as the modulation scheme.

Figures 2 and 3 show the BER performance comparison
between the Neumann series with different Θ. It is obvious
in Figure 2 that the BER performance of both the algorithms
improves with the iteration number 𝐿. However, for a given
number of iterations, algorithm 2 achieves a better BER
performance than algorithm 1. Therefore, algorithm 2 has a
faster convergence rate than algorithm 1. Moreover, when the
iteration number is relatively large (e.g., 𝐿 = 4), the BER of
algorithm 2 is close to that of the exactmatrix inversion, while
algorithm 1 still suffers a great performance loss in compari-
son. In Figure 3, the advantage of algorithm 2 in convergence
rate becomes more obvious. Note that the BER performance
of algorithm 3 is even worse when 𝐿 = 4 than when 𝐿 = 3,
which implies that algorithm 3may not converge when𝛼 = 8.
Similarly, in Figure 4, Richardson method shows signs of
nonconvergence, which indicates that the relaxation param-
eter configuration in [7] may not suit ZF precoding. From
Figures 2, 3, and 4, it can be concluded that algorithm 2 has
the fastest convergence rate.

5. Conclusions

In this paper, a new joint Newton iteration and Neumann
series method has been studied for matrix inversion com-
putation involved in linear precoding techniques. Newton
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Figure 2: BER performance comparison between algorithm 1 and
algorithm 2 in𝑁 × 𝐾 = 256 × 32massive MIMO system.
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Figure 3: BER performance comparison between algorithm 2 and
algorithm 3 in𝑁 × 𝐾 = 256 × 32massive MIMO system.

iteration method was employed to choose the initial value
for the Neumann series. A high probability convergence
condition was derived to ensure the convergence of the new
method. Simulation results were provided to illustrate that
the newmatrix inversion computingmethod converges faster
than some old ones.
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Figure 4: BER performance comparison between algorithm 2 and
Richardson method in𝑁 × 𝐾 = 256 × 32massive MIMO system.
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