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In automated manufacturing systems (AMSs), deadlocks problems can arise due to limited shared resources. Petri nets are an
effective tool to prevent deadlocks in AMSs. In this paper, a simulation based on existing deadlock prevention policies and different
Petri net models are considered to explore whether a permissive liveness-enforcing Petri net supervisor can provide better time
performance. The work of simulation is implemented as follows. (1) Assign the time to the controlled Petri net models, which
leads to timed Petri nets. (2) Build the Petri net model using MATLAB software. (3) Run and simulate the model, and simulation
results are analyzed to determine which existing policies are suitable for different systems. Siphons and iterative methods are used
for deadlocks prevention. Finally, the computational results show that the selected deadlock policies may not imply high resource
utilization and plant productivity, which have been shown theoretically in previous publications. However, for all selected AMSs,
the iterative methods always lead to structurally and computationally complex liveness-enforcing net supervisors compared to the
siphons methods. Moreover, they can provide better behavioral permissiveness than siphons methods for small systems. For large
systems, a strict minimal siphon method leads to better behavioral permissiveness than the other methods.

1. Introduction

Effectively designing and operating an automated manufac-
turing system can be of assistance to manufacturers to adapt
the variety in the market in order to maintain and confirm
competitiveness. Different types of parts in AMS enter the
system at discrete points of time and are produced concur-
rently; these parts have to share some common resources,
such as robots, machine tools, buffers, automated guided
vehicles, and fixtures. The deadlocks can occur in an AMS
during its operation by shared resources competition, which
are highly unwanted phenomena that often cause low use of
some expensive and critical resources and long downtime and
can lead to calamitous results in automated manufacturing
systems.Therefore, it is required to develop a successful AMS
control policy to prevent deadlocks occurrence in AMS.

There are several mathematical tools to solve deadlock
problems in AMSs including automata, graph theory, and

Petri nets. Recently, Petri nets have been known as one of
the most robust mathematical tools for modelling, analyzing,
and controlling deadlocks in resource allocation systems
including AMS [1]. To overcome the deadlocks in AMS, there
are methods which have been derived from a Petri net tool
either to forbid the deadlock occurrences by preventing some
necessary condition or to detect and resolve a deadlock when
it occurs. In general, these methods can be classified into
three strategies: deadlock detection and recovery, deadlock
avoidance, and deadlock prevention [1, 2].

The researchers proposed three criteria for designing and
evaluating a supervisor for a manufacturing system to be
controlled. These criteria include behavioral permissiveness,
which leads to increase in the resources utilization of system,
structural complexity that leads to design supervisor with
a few number of monitors to decrease the software and
hardware costs, and computational complexity that means
a deadlock control policy can be implemented in huge
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systems [1]. Therefore, the objectives of many researchers are
to develop deadlock prevention policies which can provide
liveness-enforcing supervisors withmaximal permissiveness,
a structural complexity, and computational complexity [1].

From previous studies, there are mainly two techniques
of analysis for deadlock prevention in AMSs using Petri net:
structural analysis [3, 4] and reachability graph analysis [5–
7]. Oftentimes structural analysis is applied for structural
objects of Petri nets, such as resource transition circuits and
siphons. In this case, control steps are simple, and each empty
minimal siphon requires a monitor to be added to prevent
itself from being not emptied, but the disadvantages of this
technique are the fact that the resulting controlled system can
be suboptimal and linearly the number of control places is
dependent on the size of a net [8].

The reachability graph analysis suffers from a state explo-
sion problem because it requires listing of all or a part of
reachable markings. The reachability graph of a Petri net has
been classified into two zones: live zone (LZ) and deadlock
zone (DZ). In DZ, there is first-met bad markings (FBMs)
which are extracted from it; the FBMs are representing the
very first entry from LZ to DZ. In this case, a control place is
designed and added to forbid the FBM from being reached.
This process requires iterations to forbid all FBMs and single
out each FBM. The process is terminated if the resulting net
is a live [9]. There are several methods and algorithms used
for deadlocks prevention; some of them are siphon control
methods, a theory of region, and iterative methods [4, 6, 9–
11].

Most of the researchers have used structural analysis and
reachability graph analysis to design deadlocks prevention
policies for different scales of AMSs under three criteria
that are maximal permissiveness, structural complexity, and
computational complexity. The comparison between these
policies has been done according to the three aforementioned
criteria. It is taken for granted in the literature that a
maximally permissive supervisor in the logical level usually
leads to the better time performance in an AMS such as pro-
ductivity and resource utilization, which looks intuitive, as
an optimal supervisor will permit more permissive behavior.
However, there is a shortage in the quantitative evaluation
of time performance of these policies in terms of maximal
permissiveness and productivity. Simulation is a powerful
tool for performance analysis of complex manufacturing
systems.

The contribution of this paper is using a simulation tool
based on existing deadlock prevention policies and different
types of Petri net models to explore whether a permissive
liveness-enforcing Petri net supervisor can provide better
time performance (maximal permissiveness).

The work of simulation is implemented in the following
steps. (1) Assign the time to the controlled Petri net models,
which leads to timed Petri nets. (2) Build the Petri net model
using MATLAB software (Petri Net Toolbox (PN Toolbox)).
(3) Run and simulate the model to obtain the system
time performance. (4) Finally, the simulation results will be
analyzed to determine which existing deadlock prevention
policies are convenient for different types of manufacturing
systems. Different control methods (siphon control methods

and iterative methods) are used for deadlocks prevention.
Moreover, this paper aims to evaluate the performance of
the selected methods such as utilization of resources, plant
throughput, the number of monitors, the number of arcs, and
the number of reachable states.This paper focuses on the per-
formance evaluation of automatedmanufacturing systems by
using Petri nets under different deadlock prevention policies.
The considered Petri net models belong to 𝑀-nets [12] that
are a general class of manufacturing-oriented net models in
the literature. In an 𝑀-net, there are a number of structural
properties thanks to its definition [12].

Including this introductory section, the paper is orga-
nized as follows. Section 2 provides a literature review of
previous researchers works related to deadlock prevention.
The basics of Petri nets are discussed in Section 3. The
deadlock prevention methods and policies are presented
in Section 4. Sections 5 and 6 show the analysis of the
selectedmethods for four different automatedmanufacturing
systems. Finally, Section 7 presents the conclusion and future
work.

2. Literature Review

Deadlock prevention policies have been widely achieved for
AMSand led to a huge number of results [1, 11]. In this section,
deadlock prevention strategies are reviewed by using Petri
nets and developed based on different techniques such as
structural analysis and reachability graph analysis.

2.1. Structural-Analysis Methods. Ezpeleta et al. [13] used
a class of Petri nets, called System of Simple Sequential
Processes with Resources (S3PR) and proposed an algorithm
for resource allocation in flexible manufacturing systems
(FMSs). The proposed algorithm added new places to the
net to impose certain restrictions that forbid the presence
of unmarked siphons. The works of Huang et al. [14] and
Huang et al. [15] present a new deadlock prevention policy
for the class of Petri nets, where deadlocks are related to
unmarked siphons. Two types of control places are added to
the original model for flexible manufacturing system called
ordinary control place and weighted control place to prevent
siphons from being unmarked.

The study by Li and Zhou [11] presents a Petri net model
which consists of 26 places, 20 transitions, and 18 strict
minimal siphons. In [16], elementary siphons concept is
introduced to design a liveness-enforcing Petri net supervisor
for the same Petri net model, and six elementary siphons are
obtained; therefore, only six monitors are added to control
the 18 strict minimal siphons. Nevertheless, the proposed
algorithm by Ezpeleta et al. [13] adds monitors for all 18 strict
minimal siphons.

A newmethodology is proposed byHuang [17] to synthe-
size supervisors for resource allocation in FMSs; the class of
Petri net, namely, S3PR, is considered, where deadlocks are
related to unmarked minimal siphons; all minimal siphons
should be controlled by adding control places. In this study,
the number of control places is reduced by using the concept
of the elementary siphon. Based on elementary siphons and
𝑃-invariants concepts in Petri nets, a deadlock prevention
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algorithm is introduced by Li and Wei for a specific class
of Petri nets which can properly model several FMSs [16],
siphons in a Petri net model are classified into dependent and
elementary siphons, and control places are added for all ele-
mentary siphons, so that the siphons are invariant-controlled.
Therefore, the controllability of dependent siphons is guar-
anteed by adjusting the control requirements of its related
elementary siphons. A novel deadlock prevention algorithm
is presented by Chen et al. [1], and the concept of siphon
extraction is used to compute unmarked siphons for the
Petri net model. First, a siphon extraction algorithm obtains
a maximal unmarked siphon, divides the places in it, and
determines a necessary siphon from the divided places; this
process is carried out for all unmarked siphons.Then, the pro-
posed deadlock prevention algorithm designs a convenient
monitor for each necessary siphon to be marked until the
controlled Petri net model is a live.

Most of the deadlock control algorithms have been
developed for reliable automated manufacturing systems
(AMSs). Liu et al. [18] proposed a variety of deadlock control
algorithms for AMSs with unreliable resources, monitors and
recovery subnets are designed for strict minimal siphons
(emptied siphon) and unreliable resources, respectively, and
two types of arcs which are normal and inhibitor are used to
connect monitors with recovery subnets. In order to obtain
a supervisor with structural complexity, elementary siphons
extracted from all strict minimal siphons are obviously
controlled.The problems of structural complexity, behavioral
permissiveness, and computational complexity are consid-
ered in the study of Wang et al. [19] to design liveness-
enforcing supervisors for a class of Petri nets, namely,
S3PR, without 𝜉-resources. They used two steps to obtain a
supervisor for the model. In the first step, an algorithm is
proposed to extract unmarked strict minimal siphons from a
given unmarked siphon by using loop resource subsets. In the
second step, a siphon-based deadlock prevention algorithm
is introduced to provide a maximally permissive liveness-
enforcing supervisor with small numbers and no weighted
monitors.

2.2. Reachability Graph-Based Approaches. Viswanadham
et al. [20] presented static resource allocation methods for
eliminating deadlocks; in this study, a reachability graph of
the Petri net (PN) model is used to reach static resource allo-
cation method. A deadlock prevention algorithm is imple-
mented for a small size manufacturing system consisting of
a machine and an automated guided vehicle (AGV). The
authors observed that the proposed algorithm can be applied
effectively only for small sizemanufacturing systems.The for-
bidden state problem of Petri nets (PN) with uncontrollable
transitions and liveness requirement is addressed by Ghaffari
et al. [5]. An approach is presented to compute a maximally
permissive Petri net controller that consists of two steps. In
the first step, an ordinary Petri net is used to build the system
model. In the second step, control places are designed and
added to the original model by using a theory of regions
method. The work of Uzam [7, 9] proposes and improves
method based on a theory of regions to design an optimal

Petri net supervisor. The size of the reachability graph of
Petri net model is a major problem to apply the deadlock
prevention policy to very large Petri net model. Therefore,
they proposed a reduction algorithm to simplify very large
Petri nets models in order to make necessary computation
easily. Based on the theory of regions, Uzam and Zhou [6]
developed an iterative deadlock prevention policy for FMS.
In their study, the reachability graph of a Petri net model is
divided into two parts: deadlock-free zone (live zone, LZ)
and the deadlock zone (DZ).The live zone is developed since
the maximal strongly connected component contains the
initial marking. The deadlock zone contains markings from
which the initial marking is unreachable. FBM is defined
as a marking in the deadlock zone. The deadlocks can be
eliminated by forbidding the firing of the enabled transitions
at FBM. In their work, the presented approach has two
problems. First, an optimal supervisor cannot be guaranteed
in general even if such an optimal supervisor exists. Second, at
each iteration full reachability graph computation is required
to check whether the markings in the deadlock zone are
reachable. This approach is easy to use and simple if the
reachable graph of a system is small but cannot ensure the
supervisor behavioral optimality. The redundant monitors
in Petri net supervisor may exist when the supervisor is
designed by an iterative siphon control approach. Therefore,
Uzam et al. [21] introduced an approach to identify and elim-
inate the redundant monitors by computing the reachability
graph of a controlled Petri net model. If the controlled Petri
net model does not lose liveness when removing redundant
monitors, then the redundant monitors can be eliminated
from the supervisor. The reachability graph and liveness
check are themajor problems in designing liveness-enforcing
supervisor. To overcome a full state enumeration, Li and
Hu [22] proposed two approaches to eliminating control
places from a Petri net supervisor.The first approach is based
on the concept of implicit places [23, 24]. The implicity of
a monitor is computed by solving a linear programming
problem (LPP) that can be implemented in polynomial time.
The second approach is extracted from the Mixed Integer
Programming- (MIP-) based deadlock detection approach.
If the optimal solution to an MIP problem does not lose
optimality when removing control place, then the control
place is implicit and may provide permissive behavior while
liveness is guaranteed. Chen et al. [1] developed a novel
and computationally effective approach to design optimal
monitors and an iterative approach that can compute the
reachability graph to get an optimal supervisor of the flexible
manufacturing system, which is demonstrated by a set of
control places. The vector covering approach is used to
compute the minimal sets of FBMs and legal markings.
Iteratively, an FBM is selected from the minimal set of FBMs,
an integer linear programming problem (ILPP) is used to
design a place invariant (PI) that prevents the FBM from
being reached, and all minimal sets of legal markings are not
forbidden. The process is terminated if all FBMs cannot be
reached and the resulting net is a live. This study is improved
in its computational efficiency in [25], and the objective
function of the ILPP is maximizing the number of FBMs that
are prohibited by the PI; in other words, a control place is
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designed such that as many FBMs as possible are forbidden
and all minimal sets of legal markings are not prohibited. If
the ILPP has no solution, it means that there is no maximally
permissive Petri net supervisor for the Petri net model.

3. Basics of Petri Nets

Petri nets are a mathematical and graphical tool suitable for
several systems. It is a major tool for studying and describing
manufacturing system operations that are characterized as
being asynchronous, concurrent, parallel, and distributed.

A Petri net or place/transition net can be defined as a
four-tuple 𝑁 = (𝑃, 𝑇, 𝐹,𝑊), where 𝑃 is a finite nonempty
set of places, 𝑇 is a finite nonempty set of transitions, 𝑃 and
𝑇 are disjoint, 𝑃 ∪ 𝑇 are called nodes with 𝑃 ∪ 𝑇 ̸= 0 and
𝑃 ∩ 𝑇 = 0, and 𝑃 and 𝑇 are represented by circle and bar,
respectively. 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is called a flow relation
or directed arcs of the net that can be represented by arcs
with arrows from places (transitions) to transitions (places).
𝑊: (𝑃×𝑇)∪ (𝑇×𝑃) → N is a mapping that assigns a weight
to an arc: if (𝑎, 𝑏) ∈ 𝐹, 𝑊(𝑎, 𝑏) > 0; otherwise, 𝑊(𝑎, 𝑏) = 0,
where 𝑎, 𝑏 ∈ 𝑃 ∪ 𝑇 and N = {0, 1, 2, . . .}. 𝑁 is called an
ordinary net, if 𝑊(𝑎, 𝑏) = 1, ∀(𝑎, 𝑏) ∈ 𝐹. Consider a node
𝑎 ∈ 𝑃 ∪ 𝑇, and ∙𝑎 = {𝑏 ∈ 𝑃 ∪ 𝑇 | (𝑏, 𝑎) ∈ 𝐹} is a preset of 𝑎.
Postset of 𝑎 is 𝑎∙ = {𝑏 ∈ 𝑃 ∪ 𝑇 | (𝑎, 𝑏) ∈ 𝐹}. A marking 𝑀

of 𝑁 is a mapping from 𝑃 → N. 𝑀(𝑝) denotes the number
of tokens in place 𝑝. Usually, markings and vectors can be
described using formal sum. Therefore, vector 𝑀 is denoted
by∑
𝑝∈𝑃

𝑀(𝑝)𝑝. For example, a marking that puts two tokens
in place 𝑝

2
, five tokens in place 𝑝

4
, and no tokens in other

places in a net is denoted by 2𝑝
2
+5𝑝
4
. (𝑁,𝑀

0
) is a net system

or marked net and is denoted by𝑁 = (𝑃, 𝑇, 𝐹,𝑊,𝑀
0
), where

𝑀
0
is an initial marking of 𝑁. For a Petri net modeling 𝑀

0

represents the different raw parts that are to be synchronously
processed in the system, and the state of resources, such as
machines and robots. A net is self-loop free or pure if for
all 𝑎, 𝑏 ∈ 𝑃 ∪ 𝑇, 𝑊(𝑎, 𝑏) > 0 and 𝑊(𝑏, 𝑎) = 0. Incidence
matrix [𝑁] in a net𝑁 is an integer matrix that consists of |𝑃|
rows and |𝑇| columns with [𝑁](𝑝, 𝑡) = 𝑊(𝑡, 𝑝) − 𝑊(𝑝, 𝑡).
The enabled rule for each 𝑡 ∈ 𝑇 at marking 𝑀 if ∀𝑝 ∈

∙
𝑡,

𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡). As a result, enabled rule is denoted by𝑀[𝑡⟩.
When a transition 𝑡 fires, it removes𝑊(𝑝, 𝑡) tokens from each
place 𝑝 ∈

∙
𝑡 and deposits𝑊(𝑡, 𝑝) tokens in each place 𝑝 ∈ 𝑡

∙.
Therefore, it yields a new marking 𝑀

, denoted by 𝑀[𝑡⟩𝑀
,

where 𝑀

(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝). 𝑀 is reachable

from𝑀 if there exists a fireable finite transition sequence 𝛿 =

{𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑛
}, and markings𝑀

1
,𝑀
2
,𝑀
3
, . . ., and𝑀

𝑛−1
so

that 𝑀[𝑡
1
⟩𝑀
1
[𝑡
2
⟩𝑀
2
[𝑡
3
⟩𝑀
2
, . . . ,𝑀

𝑛−1
[𝑡
𝑛
⟩𝑀
, which can be

denoted by 𝑀[𝛿⟩𝑀
 and satisfied the state equation 𝑀


=

𝑀 + [𝑁] ⃗𝛿, where ⃗𝛿 : 𝑇 → N is a mapping 𝑡 in 𝑇 to
the number of occurrences of 𝑡 in 𝛿, called a Parikh vector
or a firing count vector. Obviously, 𝑀

0
[ ⟩ is the set of all

reachable markings of a net𝑁 from initial marking𝑀
0
and is

denoted by 𝑅(𝑁,𝑀
0
). The reachable markings 𝑅(𝑁,𝑀

0
) can

be involved in the enumeration of all reachable markings of
a net 𝑁 and graphically expressed by a reachability tree. The
reachability tree is denoted by 𝐺(𝑁,𝑀

0
), which is a directed

graph and consists of nodes and arcs, nodes are markings in

the reachable markings 𝑅(𝑁,𝑀
0
), and arcs are labeled by the

transitions of a net 𝑁. For instance, an arc from 𝑀
2
to 𝑀
3
is

labeled by 𝑡
1
if 𝑀
2
[𝑡
1
⟩𝑀
3
. A net 𝑁 with initial marking 𝑀

0

is to be 𝑘-bounded if, for all 𝑀 ∈ 𝑅(𝑁,𝑀
0
), 𝑀(𝑝) ≤ 𝑘 (𝑘 =

{1, 2, 3, . . .}). In other words, for each reachable marking “𝑀”
from the initial marking 𝑀

0
, the number of tokens in each

place “𝑝” never exceeds a finite number “𝑘.” A net is called
safe if all its places are safe, and the number of tokens in each
place “𝑝” does not exceed one. In other words, a net is 𝑘-
safe if it is 1-bounded. A Petri net with (𝑁,𝑀

0
) is a live if all

its transitions are a live at 𝑀
0
. A transition 𝑡 ∈ 𝑇 is a live

if, for all 𝑀 ∈ 𝑅(𝑁,𝑀
0
), ∃𝑀 ∈ 𝑅(𝑁,𝑀), there is a firing

sequence 𝑀

[𝑡⟩. A transition is dead at 𝑀

0
if ∄𝑡 ∈ 𝑇, 𝑀

0
[𝑡⟩.

𝑃-vector (place vector) and 𝑇-vector (transition vector) are
column vectors. The former 𝐼 : 𝑃 → 𝑍 is catalogued by
𝑃 and called a 𝑃-invariant or place invariant if 𝐼 ̸= 0 and
𝐼
𝑇
⋅ [𝑁] = 0

𝑇. The latter 𝐽 : 𝑇 → 𝑍 is catalogued by 𝑇

and called a 𝑇-invariant or transition invariant if 𝐽 ̸= 0 and
[𝑁] ⋅ 𝐽 = 0, where 𝑍 is the integers set. If each element of 𝐼 is
nonnegative the 𝑃-invariant 𝐼 is called a 𝑃-semiflow or place
semiflow. Suppose that 𝐼 is a place invariant of a Petri net
with (𝑁,𝑀

0
) and 𝑀 is a reachable marking from the initial

marking𝑀
0
. Then, 𝐼𝑇𝑀 = 𝐼

𝑇
𝑀
0
. Let ‖𝐼‖ = {𝑝 | 𝐼(𝑝) ̸= 0} be

a support of place invariant 𝐼 and it can be classified into three
parts. Firstly, ‖𝐼‖+ is a positive support of place invariant 𝐼,
and ‖𝐼‖

+
= {𝑝 | 𝐼(𝑝) > 0}. Secondly, ‖𝐼‖− is a negative support

of place invariant 𝐼, and ‖𝐼‖
−
= {𝑝 | 𝐼(𝑝) < 0}. Finally, 𝐼 is a

minimal place invariant if ‖𝐼‖ is not a superset of the support
of any other one and its components are mutually prime. Let
𝑙
𝑖
’s be the coefficients of place invariant 𝐼 if, for all 𝑝

𝑖
∈ 𝑃,

𝑙
𝑖
= 𝐼(𝑝
𝑖
).

4. Deadlock Prevention Methods and Policies

4.1. Siphon Control Methods. This section presents twometh-
ods that are motivated by Ezpeleta et al. [13] and Li and
Zhou [11]. These methods are called a strict minimal siphons
control method and an elementary siphons control method,
respectively.

4.1.1. Strict Minimal Siphons (SMSs) Control Method. A
siphon in a Petri net is a set of places 𝑆 = {𝑝

1
, . . . , 𝑝

𝑘
}.The very

important property of siphon is that, for a given marking, the
siphon is unmarked.

Definition 1. Let 𝑁 be a net. Any set 𝑆 ⊆ 𝑃, 𝑆 ̸= 0 with ∙𝑆 ⊆

𝑆
∙ is called a siphon. If a siphon does not properly contain
another siphon is called aminimal siphon. Aminimal siphon
𝑆 is called a strict if ∙𝑆 ⊊ 𝑆

∙.
Siphons play a significant role in the liveness analysis of

a Petri net, especially in ordinary ones. If a siphon 𝑆 in a net
has no tokens, then no transitions in 𝑆

∙ are enabled and all
the transitions connected to 𝑆 cannot be fired; as a result, the
transitions are dead leading to the loss of liveness of the Petri
net. In [13], a monitor is added to each strict minimal siphon
in order to achieve the liveness of the system. The proposed
approach is simple and ensures a success. Nevertheless, it
leads to a complex Petri net model than the originally model
because the added places are equal to the strict minimal
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siphons in the target net model and the added arcs are larger
than that of places added.

The SMS control based on complementary sets of siphons
[𝑆] is used to design the control places. A complementary set
of a siphon 𝑆 is a set of operation places which are the holders
of the resources in 𝑆 but do not belong to 𝑆. In addition,
[𝑆] ∪ 𝑆 is the support of a place invariant, which means the
operation places in [𝑆] will compete for the resources in 𝑆

with the operation places belonging to 𝑆. 𝑆 will be unmarked
when all tokens in 𝑆 flow into [𝑆]. The following notation will
be used in the establishment of the control policy.

(1) 𝑆 denotes the set of strictminimal siphons which does
not contain the support of any place semiflow (i.e.,
siphons that can be emptied).

(2) Given the fact that 𝑆 is a siphon we have 𝑆 = 𝑆
𝐴
∪ 𝑆
𝑅
,

𝑆
𝑅

= 𝑆 ∩ 𝑃
𝑅
, 𝑆
𝐴

= 𝑆 \ 𝑆
𝑅
, where 𝑆

𝐴
is the operation

places and 𝑆
𝑅
is the resource places. [𝑆] denotes the

following set of state places: [𝑆] = (𝑈
𝑟∈𝑆𝑅

𝐻(𝑟)) \ 𝑆
𝐴
,

where 𝐻(𝑟) = (‖𝐼
𝑟
‖
+
\ 𝑟), ‖𝐼

𝑟
‖
+

= {𝑝 | 𝐼(𝑝) > 0}

indicates the positive support of place invariant 𝐼,
∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} 𝑖 ̸= 𝑗, 𝐻(𝑟

𝑖
) ∩ 𝐻(𝑟

𝑗
) = 0. For a

given siphon 𝑆, [𝑆] is the set of holders, corresponding
to resources in 𝑆 that do not belong to 𝑆. [𝑆] is called
𝑆’s complementary set.

(3) Given the fact that [𝑆] is a complementary set of 𝑆,
add a control place for [𝑆] and the initial marking of
control place is𝑀

0𝐴
(𝑉
𝑆
) = 𝑀

0
(𝑆) − 1.

Based on the concept of strict minimal siphon, the pro-
posed deadlock prevention algorithm developed by Ezpeleta
et al. [13] is stated as follows.

Algorithm 2 (SMS based policy).

Input. Petri net model (𝑁,𝑀
0
) of an AMS, where 𝑁 = (𝑃

0
∪

𝑃
𝐴
∪ 𝑃
𝑅
, 𝑇, 𝐹,𝑊).

Step 1. For a given Petri net (𝑁,𝑀
0
), compute all SMSs.

Step 2. For each siphon SMS, add a monitor 𝑉
𝑆
such that

(i) the 𝑉
𝑆
output arcs are connected to the source

transitions leading to the sink transitions of 𝑆 and all
arcs weights are ones;

(ii) the 𝑉
𝑆
input arcs are connected from the stealing

places of 𝑆 and all arcs weights are ones;

(iii) 𝑀
0𝐴

(𝑉
𝑆
) = 𝑀

0
(𝑆) − 1, where 𝑀

0𝐴
(𝑉
𝑆
) is an initial

marking of a monitor.

Step 3. Repeat Step 2 until all existing SMSs are covered.

Step 4. Add all monitors into (𝑁,𝑀
0
) and the resulting net is

denoted by (𝑁
1
,𝑀
1
).

Step 5. Output (𝑁
1
,𝑀
1
).

Step 6. End.

For instance, consider the AMS shown in Figure 1(a). Its
Petri net model is shown in Figure 1(b). It consists of one
robot R1 that can hold a part at a time, two machines M1
andM2, where each machine can process a part at a time,
two loading buffers (I1 and I2), and unloading buffers (O1
and O2). Two parts types are considered in the system: PA
and PB. PA moves to M1 and PB moves to M2. The robot
R1 reaches the machine that finishes its operation first and
grips and loads the part to the next machine 1 or machine
2. The Petri net model consists of 11 places and 8 transitions.
The places have the following set partition: 𝑃0 = {𝑃

1
, 𝑃
8
},

𝑃
𝑅

= {𝑃
9
, 𝑃
10
, 𝑃
11
}, and 𝑃

𝐴
= {𝑃

2
, . . . , 𝑃

7
}, where 𝑃

0 is
the input places, 𝑃

𝑅
is the resources places, and 𝑃

𝐴
is the

operation places. It has 8 minimal siphons, 3 of which are
strict minimal siphons and 20 reachable markings. The three
SMSs are 𝑆

1
= {𝑃
4
, 𝑃
7
, 𝑃
9
, 𝑃
10
, 𝑃
11
}, 𝑆
2
= {𝑃
4
, 𝑃
6
, 𝑃
10
, 𝑃
11
}, and

𝑆
3

= {𝑃
3
, 𝑃
7
, 𝑃
9
, 𝑃
10
}. Table 1 shows the required monitors

using Algorithm 2 for Figure 1(b). Figure 2 illustrates the
controlled system of the Petri net model in Figure 1(b) after
adding monitors by using Algorithm 2.

4.1.2. Elementary SiphonsControlMethod. Thestrictminimal
siphons (SMSs) are classified into elementary and dependent
ones. Π is used to denote the set of strict minimal siphons
while Π

𝐸
and Π

𝐷
denote the sets of elementary and depen-

dent (redundant) ones, respectively. Otherwise, when a strict
minimal one is mentioned, it can be called a siphon.

Definition 3. Let an ordinary Petri net (𝑁,𝑀
0
) and 𝑆 is a

siphon, 𝑆 ⊆ 𝑃. Place vector 𝜆
𝑆
is said to be the characteristic

place vector of 𝑆 if for all 𝑝 ∈ 𝑆, 𝜆
𝑆
(𝑝) = 1; otherwise,

𝜆
𝑆
(𝑝) = 0.

Definition 4. Let 𝑁 = (𝑃, 𝑇, 𝐹) be an ordinary Petri net with
|𝑃| = 𝑚, |𝑇| = 𝑛, andwe suppose that𝑁 has𝑓 SMS, 𝑆

1
, 𝑆
2
, . . .,

and 𝑆
𝑓
, 𝑚, 𝑛, 𝑓 ∈ IN. Let 𝜆

𝑆𝑖
(𝜂
𝑆𝑖
) be the characteristic place

(transition) vector of siphon 𝑆
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑛}. We define

[𝜆]
𝑓×𝑚

= [𝜆
𝑆1
, 𝜆
𝑆2
, . . . , 𝜆

𝑆𝑓
]
𝑇 and [𝜂]

𝑓×𝑛
= [𝜆]

𝑓×𝑚
⋅ [𝑁]
𝑚×𝑛

are said to be the characteristic place vector and transition
vector matrices of the siphons of𝑁, respectively.

Proposition 5. Let 𝑁 be an ordinary Petri net and let [𝜂] be
the characteristic transition vector matrix of the siphons of it.
The set of elementary siphons in 𝑁 can be defined as a rank of
[𝜂].

From Proposition 5, it can easily enumerate all elemen-
tary siphons in a Petri net system (𝑁,𝑀

0
) given all siphons.

First, compute matrices [𝜆] and [𝜂]. Then independent linear
vectors can be determined in [𝜂]. Finally, the siphons that
correspond to these independent linear vectors are called the
elementary siphons in the Petri net (𝑁,𝑀

0
). Li and Zhou [11]

introduced some results and theorems as follows.

Theorem 6. Let 𝑁
0
be a marked ordinary Petri net and 𝑆 =

{𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑛
} be a siphon in 𝑁

0
. Monitor 𝑉

𝑆
is added to

𝑁
0
, and the new net system can be denoted by (𝑁

1
,𝑀
1
), such

that (a) 𝐼
1
= (. . . , 1𝑝

𝑖1
, 1𝑝
𝑖2
, . . . , 1𝑝

𝑖𝑛
, . . . , −1𝑉

𝑆
, . . .)
𝑇 is a place

invariant of𝑁
1
and (b)𝑀

1
(𝑉
𝑆
) = 𝑀

0
(𝑆)−𝜉
𝑆
, where 𝜉

𝑆
is said to
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Table 1: Control places computations by Algorithm 2.

SMS ‖𝐼‖
+

𝐻(𝑟
𝑅
) [𝑆]

∙
𝑉
𝑆𝑖

𝑉
𝑆𝑖

∙
𝑀
𝑜𝐴
(𝑉
𝑆𝑖
)

𝑆
1
= {𝑃
4
, 𝑃
7
, 𝑃
9
, 𝑃
10
, 𝑃
11
},

𝑆
𝐴
= {𝑃
4
, 𝑃
7
},

𝑆
𝑅
= {𝑃
9
, 𝑃
10
, 𝑃
11
}.

‖𝐼
𝑝9
‖
+
= {𝑝
2
, 𝑝
7
, 𝑝
9
},

‖𝐼
𝑝10

‖
+
= {𝑝
3
, 𝑝
6
, 𝑝
10
},

‖𝐼
𝑝11

‖
+
= {𝑝
4
, 𝑝
5
, 𝑝
11
}.

𝐻(𝑟
9
) = {𝑝

2
, 𝑝
7
},

𝐻(𝑟
10
) = {𝑝

3
, 𝑝
6
},

𝐻(𝑟
11
) = {𝑝

4
, 𝑝
5
}.

[𝑆
1
] = {𝑝

2
, 𝑝
3
, 𝑝
5
, 𝑝
6
}. 𝑡

3
, 𝑡
7

𝑡
1
, 𝑡
5

2

𝑆
2
= {𝑃
4
, 𝑃
6
, 𝑃
10
, 𝑃
11
},

𝑆
𝐴
= {𝑃
4
, 𝑃
6
},

𝑆
𝑅
= {𝑃
10
, 𝑃
11
}.

‖𝐼
𝑝10

‖
+
= {𝑝
3
, 𝑝
6
, 𝑝
10
},

‖𝐼
𝑝11

‖
+
= {𝑝
4
, 𝑝
5
, 𝑝
11
}.

𝐻(𝑟
10
) = {𝑝

3
, 𝑝
6
},

𝐻(𝑟
11
) = {𝑝

4
, 𝑝
5
}. [𝑆

2
] = {𝑝

3
, 𝑝
5
}. 𝑡

3
, 𝑡
6

𝑡
2
, 𝑡
5

1

𝑆
3
= {𝑃
3
, 𝑃
7
, 𝑃
9
, 𝑃
10
},

𝑆
𝐴
= {𝑃
3
, 𝑃
7
},

𝑆
𝑅
= {𝑃
9
, 𝑃
10
}.

‖𝐼
𝑝9
‖
+
= {𝑝
2
, 𝑝
7
, 𝑝
9
},

‖𝐼
𝑝10

‖
+
= {𝑝
3
, 𝑝
6
, 𝑝
10
}.

𝐻(𝑟
9
) = {𝑝

2
, 𝑝
7
},

𝐻(𝑟
10
) = {𝑝

3
, 𝑝
6
}. [𝑆

3
] = {𝑝

2
, 𝑝
6
}. 𝑡

2
, 𝑡
7

𝑡
1
, 𝑡
5

1

PA

PB

M1

R1

M2

I1/O1

I2/O2

(a)

3 3PA PB

t1

P2

t2

P3

t3

P4

t4

P9
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P10

P11

t8

P7
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P6
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P5
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I1/O1 I2/O2

(b)

Figure 1: (a) An AMS example and (b) Petri net model of an AMS.
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Figure 2: Controlled system of the Petri net in Figure 1(b) by
Algorithm 2.

be the control depth variable of siphon 𝑆, which states the least
number of tokens that siphon can hold. Evidently is greater than
or equal to 1 to fulfil purpose of control 1 ≤ 𝜉

𝑆
≤ 𝑀
0
(𝑆) − 1,

and (c) for all 𝑝 ∈ 𝑃
0
, 𝑀
1
(𝑝) = 𝑀

0
(𝑝), where 𝑃

0
is the set

of operation places of 𝑁
0
, such that 𝑆 can be called invariant-

controlled.

Theorem 7. Let (𝑁,𝑀
0
) be an ordinary Petri net and

let 𝑆
0

be a generally dependent siphon on elementary

siphons 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
, 𝑆
𝑛+1

, 𝑆
𝑛+2

, . . ., and 𝑆
𝑛+𝑚

that means
𝜂
𝑆0

= ∑
𝑛

𝑖=1
𝑎
𝑖
⋅ 𝜂
𝑆𝑖

− ∑
𝑛+𝑚

𝑗=𝑛+1
𝑎
𝑗
⋅ 𝜂
𝑆𝑗
. If 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
, 𝑆
𝑛+1

,

𝑆
𝑛+2

,. . ., and 𝑆
𝑛+𝑚

are invariant-controlled by adding monitors
𝑉
𝑆1
, 𝑉
𝑆2
, . . . , 𝑉

𝑆𝑛+𝑚
, . . ., and𝑀

0
(𝑆
0
) > ∑
𝑛

𝑖=1
𝑎
𝑖
⋅𝑀
0
(𝑆
𝑖
)−∑
𝑛

𝑖=1
𝑎
𝑖
⋅

𝜉
𝑆𝑖
, where 1 ≤ 𝜉

𝑆𝑖
≤ 𝑀
0
(𝑆
𝑖
) − 1, 𝑆

0
is called controlled. Based

on the concept of elementary siphons, the proposed deadlock
prevention algorithm developed by Li and Zhou [11] is stated as
follows.

Algorithm 8 (elementary siphon-based policy).

Input. Petri net model (𝑁,𝑀
0
) of an AMS, where 𝑁 = (𝑃

0
∪

𝑃
𝐴
∪ 𝑃
𝑅
, 𝑇, 𝐹,𝑊).

Step 1. For a given Petri net (𝑁,𝑀
0
), compute all SMSs.

Step 2. Compute the transition vector matrix [𝜂] of the SMS.

Step 3. Compute the elementary siphons of Petri net 𝑁. The
remaining are the dependent siphons.

Step 4. For each siphon elementary siphon, add a monitor 𝑉
𝑆

such that
(i) the 𝑉

𝑆
output arcs are connected to the source

transitions leading to the sink transitions of 𝑆 and all
arcs weights are ones;
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Table 2: Marking relationships between dependent and elementary siphons.

Dependent 𝜂

relationship
Initial marking relationships,

𝑀
0
(𝑆
0
) > ∑

𝑛

𝑖=1
𝑎
𝑖
⋅ 𝑀
0
(𝑆
𝑖
) − ∑
𝑛

𝑖=1
𝑎
𝑖
⋅ 𝜉
𝑆𝑖

Controlled

𝑆
1

𝜂
1
= 𝜂
2
+ 𝜂
3

𝑀
0
(𝑆
1
) > (𝑀

0
(𝑆
2
) + 𝑀

0
(𝑆
3
)) − (𝜉

𝑆2
+ 𝜉
𝑆3
)

3 > (2 + 2) − (1 + 1), 3 > 2 Yes

(ii) the 𝑉
𝑆
input arcs are connected from the stealing

places of 𝑆 and all arcs weights are ones;
(iii) 𝑀

0𝐴
(𝑉
𝑆
) = 𝑀

0
(𝑆) − 𝜉

𝑆
, where 𝑀

0𝐴
(𝑉
𝑆
) is an initial

marking of a monitor and 1 ≤ 𝜉
𝑆
≤ 𝑀
0
(𝑆) − 1.

Step 5. Repeat Step 4 until all elementary siphons are covered.

Step 6. Adjust 𝜉
𝑖
, such that each dependent siphon is con-

trolled.

Step 7. Add all monitors to (𝑁,𝑀
0
) and the resulting net is

denoted by (𝑁
1
,𝑀
1
).

Step 8. Output (𝑁
1
,𝑀
1
).

Step 9. End.

For example, there are three SMSs in the Petri net model
shown in Figure 1(b), which are 𝑆

1
= {𝑝
4
, 𝑝
7
, 𝑝
9
, 𝑝
10
, 𝑝
11
},

𝑆
2

= {𝑝
4
, 𝑝
6
, 𝑝
10
, 𝑝
11
}, and 𝑆

3
= {𝑝
3
, 𝑝
7
, 𝑝
9
, 𝑝
10
}. One can

obtain that 𝜆
𝑆1

= (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1)
𝑇, 𝜆
𝑆2

= (0,

0, 0, 1, 0, 1, 0, 0, 0, 1, 1)
𝑇, and 𝜆

𝑆3
= (0, 0, 1, 0, 0, 0, 1, 0, 1, 1,

0)
𝑇. Hence, 𝜂

𝑆1
= (−1, 0, 1, 0, −1, 0, 1, 0)

𝑇, 𝜂
𝑆2

= (0, −1, 1, 0,

−1, 1, 0, 0)
𝑇, and 𝜂

𝑆3
= (−1, 1, 0, 0, 0, −1, 1, 0)

𝑇. The transition
vector matrix [𝜂] for the Petri net model in Figure 1(b) is
as follows. Obviously, the rank of [𝜂] is 2 since the first row
𝜂
𝑆1
can be linearly represented by the second and third rows,

and we can see that 𝜂
𝑆1

= 𝜂
𝑆2

+ 𝜂
𝑆3
. As a result, the siphons

that correspond to the second and third rows 𝑆
2
and 𝑆

3
are

elementary siphons. Thus, 𝑆
1
is a dependent siphon:

[𝜂] = (

−1 0 1 0 −1 0 1 0

0 −1 1 0 −1 1 0 0

−1 1 0 0 0 −1 1 0

) . (1)

The dependent siphons and their elementary siphons, the
initialmarking relationships between dependent and elemen-
tary siphons, and the controllability of dependent siphons due
toTheorem 7 are shown in Table 2. Table 3 shows the required
monitors using Algorithm 8 for Figure 1(b). Figure 3 presents
the controlled system of the Petri net model in Figure 1(b)
after adding monitors by using Algorithm 8.

4.2. Iterative Methods. This section presents two techniques
that are motivated and developed by [25]. These techniques
are used to design a place invariant (PI) that can prohibit as
many forbidden bad markings (FBMs) as possible. First, the
vector covering method is used to find the minimal covering
sets of legal markings and FBMs (see Chen et al. [1]). Then,
solving the integer linear programming problem (ILPP) can
obtain the coefficients of the place invariant andmonitors. An

Table 3: Required monitors using Algorithm 8.

Siphon ∙
𝑉
𝑆𝑖

𝑉
𝑆𝑖

∙
𝑀
𝑜𝐴
(𝑉
𝑆𝑖
)

𝑆
2

𝑡
3
, 𝑡
6

𝑡
2
, 𝑡
5

1
𝑆
3

𝑡
2
, 𝑡
7

𝑡
1
, 𝑡
5

1

t3

t6

t2

t7

t2

t5

t1

t53 3PA PB

t1

P2

t2

P3

t3

P4

t4

P9

P8
P1

P10

P11

t8

P7

t7

P6

t6

P5

t5

M1

R1

M2

I1/O1 I2/O2

VS1

VS2

Figure 3: Controlled system of the Petri net in Figure 1(b) by
Algorithm 8.

iterativemonitor design process is executed.At each iteration,
a place invariant is designed to prohibit as many FBMs as
possible. All FBMs that are prohibited by the place invariant
are eliminated from the minimal covered set of FBMs. This
process is terminated when all the minimal covered sets of
FBMs are forbidden.

4.2.1. Maximal Number of Forbidding FBM Problem 1. The
Maximal number of Forbidding FBMProblem 1 (MFFP1) is a
technique used to design a monitor synthesis for FBMs. This
technique used ILPP to obtain the coefficients of the place
invariant that prohibit as many FBMs as possible.TheMFFP1
is shown in the following mathematical model.

MFFP1 is

max 𝑓 = ∑

𝑘∈𝑁
∗

FBM

𝑓
𝑘

subject to ∑

𝑖∈𝑁𝐴

𝑙
𝑖
⋅ 𝑀
𝑙
(𝑝
𝑖
) ≤ 𝛽, ∀𝑀

𝑙
∈ 𝑀
∗

𝐿

(2)

∑

𝑖∈𝑁𝐴

𝑙
𝑖
⋅ 𝑀
𝑘
(𝑝
𝑖
) ≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

𝑘
) ,

∀𝑀
𝑘
∈ 𝑀
∗

FBM

𝑙
𝑖
∈ {0, 1, 2, . . .} , ∀𝑖 ∈ IN

𝛽 ∈ {1, 2, . . .}

𝑓
𝑘
∈ {0, 1} , ∀𝑘 ∈ 𝑁

∗

FBM,

(3)
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where 𝑀
∗

𝐿
and 𝑀

∗

FBM are the minimal covering sets of legal
markings and FBMs, respectively.The objective function 𝑓 is
used to maximize the number of FBMs that are forbidden by
place invariant. If 𝑓 = 0, we have 𝑓

𝑘
= 0, for all 𝑘 ∈ 𝑁

∗

FBM
(𝑁∗FBM is used to denote {𝑖 | 𝑀

𝑖
∈ 𝑀
∗

FBM}): that is to say, no
FBMs in𝑀

∗

FBM can be prohibited by place invariant. In (2), let
𝐼 be a place invariant, where 𝑙

𝑖
’s (𝑖 ∈ IN) are the coefficients of

𝐼, 𝛽 is a positive integer variable, and 𝑀
𝑙
(𝑝
𝑖
) (∀𝑀

𝑙
∈ 𝑀
∗

𝐿
)

are the number of tokens in minimal covering set of legal
markings.

All legalmarkings should be kept after amonitor is added,
implying that every marking 𝑀

𝑙
∈ 𝑀
∗

𝐿
cannot be forbidden

frombeing reached, and coefficients 𝑙
𝑖
’s (𝑖 ∈ IN) should satisfy

(2) that is called the reachability condition.
In (3), 𝑄 is a positive integer constant number that must

be large enough, 𝑀
𝑘
(𝑝
𝑖
) (∀𝑀

𝑘
∈ 𝑀
∗

FBM) are the number
of tokens in minimal covering set of FBMs, and 𝑓

𝑘
’s (𝑓
𝑘

∈

{0, 1}, 𝑘 = 1, 2, . . .) are a set of 𝑀∗FBM variables. Moreover, in
(3), 𝑓
𝑘

= 1 implies that 𝑀
𝑘
is prohibited by 𝐼 and 𝑓

𝑘
= 0

implies that this constraint is redundant and 𝑀
𝑘
cannot be

prohibited by 𝐼.
Based on the concept of MFFP1, the proposed deadlock

prevention algorithm developed in [25] is stated as follows.

Algorithm 9 (MFFP1 based policy).

Input. Petri net model (𝑁,𝑀
0
) of an AMS, where 𝑁 = (𝑃

0
∪

𝑃
𝐴
∪ 𝑃
𝑅
, 𝑇, 𝐹,𝑊).

Step 1. For a given Petri net (𝑁,𝑀
0
), find the sets of FBMs

𝑀FBM and legal markings𝑀
𝐿
.

Step 2. Find theminimal covered sets of FBMs𝑀∗FBM and legal
markings𝑀∗

𝐿
.

Step 3. 𝑉
𝑀

:= 0. /∗𝑉
𝑀
is used to indicate the set of monitors

to be found. ∗/

Step 4. While {𝑀∗FBM ̸= 0}, do the following.

(i) Design MFFP1.
(ii) Solve MFFP1. Let 𝑙

𝑖
’s (𝑖 ∈ IN) and 𝛽 be the solution if

𝑓
∗

̸= 0.
Otherwise, exit, as the solution does not exist.

(iii) Design a place invariant 𝐼 and a monitor 𝑉
𝑆
.

(iv) 𝑉
𝑀

:= 𝑉
𝑀

∪ {𝑉
𝑆
} and 𝑀

∗

FBM = 𝑀
∗

FBM − 𝐹
𝐼
. /∗𝐹
𝐼
is

covered𝑀
∗

FBM

endwhile.

Step 5. Add all monitors in 𝑉
𝑀

to (𝑁,𝑀
0
) and the resulting

net is denoted by (𝑁
1
,𝑀
1
).

Step 6. Output (𝑁
1
,𝑀
1
).

Step 7. End.

For the Petri net model shown in Figure 1(b), we have
𝑀
∗

FBM = {𝑝
2
+𝑝
5
, 𝑝
3
+𝑝
5
, 𝑝
2
+𝑝
6
} and𝑀

∗

𝐿
= {𝑝
2
+𝑝
3
+𝑝
4
, 𝑝
5
+

𝑝
6
+ 𝑝
7
}. Algorithm 9 is considered. At the first iteration, let

𝐼
1
be the place invariant to be calculated. 𝐼

1
should satisfy (2)

for the two legal markings in𝑀
∗

𝐿
: that is, 𝑙

2
⋅1+𝑙
3
⋅1+𝑙
4
⋅1 ≤ 𝛽

and 𝑙
5
⋅ 1 + 𝑙
6
⋅ 1 + 𝑙
7
⋅ 1 ≤ 𝛽. Therefore, we have the following

two constraints:

𝑙
2
+ 𝑙
3
+ 𝑙
4
≤ 𝛽,

𝑙
5
+ 𝑙
6
+ 𝑙
7
≤ 𝛽.

(4)

We introduce three variables𝑓
1
,𝑓
2
, and𝑓

3
(𝑓
1
, 𝑓
2
, 𝑓
3
∈ {0, 1})

to represent whether 𝐼
1
forbids FBM

1
= 𝑝
2
+ 𝑝
5
, FBM

2
=

𝑝
3
+𝑝
5
, and FBM

3
= 𝑝
2
+𝑝
6
, respectively.Therefore, we have

the following three constraints: that is,

𝑙
2
+ 𝑙
5
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

1
) ,

𝑙
3
+ 𝑙
5
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

2
) ,

𝑙
2
+ 𝑙
6
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

3
) .

(5)

Finally, MFFP1 is defined as follows.
MFFP1 is

max 𝑓 = 𝑓
1
+ 𝑓
2
+ 𝑓
3

subject to 𝑙
2
+ 𝑙
3
+ 𝑙
4
≤ 𝛽

𝑙
5
+ 𝑙
6
+ 𝑙
7
≤ 𝛽

𝑙
2
+ 𝑙
5
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

1
)

𝑙
3
+ 𝑙
5
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

2
)

𝑙
2
+ 𝑙
6
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

3
)

𝑙
𝑖
∈ {0, 1, 2, . . .} , ∀𝑖 ∈ {2, 3, 4, 5, 6, 7}

𝛽 ∈ {1, 2, . . .}

𝑓
𝑘
∈ {0, 1} , ∀𝑘 ∈ {1, 2, 3} .

(6)

The optimal solution of the above MFFP1 is 𝑙
2
= 2, 𝑙

5
= 1,

𝑙
6

= 1, 𝛽 = 2, 𝑓
1

= 1, and 𝑓
3

= 1, and all the remaining
variables are equal to zero.Then, amonitor𝑉

𝑆1
is designed for

𝐼
1
: 2𝜇
2
+ 𝜇
5
+ 𝜇
6
+ 𝜇
𝑉𝑆1

= 2. As a result, we have𝑀
0𝐴

(𝑉
𝑆1
) =

𝛽 = 2, ∙𝑉
𝑆1

= {2𝑡
2
, 𝑡
7
}, and 𝑉

𝑆1

∙
= {2𝑡
1
, 𝑡
5
}. FBM

1
and FBM

3

are prohibited by 𝐼
1
: that is, 𝐹

𝐼1
= {FBM

1
, FBM

3
}. Therefore,

we have 𝑀
∗

FBM := 𝑀
∗

FBM − 𝐹
𝐼1
: that is, 𝑀∗FBM = FBM

3
=

{𝑝
3
+ 𝑝
5
}.

At the next iteration, let 𝐼
2
place invariant be calculated.

The new MFFP1 can be easily obtained by eliminating
constraints that related to FBM

1
and FBM

3
from the first

MFFP1. Therefore, the new MFFP1 is stated as follows.
MFFP1 is

max 𝑓 = 𝑓
2

subject to 𝑙
2
+ 𝑙
3
+ 𝑙
4
≤ 𝛽

𝑙
5
+ 𝑙
6
+ 𝑙
7
≤ 𝛽

𝑙
3
+ 𝑙
5
≥ 𝛽 + 1 − 𝑄 ⋅ (1 − 𝑓

2
)
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𝑙
𝑖
∈ {0, 1, 2, . . .} , ∀𝑖 ∈ {2, 3, 4, 5, 6, 7}

𝛽 ∈ {1, 2, . . .}

𝑓
2
∈ {0, 1} .

(7)

The optimal solution of the above MFFP1 is 𝑙
3
= 1, 𝑙

5
= 1,

𝛽 = 1, and 𝑓
2
= 1 and all the remaining variables are equal to

zero. Then, a monitor𝑉
𝑆2
is designed for 𝐼

2
: 𝜇
3
+ 𝜇
5
+ 𝜇
𝑉𝑆2

=

1. As a result, we have 𝑀
0𝐴

(𝑉
𝑆2
) = 𝛽 = 1, ∙𝑉

𝑆1
= {𝑡
3
, 𝑡
6
},

and 𝑉
𝑆1

∙
= {𝑡
2
, 𝑡
5
}. Only FBM

2
is prohibited by 𝐼

2
: that is,

𝐹
𝐼2

= {FBM
2
}. Therefore, we have𝑀∗FBM := 𝑀

∗

FBM − 𝐹
𝐼2
: that

is,𝑀∗FBM = 0.
Algorithm 9 is terminated. Totally, there are twomonitors

computed for this net. Adding the two monitors to the
original Petri net model, the controlled system after addition
is as shown in Figure 4. Table 4 shows the two required
monitors by using Algorithm 9.

4.2.2. Maximal Number of Forbidding FBM Problem 2. The
Maximal number of Forbidding FBM Problem 1 has been
modified to improve its efficiency and its number of variables
and constraints are slightly reduced. The modified technique
is called a Maximal number of Forbidding FBM Problem 2
(MFFP2).TheMFFP1 is shown in the followingmathematical
model.

MFFP2 is
max 𝑓 = ∑

𝑘∈𝑁
∗

FBM,𝑘 ̸=𝑗

𝑓
𝑘

subject to ∑

𝑖∈𝑁𝐴

𝑙
𝑖
⋅ (𝑀
𝑙
(𝑝
𝑖
) − 𝑀

𝑗
(𝑝
𝑖
)) ≤ −1,

∀𝑀
𝑙
∈ 𝑀
∗

𝐿

∑

𝑖∈𝑁𝐴

𝑙
𝑖
⋅ (𝑀
𝑘
(𝑝
𝑖
) − 𝑀

𝑗
(𝑝
𝑖
))

≥ −𝑄 ⋅ (1 − 𝑓
𝑘
) ,

∀𝑀
𝑘
∈ 𝑀
∗

FBM, 𝑘 ̸= 𝑗

(8)

𝑙
𝑖
∈ {0, 1, 2, . . . .} , ∀𝑖 ∈ IN

𝑓
𝑘
∈ {0, 1} , ∀𝑘 ∈ 𝑁

∗

FBM, 𝑘 ̸= 𝑗.

(9)

The objective function is maximizing 𝑓 the number of FBMs
that are prohibited by place invariant. If no solution has been
obtained from MFFP2 for an FBM, then there are not any
FBMs in𝑀

∗

FBM that can be forbidden by that place invariant.
In (8), 𝑙

𝑖
’s (𝑖 ∈ IN) are the coefficients of 𝐼,𝑀

𝑙
(𝑝
𝑖
) (∀𝑀

𝑙
∈

𝑀
∗

𝐿
) are the number of tokens in minimal covering set of

legal markings, and 𝑀
𝑗
(𝑝
𝑖
) are the number of tokens in

selected FBM
𝑗
. In (9),𝑄 is a positive integer constant number

that must be large enough, 𝑀
𝑘
(𝑝
𝑖
) (∀𝑀

𝑘
∈ 𝑀
∗

FBM) are the
number of tokens in minimal covering set of FBMs, and 𝑓

𝑘
’s

(𝑓
𝑘
∈ {0, 1}, 𝑘 = 1, 2, . . .) are a set of 𝑀∗FBM variables. In (9),

𝑓
𝑘
= 1 implies that 𝑀

𝑘
is prohibited by 𝐼 and 𝑓

𝑘
= 0 implies

that this constraint is redundant and𝑀
𝑘
cannot be prohibited

by 𝐼.

Table 4: Required monitors using Algorithm 9.

𝑖
∙
𝑉
𝑆𝑖

𝑉
𝑆𝑖

∙
𝑀
𝑜𝐴
(𝑉
𝑆𝑖
)

1 2𝑡
2
, 𝑡
7

2𝑡
1
, 𝑡
5

2
2 𝑡

3
, 𝑡
6

𝑡
2
, 𝑡
5

1
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Figure 4: Controlled system of the Petri net in Figure 1(b) by
Algorithm 9.

Based on the concept of MFFP2, the proposed deadlock
prevention algorithm developed in [25] is stated as follows.

Algorithm 10 (MFFP2 based policy).

Input. Petri net model (𝑁,𝑀
0
) of an AMS, where 𝑁 = (𝑃

0
∪

𝑃
𝐴
∪ 𝑃
𝑅
, 𝑇, 𝐹,𝑊).

Step 1. For a given Petri net (𝑁,𝑀
0
), find the sets of FBMs

𝑀FBM and legal markings𝑀
𝐿
.

Step 2. Find theminimal covered sets of FBMs𝑀∗FBM and legal
markings𝑀∗

𝐿
.

Step 3. 𝑉
𝑀

:= 0. /∗𝑉
𝑀
is used to indicate the set of monitors

to be found. ∗/

Step 4. While {𝑀∗FBM ̸= 0}, do the following.

(i) Design MFF2.
(ii) Solve MFFP2. Let 𝑙

𝑖
’s (𝑖 ∈ 𝑁

𝐴
) and 𝛽 be the solution if

𝑓
∗

̸= 0. Otherwise, exit, as the solution does not exist.
(iii) Design a place invariant 𝐼 and a monitor 𝑉

𝑆
𝑉
𝑀

:=

𝑉
𝑀

∪ {𝑉
𝑆
} and 𝑀

∗

FBM = 𝑀
∗

FBM − 𝐹
𝐼
. /∗𝐹
𝐼
is covered

𝑀
∗

FBM

endwhile.

Step 5. Add all monitors in 𝑉
𝑀

to (𝑁,𝑀
0
) and the resulting

net is denoted by (𝑁
1
,𝑀
1
).

Step 6. Output (𝑁
1
,𝑀
1
).

Step 7. End.

Consider the Petri net model shown in Figure 1(b) by
Algorithm 10. At the first iteration, FBM

1
= 𝑝
2
+ 𝑝
5
is

chosen. Let 𝐼
1
be the place invariant to prohibit FBM

1
, whose

coefficients are 𝑙
𝑖
’s (𝑖 ∈ {2, 3, 4, 5, 6, 7}). 𝐼

1
should satisfy
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(8) that is called the reachability condition and does not
prohibit any marking in𝑀

∗

𝐿
. Therefore, 𝐼

1
should satisfy two

constraints:
𝑙
2
⋅ (1 − 1) + 𝑙

3
⋅ (1 − 0) + 𝑙

4
⋅ (1 − 0) + 𝑙

5
⋅ (0 − 1) + 𝑙

6

⋅ (0 − 0) + 𝑙
7
⋅ (0 − 0) ≤ −1,

𝑙
2
⋅ (0 − 1) + 𝑙

3
⋅ (0 − 0) + 𝑙

4
⋅ (0 − 0) + 𝑙

5
⋅ (1 − 1) + 𝑙

6

⋅ (1 − 0) + 𝑙
7
⋅ (1 − 0) ≤ −1

(10)

for the two legal markings 𝑝
2
+𝑝
3
+𝑝
4
and 𝑝

5
+𝑝
6
+𝑝
7
in𝑀
∗

𝐿
,

respectively. After simplifying the two constraints, we have

𝑙
3
+ 𝑙
4
− 𝑙
5
≤ −1,

−𝑙
2
+ 𝑙
6
+ 𝑙
7
≤ −1.

(11)

Two variables are introduced 𝑓
2
and 𝑓

3
to represent whether

𝐼
1
forbids FBM

2
= 𝑝
3
+ 𝑝
5
and FBM

3
= 𝑝
2
+ 𝑝
6
, respectively.

Therefore, we have the two constraints: that is, 𝑙
2
⋅ (0 − 1) + 𝑙

3
⋅

(1−0)+𝑙
4
⋅(0−0)+𝑙

5
⋅(1−1)+𝑙

6
⋅(0−0)+𝑙

7
⋅(0−0) ≥ −𝑄⋅(1−𝑓

2
) and

𝑙
2
⋅(1−1)+𝑙

3
⋅(0−0)+𝑙

4
⋅(0−0)+𝑙

5
⋅(0−1)+𝑙

6
⋅(1−0)+𝑙

7
⋅(0−0) ≥

−𝑄 ⋅ (1 − 𝑓
3
), where𝑄 is a positive integer constant that must

be big enough and𝑓
2
= 1 (𝑓

3
= 1) implies that FBM

2
(FBM

3
)

is forbidden by 𝐼
1
and 𝑓

2
= 0 (𝑓

3
= 0) implies that FBM

2

(FBM
3
) cannot be forbidden by 𝐼

1
. After simplifying the two

constraints, we have

−𝑙
2
+ 𝑙
3
≥ −𝑄 ⋅ (1 − 𝑓

2
) ,

−𝑙
5
+ 𝑙
6
≥ −𝑄 ⋅ (1 − 𝑓

3
) .

(12)

Finally, from the above constrains MFFP2 for FBM
1
is stated

as follows.
MFFP2 is

max 𝑓 = 𝑓
2
+ 𝑓
3

subject to 𝑙
3
+ 𝑙
4
− 𝑙
5
≤ −1

− 𝑙
2
+ 𝑙
6
+ 𝑙
7
≤ −1

− 𝑙
2
+ 𝑙
3
≥ −𝑄 ⋅ (1 − 𝑓

2
)

− 𝑙
5
+ 𝑙
6
≥ −𝑄 ⋅ (1 − 𝑓

3
)

𝑙
𝑖
∈ {0, 1, 2, . . .} , ∀𝑖 ∈ {2, 3, 4, 5, 6, 7}

𝑓
𝑘
∈ {0, 1} , ∀𝑘 ∈ {2, 3} .

(13)

The optimal solution of the above MFFP2 is 𝑙
2
= 1, 𝑙

3
= 1,

𝑙
5
= 2, and 𝑓

2
= 1, and all the remaining variables are equal

to zero.Then, a monitor𝑉
𝑆1
is designed for 𝐼

1
: 𝜇
2
+𝜇
3
+2𝜇
5
+

𝜇
𝑉𝑆1

= 2. As a result, we have 𝑀
0𝐴

(𝑉
𝑆1
) = 2, ∙𝑉

𝑆1
= {𝑡
3
, 2𝑡
6
},

and 𝑉
𝑆1

∙
= {𝑡
1
, 2𝑡
5
}. FBM

1
and FBM

2
are prohibited by 𝐼

1
:

that is, 𝐹
𝐼1

= {FBM
1
, FBM

2
}. Therefore, we have 𝑀

∗

FBM :=

𝑀
∗

FBM−𝐹
𝐼1
: that is,𝑀∗FBM = {𝑝

2
+𝑝
6
}. At the second iteration,

the last FBM is considered, that is, FBM
3
. Let 𝐼

2
be the place

invariant to prohibit FBM
3
. First, the coefficients of 𝐼

2
should

fulfill the reachability conditions: that is,

𝑙
3
+ 𝑙
4
− 𝑙
6
≤ −1,

−𝑙
2
+ 𝑙
5
+ 𝑙
7
≤ −1.

(14)

Table 5: Required monitors using Algorithm 10.

𝑖
∙
𝑉
𝑆𝑖

𝑉
𝑆𝑖

∙
𝑀
𝑜𝐴
(𝑉
𝑆𝑖
)

1 t
3
, 2t
6

t
1
, 2t
5

2
2 t

2
, t
7

t
1
, t
6

1
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Figure 5: Controlled system of the Petri net in Figure 1(b) by
Algorithm 10.

Since FBM
3
is the lastmarking in𝑀

∗

FBM, no other FBMs in the
set require to be prohibited by 𝐼

2
. By solving the above integer

linear system, we have a solution with 𝑙
2
= 1, 𝑙
6
= 1, and all

the remaining variables are equal to zero.Then, amonitor𝑉
𝑆2

is designed for 𝐼
2
: 𝜇
2
+ 𝜇
6
+ 𝜇
𝑉𝑆2

= 2. As a result, we have
𝑀
0𝐴

(𝑉
𝑆2
) = 1, ∙𝑉

𝑆2
= {𝑡
2
, 𝑡
7
}, and 𝑉

𝑆2

∙
= {𝑡
1
, 𝑡
6
}. Only FBM

3

is prohibited by 𝐼
2
: that is, 𝐹

𝐼2
= {FBM

3
}. Therefore, we have

𝑀
∗

FBM := 𝑀
∗

FBM − 𝐹
𝐼1
: that is,𝑀∗FBM = 0.

Algorithm 10 is terminated. Totally, there are two moni-
tors computed for this net. We add the two monitors to the
original Petri net model.The controlled system after addition
is as shown in Figure 5. Table 5 shows the two required
monitors by using Algorithm 10.

5. Case Studies

This section presents four case studies and the applications of
the proposed applied algorithms.

(a) The production sequence of the first AMS case study
is shown in Figure 6(a). It consists of two robots (R1 and
R2; each one can hold a part at a time) and five machines
(Ml, M2, M3, M4, and M5; each one can process one part
at a time). There are three loading buffers I1–3 and three
unloading buffers O1–3. Three types of parts are considered
in the system: PA, PB, and PC.Themodel of Petri net for this
case study is shown in Figure 6(b).

(b) The production sequence of the second AMS case
study is shown in Figure 7(a) and several studies have been
done in this case study (see Elzpeleta et al. [13] and Chen et al.
[25]).The system consists of three robots (Rl, R2, andR3; each
one can hold a part at a time) and fourmachines (Ml,M2,M3,
andM4; eachmachine can process two parts at a time).There
are three loading buffers I1–3 and three unloading buffersO1–
3. Three types of parts are considered in the system: PA, PB,
and PC.Themodel of Petri net for this case study is shown in
Figure 7(b).



Mathematical Problems in Engineering 11

Part A: I1

Part B: I2

Part C: I3

O1

O2

O3
R1

R1

R1

R1

R1

R1

R1

R1

R2

R2

R2
M1

M2

M2
M5

M3

M4

M4

(a)

10

I3/O3 I2/O2I1/O1

10 10PA PB

P25P1

PC

P26

M3 M2

R1

R2

M4

M1

M5

P18

P21

P22

P17 P7

P8

P6

P5

P4

P3

P2

P10

P11

P9

P16
P15

P20

P14

P13

P12

P19

P23

P24

t20

t19

t17

t18

t16

t15

t14

t13
t12

t11

t10

t9

t8

t7

t6

t5

t4

t3

t2

t1

(b)

Figure 6: (a) Production sequence and (b) Petri net model of case study 1.
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Figure 7: (a) Production sequence and (b) Petri net model of case study 2.

(c) Next, the production sequence of the third AMS
case study is shown in Figure 8(a). The cell consists of two
robots (R1 and R2; each one can hold a part at a time)
and four machines (M1, M2, and M3; each machine can
process a part at a time; M4 can process two products at

a time) and, for loading and unloading the cell, two loading
buffers (I1 and I2) and two unloading buffers (O1 and O2).
Two types of parts are considered in the cell: PA and PB.
The model of Petri net for this case study is illustrated in
Figure 8(b).
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Figure 8: (a) Production sequence and (b) Petri net model of case study 3.

(d) Finally, the production sequence of the fourth AMS
case study is shown in Figure 9(a) and several studies have
been achieved in this case study (see Uzam [9], Chen et al.
[25], Piroddi et al. [26], and Piroddi et al. [27]). The system
is composed of two robots (R1 and R2; each robot can hold
a part at a time) and four machines (M1, M2, M3, and M4;
each machine can process one part at a time). There are two
loading buffers (I1 and I2) and two unloading buffers (O1 and
O2). PA and PB are considered in the system. The model of
Petri net for this case study is shown in Figure 9(b).

The main parameters of all case studies are presented
in Table 6 such as number of places, number of transitions,
set partition, SMS, dependent siphons, elementary siphons,
reachable markings, FBMs, legal markings, 𝑀∗FBM, and 𝑀

∗

𝐿
.

Table 7 illustrates the supervisor performance of applied
algorithms for all case studies with respect to the numbers
of monitors, arcs, and reachable states.

From Table 7, Algorithms 9 and 10 obtain fewer numbers
of monitors than Algorithms 2 and 8 for all case studies while
Algorithm 9 provides less or equal number of arcs than the
other algorithms in case studies 1, 2, and 3. In case study
4, Algorithm 10 obtains less number of arcs than the other
algorithms. As for the reachable states, all algorithms provide
the same number of reachable states in case study 1, which is
1072 while both Algorithms 2 and 8 have the same number
of reachable states, which is 6287 in case study 2. Moreover,
in case study 2, both Algorithms 9 and 10 provide the same
number of reachable states, which is 21581. Moreover, in case

study 3, both Algorithms 9 and 10 outperform Algorithms
2 and 8 in number of reachable states, which have 656
reachable states. Finally, in case study 4, Algorithms 8, 9, and
10 provide better reachable states than Algorithm 2, which is
205. The required monitors using applied algorithms for all
case studied are shown in Tables 8, 9, 10, and 11.

6. Computational Results and Analysis

This section presents that the computational results and
analysis of the applied methods are conducted for four AMSs
case studies. All cases have been modeled using MATLAB
software. The simulation is done for 24 time units. After
running and simulating the case studies, the results of
MATLAB simulation in terms of the utilization resources
and throughput can be summarized as follows. For case
study 1, Figures 10 and 11 show the resources utilization and
throughput of case study 1, respectively. From the figures, it
can be found that all applied Algorithms 8, 9, and 10 obtain
the same utilization for all resources, while Algorithm 2
obtains utilization better than Algorithms 8, 9, and 10 at M1,
M2, M5, and R1, and same utilization at M4 and R2. For the
throughput, Algorithm 2 obtains greater produced number
of part A and part C than Algorithms 8, 9, and 10. Moreover,
Algorithms 8, 9, and 10 provide the same throughput for
all part types. For case study 2, Figures 12 and 13 show the
resources utilization and throughput of the case study 2,
respectively.
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Figure 9: (a) Production sequence and (b) Petri net model of case study 4.

Table 6: Main parameters of all case studies.

Parameter
Case study

1 2 3 4

Number of places 26 26 20 19
Number of
transitions 20 20 16 14

Set partition
𝑃
0
= {𝑝
1
, 𝑝
25
, 𝑝
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}

𝑃
𝑅
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}

𝑃
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, 𝑝
10
, 𝑝
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}

𝑃
𝑅
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, . . . , 𝑝

26
}

𝑃
𝐴
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, . . . , 𝑝

4
, 𝑝
6
, . . . , 𝑝

13
, 𝑝
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, . . . , 𝑝
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}

𝑃
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}

𝑃
𝑅
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14
, . . . , 𝑝
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}

𝑃
𝐴
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}

𝑃
0
= {𝑝
1
, 𝑝
19
}

𝑃
𝑅
= {𝑝
13
, . . . , 𝑝
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}

𝑃
𝐴
= {𝑝
2
, . . . , 𝑝

12
}

SMS 11 18 12 5

Dependent siphons 6 9 7 2
Elementary
siphons 5 9 5 3

Reachable
markings 1492 26750 836 282

FBMs 388 4211 156 54

Legal markings 1072 21581 656 205

𝑀
∗

FBM 9 34 7 8

𝑀
∗

𝐿
92 393 56 26
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Table 7: Supervisor performance of applied algorithms for all case studies.

Case study Parameter Algorithm 2 Algorithm 8 Algorithm 9 Algorithm 10

1
Monitors number 11 5 3 3
Arcs number 66 23 14 31

Reachable states number 1072 1072 1072 1072

2
Monitors number 18 9 6 6
Arcs number 106 50 45 59

Reachable states number 6287 6287 21581 21581

3
Monitors number 12 5 4 4
Arcs number 61 25 21 21

Reachable states number 436 489 656 656

4
Monitors number 5 3 2 2
Arcs number 21 13 15 12

Reachable states number 182 205 205 205

Table 8: Required monitors using applied algorithms for case study 1.
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The figures indicate that both applied Algorithms 9 and
10 have the same utilization for all resources and have better
results than Algorithms 2 and 8 at M1, M2, M4, R1, and R2.
Algorithm 2 obtains utilization better than Algorithms 8, 9,
and 10 atM3 andR3. For the throughput, Algorithm 2 obtains
greater produced number of part C than Algorithms 8, 9,
and 10, while Algorithms 9 and 10 have greater produced
number of part A than Algorithms 2 and 8. Moreover,
Algorithm 8 obtains a greater produced number of part B
than Algorithms 2, 9, and 10. For case study 3, Figures 14
and 15 show the resources utilization and throughput of case
study 3, respectively. The figures indicate that both applied
Algorithms 9 and 10 have the same utilization of all resources

and obtain better results than Algorithms 2 and 8 at M1,
M3, and R2. Both Algorithms 2 and 8 obtain the same
utilization for all resources and provide utilization better than
Algorithms 9 and 10 at M2, M4, and R1. For the throughput,
Algorithms 2 and 8 have greater produced number of part B
than Algorithms 9 and 10, while Algorithms 9 and 10 obtain
greater produced number of part A than Algorithms 2 and 8.
Finally, for case study 4, Figures 16 and 17 show the resources
utilization and throughput of case study 4, respectively. From
the figures, it can be found that both applied Algorithms 9
and 10 obtain the same utilization of all resources and obtain
better results than Algorithms 2 and 8 at M1, M2, R1, and
R2. Both Algorithms 2 and 8 obtain the same utilization of
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Table 9: Required monitors using applied algorithms for case study 2.
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all resources and obtain utilization better than Algorithms 9
and 10 at M3 and M4. For the throughput, Algorithms 9 and
10 obtain greater produced number of parts A and B than
Algorithms 2 and 8.

Based on the above computational results for all case
studies, it is shown that four applied deadlock prevention
policies may not imply high resource utilization and plant
productivity which has been shown theoretically in previous
publications, since the utilization of any resource at case stud-
ies does not exceed 50% and there are several resources that
have utilization less than 20%. Moreover, it is found that the

resource utilization and plant productivity are different for
case studies by using applied policies. The main reason of the
occurrence of this difference is a conflict situation in places.
When a control place enables more than one transition at the
same time, only one transition can fire. For instance, in case
study 1, the number of control places using Algorithm 2 are
11 and more than one transition is enabled at the same time;
that is, several transitions can be fired. While Algorithm 10
reduces the control places into 3 places and enables more
than one transition at the same time, few transitions can be
fired comparedwithAlgorithm2.Therefore, the performance
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Table 10: Requiredmonitors using applied algorithms for case study
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Table 11: Requiredmonitors using applied algorithms for case study
4.
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is different for different cases by using applied policies.
However, we can introduce the comparison between applied
policies based on the above computational results, from the
viewpoint of behavior permissiveness. Both Algorithms 9
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Figure 10: Utilization of resources for the Petri net model in case
study 1.
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Figure 11: Throughput of the system for the Petri net model in case
study 1.
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Figure 12: Utilization of resources for the Petri net model in case
study 2.

and 10 can provide better behavioral permissiveness than
Algorithms 2 and 8 for small size systems (case studies 3
and 4). For the large systems size (case studies 1 and 2),
Algorithm 2 leads to better behavioral permissiveness than
the other algorithms. The supervisor performance of applied
algorithms such as the number of monitors, arcs, and reach-
able states as averages values is summarized. Figures 18, 19,
and 20 show the summarized supervisor performance of all
algorithms. From the figures, bothAlgorithms 9 and 10 obtain
a supervisor with structural complexity and computational
complexity compared to Algorithms 2 and 8.
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Figure 13: Throughput of the system for the Petri net model in case
study 2.

0.000

0.100

0.200

0.300

0.400

0.0352 0.2770 0.1522 0.3715 0.3804 0.1563
0.0352 0.2770 0.1522 0.3715 0.3804 0.1563
0.0879 0.1832 0.1647 0.4141 0.3704 0.1761
0.0879 0.1832 0.1647 0.4141 0.3704 0.1761

U
til

iz
at

io
n

Utilization comparison

M1 M2 M3 M4 R1 R2

Algorithm 2
Algorithm 8
Algorithm 9
Algorithm 10

Figure 14: Utilization of resources for the Petri net model in case
study 3.
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Figure 15: Throughput of the system for the Petri net model in case
study 3.

7. Conclusion and Future Work

This paper presents four applied deadlock prevention poli-
cies, two and two of which are iterative methods and siphon
control methods, respectively. Four applied deadlock control
methods are used to design a liveness-enforcing supervisor
for four automated manufacturing system case studies. The
controlled case studies are modeled and simulated using
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Figure 16: Utilization of resources for the Petri net model in case
study 4.
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Figure 17: Throughput of the system for the Petri net model in case
study 4.
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Figure 18: Average of monitors for all cases.

MATLAB software (Petri net toolbox) to analyze and evaluate
the performance of selected methods such as utilization of
resources and throughput; the computational results can be
summarized as follows.

The applied deadlock prevention policies may not imply
high resource utilization and plant productivity which has
been shown theoretically in previous publications. Moreover,
it is found that the resource utilization and plant productivity
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Figure 20: Average of reachable states for all cases.

are different for case studies by using applied policies. The
main reason for this difference is a conflict situation in places.
When a control place enables more than one transition at the
same time, only one transition can fire. For instance, in case
study 1, the number of control places using Algorithm 2 are
11 and more than one transition is enabled at the same time;
that is, several transitions can be fired. While Algorithm 10
reduces the control places into 3 places and enables more
than one transition at the same time, few transitions can be
fired comparedwithAlgorithm2.Therefore, the performance
is different for different cases by using applied policies.
However, for all automated manufacturing systems, with
respect to structural complexity and computational complex-
ity, the selected iterative methods can always lead to struc-
turally complicated and computationally expensive liveness-
enforcing net supervisors compared to the siphon control
methods. From the aspect of behavioral permissiveness,
the selected iterative methods can provide better behavioral
permissiveness than siphon control methods for small size
systems. For large systems size, strictminimal siphons control
method leads to better behavioral permissiveness than the
other methods.

Real-world AMSs can suffer from impacts of unreliable
resources (resources with failures) under the supervisory
control of deadlocks. Therefore, the need for new effec-
tive deadlock control policies based on Petri nets becomes

increasingly more important.Thus, the future research direc-
tion involves designing new effective deadlock prevention
policies for automated manufacturing systems with unreli-
able resources [8].Then, a simulation will be used to measure
the performance of these policies. Different and complex
automated manufacturing systems are required and should
be considered as a benchmark for these deadlock prevention
policies under a variety of control specifications. Optimal
deadlock-free scheduling with high time performance will
also be interesting.
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