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By means of Schauder’s fixed point theorem and contraction mapping principle, we establish the existence and uniqueness of
solutions to a boundary value problem for a discrete fractional mixed type sum-difference equation with the nonlinear term
dependent on a fractional difference of lower order. Moreover, a suitable choice of a Banach space allows the solutions to be
unbounded and two representative examples are presented to illustrate the effectiveness of the main results.

1. Introduction

For 𝑎, 𝑏 ∈ R, such that 𝑏 − 𝑎 is a nonnegative integer, we
denote N

𝑎
= {𝑎, 𝑎 + 1, 𝑎 + 2, . . .} and N𝑏

𝑎
= {𝑎, 𝑎 + 1, . . . , 𝑏}

throughout this paper. It is also worth noting that, in what
follows, for any function 𝑢 defined on N

𝑎
, we appeal to the

convention∑𝑘2
𝑠=𝑘
1

𝑢(𝑠) = 0, when 𝑘
1
, 𝑘
2
∈ N
𝑎
with 𝑘

1
> 𝑘
2
.

In this paper, we will consider the following discrete
fractional mixed type sum-difference equation boundary
value problem:

Δ
𝛼

𝑢 (𝑡) + 𝑓 (𝑡 + 𝛼

− 1, 𝑢 (𝑡 + 𝛼 − 1) , Δ
𝛼−1

𝑢 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) = 0,

𝑡 ∈ N
0
,

𝑢 (𝛼 − 2) = 0,

Δ
𝛼−1

𝑢 (∞) = 𝑢
∞
,

(1)

where 𝛼 ∈ (1, 2], Δ𝛼 and Δ𝛼−1 denote the discrete Riemann-
Liouville fractional differences of order 𝛼 and 𝛼 − 1, respec-
tively, 𝑓 : N

𝛼−1
× R × R × R × R → R, Δ𝛼−1𝑢(∞) =

lim
𝑡→+∞

Δ
𝛼−1

𝑢(𝑡) = 𝑢
∞
∈ R, and

(𝑇𝑢) (𝑡) =

𝑡

∑

𝑠=0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠 + 𝛼 − 1) ,

(𝑆𝑢) (𝑡) =

∞

∑

𝑠=0

ℎ (𝑡, 𝑠) 𝑢 (𝑠 + 𝛼 − 1) ,

(2)

where 𝑘 : 𝐷 → R, 𝐷 = {(𝑡, 𝑠) ∈ N
0
× N
0
: 𝑠 ≤ 𝑡}, and

ℎ : N
0
× N
0
→ R.

Continuous fractional calculus is a generalization of
ordinary differentiation and integration on an arbitrary order
that can be noninteger. This subject, as old as the problem
of ordinary differential calculus, can go back to the times
when Leibniz and Newton invented differential calculus. The
theory of fractional differential equations has received a lot of
attention and now constitutes a new important mathematical
branch due to its extensive applications in various fields
of science and engineer. For more details, see [1–13] and
references therein.

It is well known that discrete analogues of differential
equations can be very useful in applications [14], in particular
for using computer to simulate the behavior of solutions for
certain dynamic equations. However, compared to the long
and rich history of continuous fractional calculus, discrete
fractional calculus attracted mathematicians and scientists
into its fairly new research area in a short period of time.
In this time period, the theory of discrete calculus has
been developed in many directions parallel to the theory
in continuous fractional calculus such as initial value prob-
lems and boundary value problems for fractional difference
equations, discrete Mittag-Leffler functions, and inequalities
with discrete fractional operators; see [15–39] and the ref-
erences therein. At the same time, in [27], Atıcı and Şengül
have shown the usefulness of discrete Gompertz fractional
difference equation for tumor growth model, which implies
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that discrete fractional difference calculus will provide a new
excellent tool to model real world phenomena in the future.

Although, among all recently research topics, the branch
of discrete finite fractional difference boundary value prob-
lems is currently undergoing active investigation [16, 31–38],
significantly less is known about discrete infinite fractional
difference boundary value problems with the nonlinear term
dependent on a fractional difference operator. Here, we
should point out that in [39], Lv and Feng, by simple analogy
with the ordinary case, introduced some basic definitions of
discrete fractional calculus for Banach-valued functions and
initially studied a class of discrete infinite fractional mixed
type sum-difference equation boundary value problems in
abstract spaces by using contracting mapping principle.
Furthermore, as far as we know, the theory of discrete
fractional mixed type sum-difference equations boundary
value problems is still a new research area. So in this paper,
we continue to focus on this topic for real-valued functions
and provide some sufficient conditions for the existence and
uniqueness of solutions to problem (1). Particularly note
that problem (1) is not like the problem in [39] and the
biggest difference is the nonlinear term 𝑓 in (1) explicitly
dependent on the discrete fractional difference operator of
lower order. Hence, these differences that cause the main
difficulties that we have to deal with in this paper are those
of constructing a special Banach space and establishing an
appropriate compactness criterion in it.

The outline for the remainder of this paper is as follows.
In Section 2, we recall some useful preliminaries for discrete
fractional calculus and present the basic space and its com-
pactness criterion for studying problem (1). In Section 3, by
employing Schauder’s fixed point theorem and contraction
mapping principle, we establish the existence and uniqueness
results of problem (1). In Section 4, two concrete examples are
provided to illustrate the possible applications of the obtained
analytical results.

2. Preliminaries

In this section, we firstly present here some necessary defini-
tions and basic results about discrete fractional calculus.

Definition 1 (see [30]). For any 𝑡 and ], the falling factorial
function is defined as

𝑡
]
=

Γ (𝑡 + 1)

Γ (𝑡 + 1 − ])
, (3)

provided that the right-hand side is well defined.We appeal to
the convention that if 𝑡+1−] is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡] = 0.

Definition 2 (see [40]). The ]th discrete fractional sum of a
function 𝑓 : N

𝑎
→ R, for ] > 0, is defined by

Δ
−]
𝑎
𝑓 (𝑡) =

1

Γ (])

𝑡−]

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
]−1
𝑓 (𝑠) , 𝑡 ∈ N

𝑎+]. (4)

Also, we define the trivial sum Δ−0
𝑎
𝑓(𝑡) = 𝑓(𝑡), 𝑡 ∈ N

𝑎
.

Definition 3 (see [30]). The ]th discrete Riemann-Liouville
fractional difference of a function 𝑓 : N

𝑎
→ R, for ] > 0, is

defined by

Δ
]
𝑎
𝑓 (𝑡) = Δ

𝑛

Δ
−(𝑛−])
𝑎

𝑓 (𝑡) , 𝑡 ∈ N
𝑎+𝑛−], (5)

where 𝑛 is the smallest integer greater than or equal to ] and
Δ
𝑛 is the 𝑛th order forward difference operator. If ] = 𝑛 ∈ N

1
,

then Δ𝑛
𝑎
𝑓(𝑡) = Δ

𝑛

𝑓(𝑡).

Remark 4. From Definitions 2 and 3, it is easy to see that Δ−]
𝑎

maps functions defined on N
𝑎
to functions defined on N

𝑎+]
andΔ]

𝑎
maps functions defined onN

𝑎
to functions defined on

N
𝑎+𝑛−], where 𝑛 is the smallest integer greater than or equal

to ]. For ease of notation, we throughout this paper omit the
subscript 𝑎 in Δ]

𝑎
𝑓(𝑡) and Δ−]

𝑎
𝑓(𝑡) when it is not to lead to

domains confusion and general ambiguity.

Lemma 5 (see [30]). Let 𝑓 : N
𝑎
→ R and ], 𝜇 > 0. Then

Δ
−]
𝑎+𝜇
Δ
−𝜇

𝑎
𝑓 (𝑡) = Δ

−]−𝜇
𝑎
𝑓 (𝑡) = Δ

−𝜇

𝑎+]Δ
−]
𝑎
𝑓 (𝑡) ,

𝑡 ∈ N
𝑎+𝜇+].

(6)

Lemma 6 (see [31]). Let 𝑛 ∈ N
1
and 𝑓 : N]−𝑛 → R with

] ∈ (𝑛 − 1, 𝑛]. Then

Δ
−]
0
Δ
]
]−𝑛𝑓 (𝑡) = 𝑓 (𝑡) + 𝑐1𝑡

]−1
+ 𝑐
2
𝑡
]−2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛
𝑡
]−𝑛
, (7)

for 𝑡 ∈ N]−𝑛, 𝑐𝑖 ∈ R, 𝑖 ∈ N𝑛1.

Lemma 7 (see [15]). Let 𝑎 ∈ R and 𝜇 > 0 be given. Then, for
] ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ N

1
,

Δ
]
𝑎+𝜇
(𝑡 − 𝑎)

𝜇

= 𝜇
]
(𝑡 − 𝑎)

𝜇−]
, 𝑡 ∈ N

𝑎+𝜇+𝑛−]. (8)

Lemma 8 (see [28]). Let 𝑓 : N
𝑎
→ R, 𝑝 ∈ N

1
and ] > 𝑝.

Then

(Δ
𝑝

Δ
−]
𝑎
𝑓) (𝑡) = Δ

−(]−𝑝)
𝑎

𝑓 (𝑡) . (9)

Next, we define the space,

𝑋 = {𝑢 : N
𝛼−2
→R | sup

𝑡∈N
𝛼−2

|𝑢 (𝑡)|

1 + 𝑡
𝛼−1

<∞, sup
𝑡∈N
0






Δ
𝛼−1

𝑢 (𝑡)






< ∞}

(10)

equiped with the norm

‖𝑢‖
𝑋
= max{ sup

𝑡∈N
𝛼−2

|𝑢 (𝑡)|

1 + 𝑡
𝛼−1
, sup
𝑡∈N
0






Δ
𝛼−1

𝑢 (𝑡)






} . (11)

Furthermore, using the linear functional analysis theory,
we can easily verify that (𝑋, ‖ ⋅ ‖

𝑋
) is a Banach space, and then

we present the following compactness criterion in it.
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Lemma 9. Let 𝑉 ⊆ 𝑋 be a bounded set. If for any given 𝜖 > 0,
there exists a positive integer 𝑇 = 𝑇(𝜖) such that












𝑢 (𝑡
2
)

1 + 𝑡
𝛼−1

2

−

𝑢 (𝑡
1
)

1 + 𝑡
𝛼−1

1












< 𝜖, (12)






Δ
𝛼−1

𝑢 (𝑠
2
) − Δ
𝛼−1

𝑢 (𝑠
1
)






< 𝜖 (13)

whenever 𝑡
1
, 𝑡
2
∈ N
𝛼+𝑇

, 𝑠
1
, 𝑠
2
∈ N
𝑇+1

, and 𝑢 ∈ 𝑉; then 𝑉 is
relatively compact in𝑋.

Proof. Evidently, it is sufficient to prove that 𝑉 is totally
bounded. In what follows we divide this proof into two steps.

Step 1. Let us consider the case 𝑡 ∈ N𝛼+𝑇
𝛼−2

.
Denote by𝑉N𝛼+𝑇

𝛼−2

the restriction of𝑉 onN𝛼+𝑇
𝛼−2

. Then𝑉N𝛼+𝑇
𝛼−2

,
equipped with the norm ‖𝑢‖

∞
= sup

𝑡∈N𝛼+𝑇
𝛼−2

(|𝑢(𝑡)|/(1 + 𝑡
𝛼−1

)),
is a finite dimension Banach space. So we know that 𝑉N𝛼+𝑇

𝛼−2

is relatively compact from the boundness of 𝑉; hence 𝑉N𝛼+𝑇
𝛼−2

is totally bounded; namely, for any 𝜖 > 0, there exist finitely
many ball 𝐵

𝜖
(𝑢
𝑖
), 𝑢
𝑖
∈ 𝑉N𝛼+𝑇

𝛼−2

, 𝑖 ∈ N𝑛
1
, such that

𝑉N𝛼+𝑇
𝛼−2

⊂

𝑛

⋃

𝑖=1

𝐵
𝜖
(𝑢
𝑖
) , (14)

where 𝐵
𝜖
(𝑢
𝑖
) = {𝑢 ∈ 𝑉N𝛼+𝑇

𝛼−2

: ‖𝑢 − 𝑢
𝑖
‖
∞
= sup

𝑡∈N𝛼+𝑇
𝛼−2

|𝑢(𝑡)/(1 +

𝑡
𝛼−1

) − 𝑢
𝑖
(𝑡)/(1 + 𝑡

𝛼−1

)| < 𝜖}.
Similarly, denote 𝑉𝛼−1

N𝑇+1
0

= {Δ
𝛼−1

𝑢 : N𝑇+1
0

→ R|𝑢 ∈

𝑉N𝛼+𝑇
𝛼−2

}. Then 𝑉𝛼−1
N𝑇+1
0

is also a Banach space with the norm
‖Δ
𝛼−1

𝑢‖
∞
= sup

𝑡∈N𝑇+1
0

|Δ
𝛼−1

𝑢(𝑡)| and it can be covered by
finitely many balls 𝐵

𝜖
(Δ
𝛼−1V
𝑗
); that is,

𝑉
𝛼−1

N𝑇+1
0

⊂

𝑚

⋃

𝑗=1

𝐵
𝜖
(Δ
𝛼−1V
𝑗
) , V

𝑗
∈ 𝑉N𝛼+𝑇

𝛼−2

, (15)

where 𝐵
𝜖
(Δ
𝛼−1V
𝑗
) = {Δ

𝛼−1

𝑢 ∈ 𝑉
𝛼−1

N𝑇+1
0

: ‖Δ
𝛼−1

𝑢 − Δ
𝛼−1V
𝑗
‖
∞
=

sup
𝑡∈N𝑇+1
0

|Δ
𝛼−1

𝑢(𝑡) − Δ
𝛼−1V
𝑗
(𝑡)| < 𝜖}.

Step 2. Define 𝑉
𝑖𝑗
= {𝑢 ∈ 𝑉 : 𝑢N𝛼+𝑇

𝛼−2

∈ 𝐵
𝜖
(𝑢
𝑖
), Δ
𝛼−1

𝑢N𝑇+1
0

∈

𝐵
𝜖
(Δ
𝛼−1V
𝑗
)}.

Let us consider the case 𝑡 ∈ N𝛼+𝑇
𝛼−2

. It is obvious that
𝑉N𝛼+𝑇
𝛼−2

⊂ ⋃
1≤𝑖≤𝑛,1≤𝑗≤𝑚

𝑉
𝑖𝑗
N𝛼+𝑇
𝛼−2

. Now, let us take 𝑢
𝑖𝑗
∈ 𝑉
𝑖𝑗
; then 𝑉

can be covered by the balls 𝐵
4𝜖
(𝑢
𝑖𝑗
), 𝑖 ∈ N𝑛

1
, 𝑗 ∈ N𝑚

1
, where

𝐵
4𝜖
(𝑢
𝑖𝑗
) = {𝑢 ∈ 𝑉 :






𝑢 − 𝑢
𝑖𝑗





𝑋
< 4𝜖} . (16)

In fact, for any 𝑢 ∈ 𝑉, the argument in Step 1 implies
that there exist 𝑖 and 𝑗 such that 𝑢N𝛼+𝑇

𝛼−2

∈ 𝐵
𝜖
(𝑢
𝑖
), Δ𝛼−1𝑢N𝑇+1

0

∈

𝐵
𝜖
(Δ
𝛼−1V
𝑗
). Hence, for 𝑡 ∈ N𝛼+𝑇

𝛼−2
and 𝑠 ∈ N𝑇+1

0
, we have











𝑢 (𝑡)

1 + 𝑡
𝛼−1

−

𝑢
𝑖𝑗
(𝑡)

1 + 𝑡
𝛼−1











≤










𝑢 (𝑡)

1 + 𝑡
𝛼−1

−

𝑢
𝑖
(𝑡)

1 + 𝑡
𝛼−1










+











𝑢
𝑖
(𝑡)

1 + 𝑡
𝛼−1

−

𝑢
𝑖𝑗
(𝑡)

1 + 𝑡
𝛼−1











< 2𝜖,

(17)






Δ
𝛼−1

𝑢 (𝑠) − Δ
𝛼−1

𝑢
𝑖𝑗
(𝑠)







≤






Δ
𝛼−1

𝑢 (𝑠) − Δ
𝛼−1V
𝑗
(𝑠)







+






Δ
𝛼−1V
𝑗
(𝑠) − Δ

𝛼−1

𝑢
𝑖𝑗
(𝑠)






< 2𝜖.

(18)

For arbitrary 𝑡 ∈ N
𝛼+𝑇

, (12) and (17) yield that










𝑢 (𝑡)

1 + 𝑡
𝛼−1

−

𝑢
𝑖𝑗
(𝑡)

1 + 𝑡
𝛼−1











≤











𝑢 (𝑡)

1 + 𝑡
𝛼−1

−

𝑢 (𝛼 + 𝑇)

1 + (𝛼 + 𝑇)
𝛼−1











+











𝑢 (𝛼 + 𝑇)

1 + (𝛼 + 𝑇)
𝛼−1

−

𝑢
𝑖𝑗
(𝛼 + 𝑇)

1 + (𝛼 + 𝑇)
𝛼−1











+











𝑢
𝑖𝑗
(𝛼 + 𝑇)

1 + (𝛼 + 𝑇)
𝛼−1

−

𝑢
𝑖𝑗
(𝑡)

1 + 𝑡
𝛼−1











< 𝜖 + 2𝜖 + 𝜖

= 4𝜖,

(19)

and for any 𝑠 ∈ N
𝑇+1

, (13) and (18) ensure that





Δ
𝛼−1

𝑢 (𝑠) − Δ
𝛼−1

𝑢
𝑖𝑗
(𝑠)







≤






Δ
𝛼−1

𝑢 (𝑠) − Δ
𝛼−1

𝑢 (𝑇 + 1)







+






Δ
𝛼−1

𝑢 (𝑇 + 1) − Δ
𝛼−1

𝑢
𝑖𝑗
(𝑇 + 1)







+






Δ
𝛼−1

𝑢
𝑖𝑗
(𝑇 + 1) − Δ

𝛼−1

𝑢
𝑖𝑗
(𝑠)






< 𝜖 + 2𝜖 + 𝜖

= 4𝜖.

(20)

Relations (17)–(20) show that ‖𝑢 − 𝑢
𝑖𝑗
‖
𝑋
< 4𝜖. Therefore,𝑉 is

totally bounded and this lemma is proved.

3. Main Result

In this section, we will establish the existence and uniqueness
of solutions for problem (1) by using Schauder’s fixed point
theorem and contraction mapping principle. For the sake
of convenience and to abbreviate our presentation, for any
function 𝑢 ∈ 𝑋, we denote
𝑔
𝑢
(𝑡) = 𝑓 (𝑡 + 𝛼

− 1, 𝑢 (𝑡 + 𝛼 − 1) , Δ
𝛼−1

𝑢 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) ,

𝑡 ∈ N
0

(21)
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in the sequel discussion and list here the following condi-
tions:

(C
1
) 𝑘∗ = sup

𝑡∈N
0

∑
𝑡

𝑠=0
|𝑘(𝑡, 𝑠)| < ∞ and ℎ

∗

=

sup
𝑡∈N
0

∑
∞

𝑠=0
(|ℎ(𝑡, 𝑠)|[1 + (𝑠 + 𝛼 − 1)

𝛼−1

]/(1 + (𝑡 + 𝛼 −

1)
𝛼−1

)) < ∞.

(C
2
) There exist functions 𝑝

𝑖
: N
𝛼−1

→ [0,∞), 𝑖 ∈ N5
1
,

with

𝑝
∗

=

∞

∑

𝑡=𝛼−1

{(1 + 𝑡
𝛼−1

) [𝑝
1
(𝑡) + 𝑝

3
(𝑡) 𝑘
∗

+ 𝑝
4
(𝑡) ℎ
∗

]

+ 𝑝
2
(𝑡)} < Γ (𝛼)

(22)

and 𝑝∗
5
= ∑
∞

𝑡=𝛼−1
𝑝
5
(𝑡) < ∞ such that





𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)


≤ 𝑝
1
(𝑡) |𝑢| + 𝑝

2
(𝑡) |V| + 𝑝

3
(𝑡) |𝑤|

+ 𝑝
4
(𝑡) |𝜛| + 𝑝

5
(𝑡) ,

(23)

for (𝑡, 𝑢, V, 𝑤, 𝜛) ∈ N
𝛼−1
×R ×R ×R ×R.

(C
2
) 𝑓
∗

= ∑
∞

𝑡=𝛼−1
|𝑓(𝑡, 0, 0, 0, 0)| < ∞, and there exist

nonnegative numbers 𝑎
𝑖
, 𝑖 ∈ N4

1
, and a function 𝑞 :

N
𝛼−1

→ [0, +∞)with 𝑞∗ = ∑∞
𝑡=𝛼−1

𝑞(𝑡)[(1+𝑡
𝛼−1

)(𝑎
1
+

𝑎
3
𝑘
∗

+ 𝑎
4
ℎ
∗

) + 𝑎
2
] < Γ(𝛼) such that





𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛) − 𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)


≤ 𝑞 (𝑡)

⋅ (𝑎
1
|𝑢 − 𝑢| + 𝑎

2
|V − V| + 𝑎

3
|𝑤 − 𝑤| + 𝑎

4





𝜛 − 𝜛





)

(24)

for 𝑡 ∈ N
𝛼−1
, 𝑢, V, 𝑤, 𝜛, 𝑢, V, 𝑤, 𝜛 ∈ R.

Lemma 10. If (𝐶
1
) and (𝐶

2
) hold, then, for any 𝑢 ∈ 𝑋,

∞

∑

𝑡=0





𝑔
𝑢
(𝑡)




≤ 𝑝
∗

‖𝑢‖
𝑋
+ 𝑝
∗

5
. (25)

Proof. For any 𝑢 ∈ 𝑋, 𝑡 ∈ N
0
, using (C

1
), (C
2
), and the

monotonicity of 𝜄𝛼−1, 𝜄 ∈ N
𝛼−1

produces





𝑔
𝑢
(𝑡)




=






𝑓 (𝑡 + 𝛼

− 1, 𝑢 (𝑡 + 𝛼 − 1) , Δ
𝛼−1

𝑢 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡))







≤ 𝑝
1
(𝑡 + 𝛼 − 1) |𝑢 (𝑡 + 𝛼 − 1)| + 𝑝

2
(𝑡 + 𝛼 − 1)

⋅






Δ
𝛼−1

𝑢 (𝑡)






+ 𝑝
3
(𝑡 + 𝛼 − 1) |(𝑇𝑢) (𝑡)| + 𝑝

4
(𝑡 + 𝛼

− 1) |(𝑆𝑢) (𝑡)| + 𝑝
5
(𝑡 + 𝛼 − 1) ≤ [1 + (𝑡 + 𝛼

− 1)
𝛼−1

]{𝑝
1
(𝑡 + 𝛼 − 1) + 𝑝

3
(𝑡 + 𝛼 − 1)

⋅

𝑡

∑

𝑠=0

|𝑘 (𝑡, 𝑠)| [1 + (𝑠 + 𝛼 − 1)
𝛼−1

]

1 + (𝑡 + 𝛼 − 1)
𝛼−1

+ 𝑝
4
(𝑡 + 𝛼 − 1)

⋅

∞

∑

𝑠=0

|ℎ (𝑡, 𝑠)| [1 + (𝑠 + 𝛼 − 1)
𝛼−1

]

1 + (𝑡 + 𝛼 − 1)
𝛼−1

}

⋅ sup
𝑡∈N
0

|𝑢 (𝑡 + 𝛼 − 1)|

1 + (𝑡 + 𝛼 − 1)
𝛼−1

+ 𝑝
2
(𝑡 + 𝛼 − 1)






Δ
𝛼−1

𝑢 (𝑡)







+ 𝑝
5
(𝑡 + 𝛼 − 1) ≤ {[1 + (𝑡 + 𝛼 − 1)

𝛼−1

]

⋅ [𝑝
1
(𝑡 + 𝛼 − 1) + 𝑝

3
(𝑡 + 𝛼 − 1) 𝑘

∗

+ 𝑝
4
(𝑡 + 𝛼 − 1) ℎ

∗

] + 𝑝
2
(𝑡 + 𝛼 − 1)} ‖𝑢‖

𝑋
+ 𝑝
5
(𝑡

+ 𝛼 − 1) .

(26)

Summating both sides of (26), we can get (25). The proof is
completed.

Lemma 11. If (𝐶
1
) and (𝐶

2
) hold, then the unique solution of

problem (1) is

𝑢 (𝑡) =

∞

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑔
𝑢
(𝑠) +

𝑢
∞

Γ (𝛼)

𝑡
𝛼−1

, 𝑡 ∈ N
𝛼−2
, (27)

where

𝐺 (𝑡, 𝑠) =

1

Γ (𝛼)

{

{

{

𝑡
𝛼−1

− (𝑡 − 𝑠 − 1)
𝛼−1

, 𝑠 ∈ N𝑡−𝛼
0
,

𝑡
𝛼−1

, 𝑠 ∈ N
𝑡−𝛼+1

.

(28)

Proof. If 𝑢 : N
𝛼−2

→ R satisfies the equation of problem (1),
then Lemma 6 implies that

𝑢 (𝑡) = −

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑔
𝑢
(𝑠) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

,

(29)

for some 𝑐
𝑖
∈ R, 𝑖 ∈ N2

1
, 𝑡 ∈ N

𝛼−2
. By 𝑢(𝛼 − 2) = 0, we get

𝑐
2
= 0.
Therefore,

𝑢 (𝑡) = −

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑔
𝑢
(𝑠) + 𝑐

1
𝑡
𝛼−1

,

𝑡 ∈ N
𝛼−2
.

(30)

By virtue of Lemmas 5, 7, and 8, we have

Δ
𝛼−1

𝑢 (𝑡) = −

𝑡−1

∑

𝑠=0

𝑔
𝑢
(𝑠) + 𝑐

1
Γ (𝛼) , 𝑡 ∈ N

0
. (31)

Using the condition Δ𝛼−1𝑢(∞) = 𝑢
∞

in (31), we obtain

𝑐
1
=

1

Γ (𝛼)

(

∞

∑

𝑠=0

𝑔
𝑢
(𝑠) + 𝑢

∞
) . (32)
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Now, substitution of 𝑐
1
into (30) gives

𝑢 (𝑡) = −

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑔
𝑢
(𝑠)

+

1

Γ (𝛼)

∞

∑

𝑠=0

𝑡
𝛼−1

𝑔
𝑢
(𝑠) +

𝑢
∞

Γ (𝛼)

𝑡
𝛼−1

=

∞

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑔
𝑢
(𝑠) +

𝑢
∞

Γ (𝛼)

𝑡
𝛼−1

,

𝑡 ∈ N
𝛼−2
,

(33)

where 𝐺(𝑡, 𝑠) is defined by (28). The proof is completed.

Remark 12. From the expression of 𝐺(𝑡, 𝑠), we can easily find
that 𝐺(𝑡, 𝑠) ≥ 0 and 𝐺(𝑡, 𝑠)/(1 + 𝑡𝛼−1) < 1/Γ(𝛼) for (𝑡, 𝑠) ∈
N
𝛼−2
× N
0
.

For any 𝑢 ∈ 𝑋, define an operatorF by

(F𝑢) (𝑡) =
∞

∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑔
𝑢
(𝑠) +

𝑢
∞

Γ (𝛼)

𝑡
𝛼−1

, 𝑡 ∈ N
𝛼−2

(34)

and due to Lemma 10 and Remark 12, we have

|(F𝑢) (𝑡)|

1 + 𝑡
𝛼−1

≤

∞

∑

𝑠=0

𝐺 (𝑡, 𝑠)

1 + 𝑡
𝛼−1





𝑔
𝑢
(𝑠)




+





𝑢
∞





𝑡
𝛼−1

Γ (𝛼) (1 + 𝑡
𝛼−1
)

≤

1

Γ (𝛼)

{𝑝
∗

‖𝑢‖
𝑋
+ 𝑝
∗

5
+




𝑢
∞





} ,

𝑡 ∈ N
𝛼−2
.

(35)

On the other hand, by virtue of Lemmas 5, 7, 8, and 10, we get

(Δ
𝛼−1

F𝑢) (𝑡) =
∞

∑

𝑠=𝑡

𝑔
𝑢
(𝑠) + 𝑢

∞
, (36)






(Δ
𝛼−1

F𝑢) (𝑡)





≤ 𝑝
∗

‖𝑢‖
𝑋
+ 𝑝
∗

5
+




𝑢
∞






(37)

which hold for 𝑡 ∈ N
0
. So (35) and (37) imply thatF : 𝑋 →

𝑋 is well defined and bounded. Furthermore, fromLemma 11,
we can transform problem (1) into an operator equation 𝑢 =
F𝑢 and it is clear to see that 𝑢 is a solution of problem (1)
which is equivalent to a fixed point ofF.

Remark 13. Setting 𝑢 = V = 𝑤 = 𝜛 = 0 in (C
2
), we have





𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)



≤ 𝑞 (𝑡) (𝑎
1
|𝑢| + 𝑎

2
|V| + 𝑎

3
|𝑤| + 𝑎

4
|𝜛|)

+




𝑓 (𝑡, 0, 0, 0, 0)






(38)

for (𝑡, 𝑢, V, 𝑤, 𝜛) ∈ N
𝛼−1
×R ×R ×R ×R, which implies that

condition (C
2
) is stronger than (C

2
). So under assumptions

(C
1
) and (C

2
), the operator F : 𝑋 → 𝑋 defined by (34) is

also well defined.

Now, we are in the position to give themain results of this
work.

Theorem 14. Assume that 𝑓 : N
𝛼−1
× R × R × R × R → R

is continuous, and suppose that conditions (𝐶
1
) and (𝐶

2
) hold.

Then problem (1) has at least one solution 𝑢 ∈ 𝑋.

Proof. In what follows, we divide this proof into three steps.

Step 1. Choose

𝑅 ≥





𝑢
∞





+ 𝑝
∗

5

Γ (𝛼) − 𝑝
∗

(39)

and let
𝑈 = {𝑢 ∈ 𝑋 : ‖𝑢‖

𝑋
≤ 𝑅} . (40)

Then, for any 𝑢 ∈ 𝑈, by (35), (37), and the fact Γ(𝛼) ∈ (0, 1],
we can verify that ‖F𝑢‖

𝑋
≤ 𝑅, which impliesF : 𝑈 → 𝑈.

Step 2. Let 𝑉 be s subset of 𝑈. We employ Lemma 9 to verify
thatF𝑉 is relatively compact.

In view of Lemma 10 and the boundness of𝑉, there exists
𝑀 > 0 such that

∞

∑

𝑡=0





𝑔
𝑢
(𝑡)




≤ 𝑀 for any 𝑢 ∈ 𝑉. (41)

By (34) and (36), we have











(F𝑢) (𝑡
2
)

1 + 𝑡
𝛼−1

2

−

(F𝑢) (𝑡
1
)

1 + 𝑡
𝛼−1

1












≤

1

Γ (𝛼)












𝑢
∞
+

∞

∑

𝜏=0

𝑔
𝑢
(𝜏)












⋅












𝑡
𝛼−1

2

1 + 𝑡
𝛼−1

2

−

𝑡
𝛼−1

1

1 + 𝑡
𝛼−1

1












+

1

Γ (𝛼)












𝑡
2
−𝛼

∑

𝜏=0

(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

𝑔
𝑢
(𝜏)

−

𝑡
1
−𝛼

∑

𝜏=0

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1

𝑔
𝑢
(𝜏)












, 𝑡
1
, 𝑡
2
∈ N
𝛼−2
,






(Δ
𝛼−1

F𝑢) (𝑠
2
) − (Δ

𝛼−1

F𝑢) (𝑠
1
)






≤

𝑠
2
−1

∑

=𝑠
1





𝑔
𝑢
()




,

for 𝑠
1
, 𝑠
2
∈ N
0
with 𝑠

1
< 𝑠
2
.

(42)

Observing (42), together with lim
𝑡→+∞

(𝑡
𝛼−1

/(1 + 𝑡
𝛼−1

)) = 1

and the conditions of Lemma 9, we only need to show that,
for any 𝜖 > 0, there exists sufficiently large positive integer 𝑇
such that, for any 𝑡

1
, 𝑡
2
∈ N
𝛼+𝑇

,











𝑡
2
−𝛼

∑

𝜏=0

(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

𝑔
𝑢
(𝜏) −

𝑡
1
−𝛼

∑

𝜏=0

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1

𝑔
𝑢
(𝜏)












< 𝜖,

(43)

and for any 𝑠
1
, 𝑠
2
∈ N
𝑇+1

with 𝑠
2
> 𝑠
1
,

𝑠
2
−1

∑

=𝑠
1





𝑔
𝑢
()




≤ 𝜖. (44)
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Relation (41) yields that there exists a positive number 𝐿 ∈
N
0
such that

∞

∑

𝑡=𝐿+1





𝑔
𝑢
(𝑡)




≤

𝜖

3

uniformly with respect to 𝑢 ∈ 𝑉. (45)

On the other hand, from the monotonicity of 𝜄𝛼−1 and
lim
𝑡→+∞

((𝑡 − 𝐿 − 1)
𝛼−1

/(1 + 𝑡
𝛼−1

)) = 1, there exist 𝑇 ∈ N
𝐿+1

such that, for any 𝑡
1
, 𝑡
2
∈ N
𝛼+𝑇

and 𝜏 ∈ N𝐿
0
,












(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

−

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1












≤ [1 −

(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

] + [1 −

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1

]

≤ [1 −

(𝑡
2
− 𝐿 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

] + [1 −

(𝑡
1
− 𝐿 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1

]

<

𝜖

3𝑀

.

(46)

Now taking 𝑡
1
, 𝑡
2
∈ N
𝛼+𝑇

, by virtue of (41), (45), and (46), we
get












𝑡
2
−𝛼

∑

𝜏=0

(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

𝑔
𝑢
(𝜏) −

𝑡
1
−𝛼

∑

𝜏=0

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1

𝑔
𝑢
(𝜏)












≤

𝐿

∑

𝜏=0












(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2

−

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1
















𝑔
𝑢
(𝜏)





+

𝑡
2
−𝛼

∑

𝜏=𝐿+1

(𝑡
2
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

2





𝑔
𝑢
(𝜏)





+

𝑡
1
−𝛼

∑

𝜏=𝐿+1

(𝑡
1
− 𝜏 − 1)

𝛼−1

1 + 𝑡
𝛼−1

1





𝑔
𝑢
(𝜏)





<

𝜖

3𝑀

∞

∑

𝜏=0





𝑔
𝑢
(𝜏)




+ 2

∞

∑

𝜏=𝐿+1





𝑔
𝑢
(𝜏)




< 𝜖.

(47)

Moreover, from (45), we have

𝑠
2
−1

∑

=𝑠
1





𝑔
𝑢
()




≤

∞

∑

=𝐿+1





𝑔
𝑢
()




< 𝜖 (48)

which holds for any 𝑠
1
, 𝑠
2
∈ N
𝑇+1

with 𝑠
2
> 𝑠
1
and arbitrary

𝑢 ∈ 𝑉. Moreover, it follows from (47) and (48) that (43)
and (44) hold. Consequently, by Lemma 9, F𝑉 is relatively
compact.

Step 3.F : 𝑈 → 𝑈 is a continuous operator.

Let 𝑢
𝑛
, 𝑢 ∈ 𝑈, 𝑛 ∈ N

1
such that ‖𝑢

𝑛
− 𝑢‖
𝑋
→ 0 as

𝑛 → ∞. Then by (C
2
), for any 𝜖 > 0 there exists a positive

integer 𝐿 such that

∞

∑

𝑡=𝛼+𝐿

{(1 + 𝑡
𝛼−1

) [𝑝
1
(𝑡) + 𝑝

3
(𝑡) 𝑘
∗

+ 𝑝
4
(𝑡) ℎ
∗

]

+ 𝑝
2
(𝑡)} <

Γ (𝛼)

6𝑅

𝜖,

∞

∑

𝑡=𝛼+𝐿

𝑝
2
(𝑡) <

Γ (𝛼)

6

𝜖.

(49)

On the other hand, from the continuity of 𝑓, we know that
there exists𝑁 ∈ N

1
such that, for any 𝑛 > 𝑁 and 𝑡 ∈ N𝐿

0
,






𝑔
𝑢
𝑛
(𝑡) − 𝑔

𝑢
(𝑡)






≤

Γ (𝛼)

3 (𝐿 + 1)

𝜖. (50)

Therefore, for 𝑡 ∈ N
𝛼−2

and 𝑛 > 𝑁, by (49)-(50) and
Remark 12, we can obtain that





(F𝑢
𝑛
) (𝑡) − (F𝑢) (𝑡)






1 + 𝑡
𝛼−1

≤

∞

∑

𝑠=0

𝐺 (𝑡, 𝑠)

1 + 𝑡
𝛼−1






𝑔
𝑢
𝑛
(𝑠) − 𝑔

𝑢
(𝑠)







<

1

Γ (𝛼)

{

𝐿

∑

𝑠=0






𝑔
𝑢
𝑛
(𝑠) − 𝑔

𝑢
(𝑠)






+

∞

∑

𝑠=𝐿+1






𝑔
𝑢
𝑛
(𝑠)

− 𝑔
𝑢
(𝑠)






} ≤

1

Γ (𝛼)

{

𝐿

∑

𝑠=0






𝑔
𝑢
𝑛
(𝑠) − 𝑔

𝑢
(𝑠)







+ 2𝑅

∞

∑

𝑠=𝛼+𝐿

{(1 + 𝑠
𝛼−1

)

⋅ [𝑝
1
(𝑠) + 𝑝

3
(𝑠) 𝑘
∗

+ 𝑝
4
(𝑠) ℎ
∗

] + 𝑝
2
(𝑠)}

+ 2

∞

∑

𝑠=𝛼+𝐿

𝑝
5
(𝑠)} <

𝜖

3

+

𝜖

3

+

𝜖

3

= 𝜖.

(51)

Meanwhile, for 𝑡 ∈ N
0
and 𝑛 > 𝑁, applying (49)-(50) again,

we can easily verify that






(Δ
𝛼−1

F𝑢
𝑛
) (𝑡) − (Δ

𝛼−1

F𝑢) (𝑡)






≤

∞

∑

𝑠=𝑡






𝑔
𝑢
𝑛
(𝑡) − 𝑔

𝑢
(𝑡)






≤

∞

∑

𝑠=0






𝑔
𝑢
𝑛
(𝑡) − 𝑔

𝑢
(𝑡)







< Γ (𝛼) 𝜖 < 𝜖.

(52)

Then, by virtue of (51) and (52), we conclude that ‖F𝑢
𝑛
−

F𝑢‖
𝑋
≤ 𝜖 as 𝑛 > 𝑁, which asserts the continuity ofF.

Therefore, by Schauder’s fixed point theorem, we obtain
that problem (1) has at least one solution in 𝑈 and the proof
is finished.

Theorem 15. Suppose that conditions (𝐶
1
) and (𝐶

2
) hold.

Then problem (1) has a unique solution 𝑢 ∈ 𝑋.



Discrete Dynamics in Nature and Society 7

Proof. For any 𝑢, V ∈ 𝑋, in view of (C
2
) and Remark 12, we

have

|(F𝑢) (𝑡) − (FV) (𝑡)|
1 + 𝑡
𝛼−1

≤

∞

∑

𝑠=0

𝐺 (𝑡, 𝑠)

1 + 𝑡
𝛼−1





𝑔
𝑢
(𝑠) − 𝑔V (𝑠)






≤

1

Γ (𝛼)

∞

∑

𝑠=0

𝑞 (𝑠 + 𝛼 − 1)

⋅ (𝑎
1
|𝑢 (𝑠 + 𝛼 − 1) − V (𝑠 + 𝛼 − 1)|

+ 𝑎
2






Δ
𝛼−1

𝑢 (𝑠) − Δ
𝛼−1V (𝑠)







+ 𝑎
3
|(𝑇𝑢) (𝑠) − (𝑇V) (𝑠)| + 𝑎

4
|(𝑆𝑢) (𝑠) − (𝑆V) (𝑠)|)

≤

1

Γ (𝛼)

𝑞
∗

‖𝑢 − V‖
𝑋
, 𝑡 ∈ N

𝛼−2
.

(53)

On the other hand, by (36) and using (C
2
) again, we have






(Δ
𝛼−1

F𝑢) (𝑡) − (Δ
𝛼−1

FV) (𝑡)





≤

∞

∑

𝑠=𝑡





𝑔
𝑢
(𝑠) − 𝑔V (𝑠)






≤ 𝑞
∗

‖𝑢 − V‖
𝑋
, 𝑡 ∈ N

0
.

(54)

So, from (53), (54) and the facts that 𝑞∗ < Γ(𝛼) and
Γ(𝛼) ∈ (0, 1] when 𝛼 ∈ (1, 2], we know that F is
a contraction mapping. By means of Banach contraction
mapping principle, we get thatF has a unique fixed point in
𝑋; that is, problem (1) has a unique solution. This completes
the proof.

4. Examples

In this section, we will illustrate the possible applications of
the above established analytical results with the following two
concrete examples.

Example 1. Consider the discrete fractional difference
boundary value problem:

Δ
3/2

𝑢 (𝑡) +

3
−(𝑡+1)

[1 + (𝑡 + 1/2)
1/2

]

2
sin [𝑢 (𝑡 + 1/2)]

+

4
−(𝑡+1/2)

[1 + (𝑡 + 1/2)
1/2

]

× {1 + 𝑢 (𝑡 +

1

2

)

+ [1 + (𝑡 +

1

2

)

1/2

]Δ
1/2

𝑢 (𝑡)

+

𝑡

∑

𝑠=0

1

(𝑡 + 𝑠 + 2)
2
𝑢 (𝑠 +

1

2

)

+

∞

∑

𝑠=0

cos (𝑡2𝑠)

(𝑠 + 2)
2

[1 + (𝑠 + 1/2)
1/2

]

𝑢 (𝑠 +

1

2

)}

1/4

= 0,

𝑡 ∈ N
0
,

𝑢 (−

1

2

) = 0,

Δ
1/2

𝑢 (∞) = 𝑢
∞
.

(55)

Conclusion. Problem (55) has at least one solution 𝑢 :

N
−1/2

→ R.

Proof. Corresponding to problem (1), we have 𝛼 = 3/2,

𝑘 (𝑡, 𝑠) =

1

(𝑡 + 𝑠 + 2)
2
,

ℎ (𝑡, 𝑠) =

cos (𝑡2𝑠)

(𝑠 + 2)
2

[1 + (𝑠 + 1/2)
1/2

]

,

𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)

=

3
−𝑡−1/2

(1 + 𝑡
1/2

)

2
sin 𝑢

+

4
−𝑡

(1 + 𝑡
1/2

)

[1 + 𝑢 + (1 + 𝑡
1/2

) V + 𝑤 + 𝜛]
1/4

,

(56)

(𝑡, 𝑢, V, 𝑤, 𝜛) ∈ N
1/2
×R ×R ×R ×R.

From the expression of 𝑓, it is easy to see that 𝑓 is
continuous. Furthermore, we can verify that

𝑘
∗

= sup
𝑡∈N
0

𝑡

∑

𝑠=0

1

(𝑡 + 𝑠 + 2)
2
= sup
𝑡∈N
0

1

2 (𝑡 + 1)

=

1

2

< ∞,

ℎ
∗

= sup
𝑡∈N
0

1

1 + (𝑡 + 1/2)
1/2

⋅

∞

∑

𝑠=0






cos (𝑡2𝑠)


[1 + (𝑠 + 1/2)

1/2

]

[1 + (𝑠 + 1/2)
1/2

] (𝑠 + 2)
2

≤ sup
𝑡∈N
0

1

1 + (𝑡 + 1/2)
1/2

∞

∑

𝑠=0

1

(𝑠 + 2)
2
≤

1

1 + Γ (3/2)

<

3

4

< ∞.

(57)

So condition (C
1
) is satisfied.

On the other hand, by using a simple inequality

(1 + 𝑧)
𝛾

≤ 1 + 𝛾𝑧, for 𝑧 ∈ [0, +∞) , 𝛾 ∈ (0, 1) , (58)
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we have





𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)


≤

3
−(𝑡+1/2)

(1 + 𝑡
1/2

)

2
|sin 𝑢| + 4

−𝑡

(1 + 𝑡
1/2

)

[1

+ |𝑢| + (1 + 𝑡
1/2

) |V| + |𝑤| + |𝜛|]
1/4

≤

4
−(𝑡+1)

(1 + 𝑡
1/2

)

[|𝑢| + (1 + 𝑡
1/2

) |V| + |𝑤| + |𝜛|]

+

3
−(𝑡+1/2)

(1 + 𝑡
1/2

)

2
+

4
−𝑡

(1 + 𝑡
1/2

)

,

(59)

and therefore





𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)


≤ 𝑝
1
(𝑡) |𝑢| + 𝑝

2
(𝑡) |V| + 𝑝

3
(𝑡) |𝑤|

+ 𝑝
4
(𝑡) |𝜛| + 𝑝

5
(𝑡) ,

(60)

where

𝑝
1
(𝑡) = 𝑝

3
(𝑡) = 𝑝

4
(𝑡) =

4
−(𝑡+1)

(1 + 𝑡
1/2

)

,

𝑝
2
(𝑡) = 4

−(𝑡+1)

,

𝑝
5
(𝑡) =

3
−(𝑡+1/2)

(1 + 𝑡
1/2

)

2
+

4
−𝑡

(1 + 𝑡
1/2

)

.

(61)

By directly calculation, we have

𝑝
∗

<

13

24

< Γ (

3

2

) ,

𝑝
∗

5
<

7

6

.

(62)

Thus, condition (C
2
)holds. So, byTheorem 14, our conclusion

follows.

Example 2. Consider the following problem:

Δ
4/3

𝑢 (𝑡) +

2
−(𝑡+1)

8 [1 + (𝑡 + 1/3)
1/3

]

{cos [𝑢 (𝑡 + 1/3)] + sin [Δ1/3𝑢 (𝑡)]} + 3
−(𝑡+1)

𝑒
2
[1 + (𝑡 + 1/3)

1/3

]

[

𝑡

∑

𝑠=0

1

(𝑡 + 𝑠 + 2)
2
𝑢 (𝑠 +

1

3

)]

+

𝑒
−(𝑡+1)

𝑒
3
[2 + cos (𝑡 + 1/3) + (𝑡 + 1/3)1/3]

{

∞

∑

𝑠=0

sin (𝑡 + 𝑒𝑠)
(𝑠 + 2)

2

[1 + (𝑠 + 1/3)
1/3

]

𝑢 (𝑠 +

1

3

)} = 0, 𝑡 ∈ N
0
,

𝑢 (−

2

3

) = 0,

Δ
1/3

𝑢 (∞) = 𝑢
∞
.

(63)

Conclusion. Problem (63) has a unique solution 𝑢 : N
−2/3

→

R.

Proof. It is easy to see that problem (63) is the form of
problem (1), where 𝛼 = 4/3,

𝑘 (𝑡, 𝑠) =

1

(𝑡 + 𝑠 + 2)
2
,

ℎ (𝑡, 𝑠) =

sin (𝑡 + 𝑒𝑠)
(𝑠 + 2)

2

[1 + (𝑠 + 1/3)
1/3

]

,

𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛) =
2
−(𝑡+2/3)

8 [1 + 𝑡
1/3

]

(cos 𝑢 + sin V)

+

3
−(𝑡+2/3)

𝑒
2
[1 + 𝑡

1/3

]

𝑤

+

𝑒
−(𝑡+2/3)

𝑒
3
[2 + cos 𝑡 + 𝑡1/3]

𝜛,

(64)

for (𝑡, 𝑢, V, 𝑤, 𝜛) ∈ N
1/3
×R ×R ×R ×R.

Choosing 𝑎
1
= 𝑎
2
= 1/8, 𝑎

3
= 1/𝑒
2, 𝑎
4
= 1/𝑒
3, and 𝑞(𝑡) =

2
−(𝑡+2/3)

/(1+𝑡
1/3

), 𝑡 ∈ N
1/3

, then we can verify that𝑓∗ < 1/4,
𝑘
∗

= 1/2, ℎ∗ < 0.5283, 𝑞∗ < 0.3454 < 0.8930 ≈ Γ(4/3), and




𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛) − 𝑓 (𝑡, 𝑢, V, 𝑤, 𝜛)


≤ 𝑞 (𝑡)

⋅ (𝑎
1
|𝑢 − 𝑢| + 𝑎

2
|V − V| + 𝑎

3
|𝑤 − 𝑤| + 𝑎

4





𝜛 − 𝜛





)

(65)

holds for any 𝑡 ∈ N
1/3

, 𝑢, V, 𝑤, 𝜛, 𝑢, V, 𝑤, 𝜛 ∈ R.
Clearly, all conditions of Theorem 15 are fulfilled. There-

fore, we can conclude that problem (63) has a unique
solution.
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[27] F. M. Atıcı and S. Şengül, “Modeling with fractional difference
equations,” Journal of Mathematical Analysis and Applications,
vol. 369, no. 1, pp. 1–9, 2010.

[28] F. M. Atici and P. W. Eloe, “Initial value problems in discrete
fractional calculus,” Proceedings of the American Mathematical
Society, vol. 137, no. 3, pp. 981–989, 2009.

[29] I. K. Dassios and D. I. Baleanu, “Duality of singular linear
systems of fractional nabla difference equations,”AppliedMath-
ematical Modelling, vol. 39, no. 14, pp. 4180–4195, 2015.

[30] F. M. Atici and P.W. Eloe, “A transformmethod in discrete frac-
tional calculus,” International Journal of Difference Equations,
vol. 2, no. 2, pp. 165–176, 2007.

[31] F.M. Atıcı and P.W. Eloe, “Two-point boundary value problems
for finite fractional difference equations,” Journal of Difference
Equations and Applications, vol. 17, no. 4, pp. 445–456, 2011.

[32] C. S. Goodrich, “On discrete sequential fractional boundary
value problems,” Journal of Mathematical Analysis and Applica-
tions, vol. 385, no. 1, pp. 111–124, 2012.

[33] Y. Pan, Z. Han, S. Sun, and C. Hou, “The existence of solutions
to a class of boundary value problems with fractional difference
equations,” Advances in Difference Equations, vol. 2013, article
275, 20 pages, 2013.

[34] F. Chen and Y. Zhou, “Existence and Ulam stability of solu-
tions for discrete fractional boundary value problem,” Discrete
Dynamics in Nature and Society, vol. 2013, Article ID 459161, 7
pages, 2013.

[35] Y. Chen and X. Tang, “The difference between a class of discrete
fractional and integer order boundary value problems,” Com-
munications inNonlinear Science andNumerical Simulation, vol.
19, no. 12, pp. 4057–4067, 2014.

[36] W. Lv, “Existence of solutions for discrete fractional boundary
value problems with a p-laplacian operator,” Advances in Differ-
ence Equations, vol. 2012, article 163, 2012.

[37] W. Lv, “Solvability for discrete fractional boundary value prob-
lems with a p-laplacian operator,” Discrete Dynamics in Nature
and Society, vol. 2013, Article ID 679290, 8 pages, 2013.



10 Discrete Dynamics in Nature and Society

[38] W. Lv, “Solvability for a discrete fractional three-point boundary
value problem at resonance,” Abstract and Applied Analysis, vol.
2014, Article ID 601092, 7 pages, 2014.

[39] W. Lv and J. Feng, “Nonlinear discrete fractional mixed type
sum-difference equation boundary value problems in Banach
spaces,” Advances in Difference Equations, vol. 2014, article 184,
12 pages, 2014.

[40] K. Miller and B. Ross, “Fractional difference calculus,” in Pro-
ceedings of the International Symposium on Univalent Functions,
Fractional Calculus and Their Applications, pp. 139–152, Nihon
University, Koriyama, Japan, 1989.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


