
Retraction
Retracted: An Automatic Web Service Composition
Framework Using QoS-Based Web Service Ranking Algorithm

The Scientific World Journal

Received 20 April 2016; Accepted 20 April 2016

Copyright © 2016 The Scientific World Journal.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Scientific World Journal has retracted the article titled
“An Automatic Web Service Composition Framework Using
QoS-Based Web Service Ranking Algorithm” [1]. After con-
ducting a thorough investigation, we have strong reason to
believe that the peer review process was compromised.

This article was originally submitted to a Special Issue
titled “Recent Advances in Metaheuristics and Its Hybrids.”
In late 2015, Dr. Xavier Delorme, the lead guest editor
on the Special Issue, alerted us that his identity had been
compromised. After further investigation, we discovered that
several peer review reports in this issue had been submitted
from similarly compromised email accounts.

We are retracting the articles in keeping with the “COPE
statement on inappropriate manipulation of the peer review
process.” There is no evidence that any of the authors or edi-
tors, including Dr. Delorme, were aware of this misconduct.

References

[1] D. Mallayya, B. Ramachandran, and S. Viswanathan, “An auto-
matic web service composition framework using QoS-based
web service ranking algorithm,” The Scientific World Journal,
vol. 2015, Article ID 207174, 14 pages, 2015.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2016, Article ID 6902846, 1 page
http://dx.doi.org/10.1155/2016/6902846

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208516327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/2016/6902846


Research Article
An Automatic Web Service Composition Framework Using
QoS-Based Web Service Ranking Algorithm

Deivamani Mallayya, Baskaran Ramachandran, and Suganya Viswanathan

Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai 600025, India

Correspondence should be addressed to Deivamani Mallayya; m.deivamani@gmail.com

Received 29 May 2015; Revised 26 August 2015; Accepted 27 August 2015

Academic Editor: Mallipeddi Rammohan

Copyright © 2015 Deivamani Mallayya et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web
applications. In the Internet era, the exponential addition of web services nominates the “quality of service” as essential parameter
in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed
to rank web services based on user preferences and QoS aspect of the web service. When the user’s request cannot be fulfilled by
a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework
allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm
identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces
the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service
composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences.The
proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

1. Introduction

In recent years, the software industry has been dominated
by the web services. Most of the enterprises publish their
applications on the World Wide Web using web services.
Web service technology is the heart of Service Oriented
Architecture (SOA) that meets the interoperability demands
of the web application. W3C defines web service as “a
software system designed to support interoperable machine
to machine interaction over a network.” Web services [1] are
self-contained, self-describing, and loosely coupled software
applications that can be published, located, and accessed
across the web using XML-based open standards, namely,
SOAP (Simple Object Access Protocol), WSDL (Web Service
Description Language), and UDDI (Universal Description,
Discovery and Integration).

The three main components in web service architecture
are web service provider, web service requester, and UDDI
registry [2] as given in Figure 1.Theweb service provider pub-
lishes information about the web services inUDDI registry in

the form of WSDL file. WSDL of a web service is a machine-
readable description that indicates the service invocation
parameters of the web service. WSDL is an XML-based
language that describes the functionality of the web service
like location of the service and operations (or methods) of
the service. Universal Description, Discovery and Integra-
tion (UDDI) is a platform-independent, Extensible Markup
Language- (XML-) based registry for businesses worldwide
to list themselves on the Internet, used to register and locate
web service applications. Web service consumer uses UDDI
to discover appropriate services which meet the requirement
using the service invocation parameters provided by the web
service provider.

Research on web services includes web services descrip-
tion discovery, selection, ranking, composition, deployment,
execution, monitoring, and adaptation. Web service descrip-
tion deals with specifying all the information required to
access and invoke a web service. Web service discovery is the
process of locating and gaining access to a web service which
satisfy the customer requirements. Web service selection

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 207174, 14 pages
http://dx.doi.org/10.1155/2015/207174

http://dx.doi.org/10.1155/2015/207174


2 The Scientific World Journal

UDDI registry

Web service 
consumer

Web service 
provider

Find (retrieve Register (publish 
WSDL)

Request
response

WSDL)

Figure 1: Web service architecture.

and ranking are to identify best web services which satisfy
the user’s requirement. Web service composition involves
combining a set of compatible atomic web services in order
to satisfy the user’s requirement, when a single atomic
web service could not satisfy the user’s requirement. This
paper mainly focuses on web service selection, ranking, and
composition from the aspect of quality of service (QoS).

Some of the major challenges in web service composition
framework are as follows:

(i) How to select the best web service when there are
many available web services of similar functionality.

(ii) What the factors that influence web service selection
are.

(iii) How to meet the various requirements of the user.

(iv) How to compose multiple web services automatically
when the user’s request is not satisfied with a single
web service.

QoS of the web service is used to distinguish the functionally
similar web services.The proposed framework solves the first
challenge by considering QoS for web service selection. The
main QoS properties that influence web service selection are
execution cost, availability, average response time, successful
execution rate, frequency, and reputation. User preferences
over these QoS properties play a vital role while ranking
the web services. Our automatic web service composition
(QAWSC) algorithm meets the local and global constraints
specified by the user. The proposed framework generates
composition plans automatically when the user’s request is
not satisfied with a single atomic service. It assigns atomic
web service automatically to each task in the user request.Our
algorithm also meets multiple QoS requirements specified by
the user.

QoS parameters of web services act as a discriminator
in identifying the suitable web services from the set of
available web services. After the preliminary filtering with
respect to the QoS, the web services are ranked based on
the user preference (platinum, gold, and bronze, platinum
being the highest preference level and bronze being the lowest
preference level). The filtering based on the user preference
delivers the expected set of web services with respect to the
user.

This paper is organized as follows: Section 2 presents
an overview of web service selection and composition
approaches. Section 3 describes the QoS metrics used in this
paper. Section 4 explains the proposed web service composi-
tion framework. Section 5 presents the testing environment
and our experimental results. We conclude our work in
Section 6.

2. Related Works

Some of the current approaches for composition first rank
the web services before selection. But the performance of this
approach is less when compared to composition approaches
that does ranking followed by selection. In [3], QoS-based
web service selection model is discussed. This method is
based onweightage and normalization of functionally similar
services. Though this method gets the client’s weightage,
there is a large difference between the QoS values of a
group of functionally similar services and QoS value of
another functionally similar service. During normalization
the difference between the normalized QoS values becomes
negligible. Thus user’s weightage does not influence the QoS
values while ranking the web services.

Other normalization approach [4] used for web service
selection considers only QoS of the services without users
QoS requirements and preferences on QoS aspects. But this
approach handles the situation when there is no feasible
solution to fulfill QoS constraints set by users. QoS-based
web service selection method proposed in [5] requires a
lot of interactions with users and does not consider user
preferences on various concerned QoS aspects.

Web service composition [6] approaches can be classified
into manual composition or static composition, semiauto-
matic service composition and automated web service com-
position. In manual composition, composition is achieved
programmatically through orchestration languages like Web
Services Business Process Execution Language (WS-BPEL).
Manual composition of services consumes a lot of time and
it cannot adapt to the dynamic environment. Semiautomatic
service composition involves the end user in themanagement
of composition through a graphical interface, for example,
YAHOO PIPES. This kind of approach also requires users
with knowledge in the development and consumes a lot of
time.

In automatic web service composition, the system pro-
cesses the user’s request and generates the composite service.
This paper focuses on automatic web service composition
considering functional and nonfunctional aspect of web
services. Advantages of using automatic web service compo-
sition approach are that it

(i) minimizes user intervention,
(ii) accelerates the process of producing a composite

service that satisfies the user request,
(iii) eliminates the human errors,
(iv) reduces cost.



The Scientific World Journal 3

Four distinct approaches for automated web service compo-
sition are workflow based, model-based, mathematics-based,
and AI planning approaches. Some of the other approaches
include heuristic approaches which use algorithms like
genetic algorithm.

Many automatic approaches do not take QoS attributes
into account. Gu et al. [7] proposed an approach without
considering QoS aspects and it lacks correctness in composi-
tion. The workflow approach proposed by Ardagna et al. [8]
focused on adaptation and flexibility of service composition
modeled as business processes. BPEL process is created and
then annotated with global and local constraints. The QoS
constraints are expressed in the Service Level Agreement
(SLA). WSQosX proposed in [9] is a workflow engine which
calculates an execution plan that maximizes the overall QoS.
The main limitation is that many candidate web services for
the composition are selected which reduces the efficiency of
the approach. Workflows are limited to simple schemas and
some of the approaches are manual.

Model-based approaches include [10, 11]. The model-
based approach proposed in [12] uses UML activity dia-
grams to model service compositions. The UML diagrams
are then used to generate executable BPEL processes using
XSLT transformations. Model-based approaches are time-
consuming and not fully automated.

Some of the mathematics-based approaches are [13–
15]. The QoS aware service composition problem has been
defined as mathematical problems such as integer linear
planning, single objective problemwith QoS constraints, and
the multiple objective problem with QoS constraints which
are the most common ones. For the service composition,
LIP can help to get the best solution without constructing
all the possible composite services. However, it can only be
available for the composition problems with small volumes
since the traditional branch andbound technique has its com-
putation limitations. On the other hand, it also asks for the
linearization of the objective function and the corresponding
constraints.

The AI based approach proposed in [16] is complex and
some of the other approaches based on “AI planning” will
not endure when any one of the web service within the
composition plan fails.

PSR system (precomputing solutions for web service
composition in an RDBMS) proposed by Lee et al. [2]
implemented web service composition using a relational
database. This approach is efficient in a large number of
services, but it does not consider QoS aspects of composition.

These shortcomings motivated us to build QoS aware
automatic web service composition framework using a rela-
tional database. Our proposed framework is flexible in
supporting user preferences over QoS criteria and also allows
user to specify the constraints.

3. QoS Model

This section explains the QoS properties considered in the
proposed work and explains the notations used in this paper.

3.1. Preliminary

Definition 1. A web service is a tuple WS
𝑖
(ID, 𝐼, 𝑂, ST, 𝑄

𝑠
),

where

(i) ID is the service identifier,
(ii) 𝐼 is a set of input parameters for WS

𝑖
,

(iii) 𝑂 is a set of output parameters for WS
𝑖
,

(iv) ST denotes the service type,
(v) 𝑄
𝑠
denotes the quality-of-service values for WS

𝑖
.

Definition 2. QoS value of web service WS
𝑖
is a tuple

𝑄
𝑠
(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
), 0.0 ≤ 𝑞

𝑖
≤ 10.0.

(i) 𝑞
𝑖
denotes the execution cost, availability, frequency,

reputation, average response time, and successful
execution rate of aWS, where 𝑖 denotes QoS property.

Definition 3. A composition plan is a tuple CP (WS
𝑖
, . . . ,

WS
𝑛
,QV
𝑠
), where

(i) WS
𝑖
denotes set of atomic services, where 𝑖 ranges

from 1 to 𝑛 and 𝑛 denotes the number of tasks,
(ii) QV

𝑠
is aggregated QoS values of CP.

3.2. Quality-of-Service Criteria. Quality of service (QoS) of
a web service can be used as a discriminating factor that
differentiates the functionally similar web service. QoS of a
web service [1] can be considered as a set of nonfunctional
attributes of the entities used in the path of the web service to
the client that bear on the web service ability to satisfy stated
or implied needs in an end-to-end fashion.The values of QoS
attributes can vary without impacting the core function of the
web service which remains constant most of the time during
the web service lifetime. If a web service is advertised to have
certain values (or range of values) in these QoS attributes,
then that web service conforms to provide a certainQoS level.

QoS attributes are classified into domain independent
and domain dependent attributes. Attributes like availabil-
ity and successful execution rate are domain independent
attributes. An attribute like the cost is a domain dependent
attribute.QoS attributes can be distinguished intomeasurable
and immeasurable ones. A measurable QoS attribute can
be measured with the help of one or more QoS metrics. A
QoS metric is a concept that encompasses all measurement
details for a QoS attribute. They have specific value type and
their values are associated with a specific unit. For example,
for average execution time, the successful execution rate
is measurable. Unmeasurable quality attributes cannot be
measured at all. They represent static information which is
qualitative in nature.These attributes have specific value type
and are unitless. Some QoS attributes [16] that influence the
performance of a web service are successful execution rate,
availability, service execution cost, average response time,
frequency, reputation, and so forth which are explained in
Table 1.

Execution Cost. The Cost 𝐶
𝑖𝑗
is the amount that a service

requester needs to pay to execute service 𝑆
𝑖
that implements



4 The Scientific World Journal

Table 1: QoS aggregation function.

Sl. number QoS criteria Sequence
1 Execution cost (CP

𝑖,𝐶
) ∑

𝑛

𝑖=1
𝐶(WS

𝑖
)

2 Successful execution rate (CP
𝑖,𝑆
) (∑

𝑛

𝑖=1
𝑆(WS

𝑖
))/𝑛

3 Response time (CP
𝑖,𝑇
) ∑

𝑛

𝑖=1
𝑇(WS

𝑖
)

4 Reputation (CP
𝑖,𝑅
) (∑

𝑛

𝑖=1
Rep(WS

𝑖
))/𝑛

5 Frequency (CP
𝑖,𝐹
) ∑

𝑛

𝑖=1
𝐹(WS

𝑖
)

6 Availability (CP
𝑖,𝐴
) ∏

𝑛

𝑖=1
𝐴(WS

𝑖
)

the task 𝑡
𝑗
. Service provider defines the cost for the service.

𝑞
𝑐
is denoted as 𝐶

𝑖𝑗
where 𝑖 denotes the service and 𝑗 denotes

the task.

Average Response Time.The average response time 𝑞
𝑡
denoted

as 𝑡
𝑖𝑗
is defined as the average elapse time between the request

and response time of a web service 𝑆
𝑖
:

average response time (𝑞
𝑡
)

=
∑ [response time (𝑡

𝑖
) − request time (𝑡

𝑖
)]

total number of service trials
.

(1)

Availability. The availability 𝑞
𝑎
of a web service which is

denoted as 𝐴
𝑖𝑗
is the probability that the service 𝑆

𝑖
that

implements the task 𝑡
𝑗
can be accessed and used. It is a

function of the number of times the service responds to a
request and of the number of total requests made to the
service.

Reputation. The reputation 𝑞
𝑟
of a web service denoted as

𝑅
𝑖𝑗
is the measure of its trustworthiness. It depends on the

user’s experience using the service. Different end users can
have different opinions about the same service. Reputation
can be defined as the average ranking given to the service by
end users:

reputation (𝑞
𝑟
) =

∑
𝑛

𝑖=1
Rep (WS

𝑖
)

total number of service trials (𝑛)
, (2)

where Rep is accumulated score of reputation.
Users provide feedback about the service and rate the

service in the range 1 to 5, where 5 indicates the highest score
for the web service.

Frequency.The frequency 𝑞
𝑓
of a web service denoted as 𝐹

𝑖𝑗
is

defined as number of times the clients have used web service
𝑆
𝑖
that implements the task 𝑡

𝑗
.

Successful Execution Rate. Successful execution rate 𝑞sr of a
web service denoted as SR

𝑖𝑗
is the percentage that service

requests are responded to. It is calculated as the number of
successful executions divided by the total number of service
trials:

successful execution rate (𝑞sr)

=
number of successful executions
total number of service trials

,
(3)

Travel reservation system

Travel
(flight, train, bus)

Cab
(taxi/jeep/van)

Invoke

Request Response

Client

Hotel
(deluxe/standard/ 

economy)

Invoke
Invoke

Figure 2: Travel reservation scenario.

where number of successful executions is success count and
total number of service trials is success count + failure count.

3.3. Quality-of-Service Aggregated Functions. In the proposed
framework, composition plan (CP) has a serial execution
pattern and we aggregate the QoS values of atomic services
WS
𝑖
in CP using the aggregation functions defined in Table 1.

4. Proposed Framework

In this section, we present the user preference based web
service ranking (UPWSR) algorithm and automatic web
service composition (AWSC) algorithm. We formulate the
web service composition problem and describe the core com-
ponents in automatic web service composition framework.
A travel reservation scenario is used to explain the proposed
framework.

4.1. Problem Definition. Given a user request
UR(𝑇,QWV, 𝐶), we need to find the best composite
services among the list of services that satisfies the user
request where

(i) 𝑇 denotes a set of independent tasks 𝑡
𝑖
, where 𝑖 ranges

from 1 to 𝑛 and 𝑛 denotes the number of tasks,
(ii) QWV is QoS weight vector which contains user

preferences over QoS criteria:

QWV = ⟨𝑞𝑤
1
, 𝑞𝑤
2
, 𝑞𝑤
3
, . . . , 𝑞𝑤

6
⟩ , (4)

(iii) 𝐶 denotes the constraint specified by the user.

For example, a travel reservation scenario which is a typical
web service composition problem as shown in Figure 2 offers
travel, accommodation, and local transport rental services to
the customers. The user request consists of a set of tasks like
booking flight ticket, reserving hotel rooms, and renting a
cab. Atomic services like flight service, hotel service, and taxi
service are assigned to each task in the user request. Users
can specify the type of services and local constraints like QoS
preferences, global constraints, and other constraints like the
total amount the user wishes to spend for the trip.

The system also captures the user’s preferences over QoS
parameters like frequency, reputation, cost, successful execu-
tion rate, and availability. QoS weights influence the ranking



The Scientific World Journal 5

Web service 
discovery

Feedback and 
update

Service 
composition 

execution
Web service 
composition

Service 
ranker

Service 
request and 
preferences

QoS-based 
service 

selection

Registry QoSDB

Service 
registration

User

Search Search 
list (SL)

Filtered
list (FL)

QoS weight factor

Ranked 
services

list (RSL)

QoS ranked list 
(QRL)

Availability, cost,
successful
execution

rate, frequency,
response

time, reputation

Service 
provider

Figure 3: QoS aware automatic web service composition framework with UPWSR.

of web services. Also, after composition, the framework
allows user to provide feedback which helps in evaluating the
working of the system. Travel reservation system also allows
service providers to register their web services.

4.2. QoS Aware Automatic Web Service Composition Frame-
work. The core components of the QoS aware automatic web
service composition (QAWSC) framework are service ranker
and web service composer as is shown in Figure 3.

Web service discovery, QoS-based selection, and ser-
vice ranker implement the user preference based web ser-
vice ranking (UPWSR) algorithm. Web service composer
which is the main crux of the proposed framework imple-
ments the QoS aware automatic web service composition
(QAWSC) algorithm. Once the user submits the request
UR(𝑇,QWV, 𝐶), candidate web services for each task 𝑡

𝑖
in

𝑇 are discovered from UDDI and ranked. Ranked services

are used to generate composition plans. Composition plans
are ranked and executed. The framework also captures user’s
feedback.

4.3. User Preference Based Web Service Ranking Algorithm.
Web service providers register their web services to provide
the service invocation parameters about the web services.
For any service request raised by the web service requester,
the candidate services are matched and retrieved from the
service registry. The service request can be augmented with
the user specific constraints on the QoS parameters. All the
selected candidate services (satisfying the constraints) are
then ranked using user preference based web service ranking
(UPWSR) algorithm which is explained in Section 4.3.1. It
mainly consists of web service discovery, QoS-based service
selection, and service ranking.



6 The Scientific World Journal

// UserReq: User request
// UserReqST

𝑖
: User request service type

// 𝑡
𝑖
: Task involved in user request

// WSL𝑖 : List of web services in the registry
// 𝑆
𝑖
: Web service

// SL
𝑖
: Search List

// FL
𝑖
: Filtered List

// QRL
𝑖
: QoS Ranked List

// QWV: QoS weight vector
// ⟨QWV⟩ = ⟨𝑞𝑤

1
, 𝑞𝑤
2
, 𝑞𝑤
3
, 𝑞𝑤
4
, 𝑞𝑤
5
, 𝑞𝑤
6
⟩

// 𝑞𝑤
1
: Cost Weight

// 𝑞𝑤
2
: Success Rate Weight

// 𝑞𝑤
3
: Frequency Weight

// 𝑞𝑤
4
: Response Time Weight

// 𝑞𝑤
5
: Reputation Weight

// 𝑞𝑤
6
: Availability Weight

// RSL
𝑖
: Ranked Services List

Begin
(1) For each task 𝑡

𝑖
in UserReq

(2) Discover(WSL𝑖 , UserReqST𝑖)
(3) For each service 𝑆

𝑖
in SL
𝑖
do

(4) If(𝑆
𝑖
⋅ Availability == true)

(5) SL.add(𝑆
𝑖
)

(6) End if
(7) End For
(8) QoSbasedServiceSelection(SL

𝑖
)

(9) ComputeQoSRank(FL
𝑖
)

(10) FinalRankbasedSorting(QRL
𝑖
, QWV)

(11) End For
(12) Return RSL

𝑖

End

Algorithm 1: User preference based web service ranking algorithm
(UR(𝑇, QWV, 𝐶), WSL𝑖 ).

4.3.1. The Algorithm. The user preference based web service
ranking (UPWSR) algorithm takes user request which con-
sists of set of tasks 𝑡

𝑖
∈ 𝑇, QoSweights, and set of web services

WSL𝑖 that are registered in the service registry. Task 𝑡𝑖 denotes
the service type. For each task 𝑡

𝑖
, list of ranked atomic services

is returned by the algorithm (see Algorithm 1).

4.3.2. Web Service Registration. Service providers register
their web services and register the description of the web
service in service registries like UDDI. Users access the
Web Service Description Language (WSDL) document,
which comprises the protocol bindings and message formats
required to interact with the web services. Service providers
publish the information about the functionality of the web
service, providing details about the parameters that the ser-
vice expects when it is invoked and other related information
through the process of service registration. The registry has
service ID and URI through which a web service can be
accessed.

Nonfunctional aspects of the web services like average
response time, cost, frequency, reputation, and so forth are
stored in QoSDB. Suppose the service request contains “𝑛”
tasks (𝑡

𝑖
to 𝑡
𝑛
). First, the service type (functional aspect)

required for each task in the service request is identified and
stored. Service request also contains local constraints (QoS
constraints) and global constraint. User preferences (QoS
weight vector) over QoS properties and the constraints are
stored. Service type and the list of web services WSL𝑖 are
passed as input to the web service discovery component.

4.3.3. Web Service Discovery. For each task in the service
request, candidate web services are found using the web ser-
vice discovery process. Web service discovery is the process
of identifying and gaining access to the web services that
matches with the functional requirement. Service registry is
searched based on the “service type” required to complete
each task. Search list (SL) or Service Provider List (SPL)
contains the list of web services that satisfies the functionality
required to complete each task.

Search list (SL) is given to the availability checker, to check
whether the web service is available or not. Services that are
not available are removed from the search list. Search list
after removing the services that are not available is given to
the QoS-based web service selection component. Services are
accessed using service ID.

4.3.4. QoS-Based Web Service Selection. QoS-based web ser-
vice selection aims at finding best component services that
meets the nonfunctional requirement like QoS. It calculates
the average response time, frequency, success rate, reputation,
and cost for each service in the search list. After calculating
the QoS values, filtering is done. It compares all the QoS
values of a service with other services and if a service is
dominated by another service in all QoS parameters. For
example, if service A has low cost, low response time, high
frequency, high reputation, and higher success rate than
service B, service B is eliminated. All the nondominated
services are retained in the filtered list (FL).

Once the filtering operation eliminates the bad service
providers, for each of the nondominated services, QoS
parameter rank, that is, cost rank, reputation rank, frequency
rank, success rate rank, and average response time rank, is
calculated for each service. QoS-based ranked services are
stored in the QoS ranked list (QRL).

4.3.5. Service Ranker. A fuzzy ranking approach is employed
by the service ranker to sort the services in theQoS ranked list
based on the QoS criteria (cost, reputation, average response
time, frequency, and success rate) and the QoS constraints
(QoS weights specified by the user). Ranked services list
(RSL
𝑖
) contains the services for task 𝑖 and these services are

sorted based on the final rank.
The ranking of web services is based on Service Provider’s

Search Engine (SPSE) algorithm proposed by Zhao et al. [17].
The formula used to compute final rank for atomic services
rank is described:

Final Rank
𝑖
= CostRank

𝑖
∗ 𝑞
1
+ SuccRateRank

𝑖
∗ 𝑞
2

+ FreqRank
𝑖
∗ 𝑞
3
+ RespRank

𝑖
∗ 𝑞
4

+ RepRank
𝑖
∗ 𝑞
5
+ AvailRank

𝑖
∗ 𝑞
6
,

(5)



The Scientific World Journal 7

where 𝑖 denotes the position of web service in QoS ranked
list and 𝑖 varies from 1 to size of the QoS ranked list. 𝑞

1
to 𝑞
6

denote the QoS weight. After computing the final rank, the
services are sorted based on the final rank and stored in a
ranked services list (RSL).

Suppose there are 𝑛 tasks required to complete the user
request and ranked services list contains𝑚 candidate services
for each task. So there can be 𝑚𝑛 compositions possible. To
reduce the complexity and overhead involved in composition,
Composition Influence Factor (CIF) is introduced in the
approach. This factor limits the number of services for each
task. This value can be specified by the user or the default
value is used which determines the number of services in the
ranked services list (RSL

𝑖
) for each task. Hence, the number

of possible compositions reduced from 𝑚𝑛 to (CIF)𝑛 ranked
services for each task is given to the web service composer.

4.4. QoS Aware Automatic Web Service Composition Algo-
rithm. This section describes the QoS aware automatic web
service composition (QAWSC) algorithm which takes the
ranked services lists (RSL

𝑖
) for each task in the user request

and the constraints are taken as input. Web service composer
generates composition plan from ranked services. Atomic
services for each task in the user request are assigned and
integrated.

Composition plan consists of service ID of the atomic
web service that has been assigned to each task in the user
request and execution pattern (serial pattern). QoS aware
automatic web service composition (QAWSC) algorithm
implemented by the web service composer is shown in
Figure 4. Composition plan generator, aggregated QoS com-
putation, constraint analyzer, Pareto optimal based selection,
and user preference based ranking of composition plans are
the major operations involved in web service composition.
Ranked composition plans are executed and user can choose
any of the composition plans.

4.4.1.The Algorithm. User request which consists of tasks list,
QoS weight vector, set of constraints, and ranked services
lists for each task 𝑡

𝑖
in 𝑇 are given as input to the web ser-

vice composer which implements the QoS aware automatic
web service composition (QAWSC) algorithm. Composition
Influence Factor (CIF) determines the number of services
in the ranked services lists for each task. First composition
plans are computed from the ranked services and saved in
the service composition table. Aggregated QoS values for all
the generated composition plans are calculated. Composition
plans that do not satisfy the constraints 𝐶 specified by the
user are eliminated. Then Pareto optimal based selection is
used to select the dominant composition plans. Final rank is
calculated usingQoSweight vector and aggregatedQoS rank.
The ranked composition plan is executed. User’s feedback is
used to update the reputation score. QAWSC algorithm is
explained as shown in Algorithm 2.

4.4.2. Composition Plan Generator. Composition plan gener-
ator computes all possible composition plans from the ranked
services list from the service ranker module. Cartesian
product of the services in the list generates all possible

Table 2: (a) Travel web services. (b) Hotel web services. (c) Local
transport web services.

(a)

Service ID Source Destination Mode Amount
11 Chennai Goa Flight 15000
100 Chennai Kolkata Train 3000
21 Chennai Delhi Flight 20000
45 Chennai Bangalore Bus 1000
300 Bangalore Chennai Flight 7500

(b)

Service ID Destination Class Amount
101 Goa Hotel Standard 2000
10 Kolkata Hotel Deluxe 3000
210 Delhi Hotel Economy 500
50 Bangalore Hotel Standard 1000
30 Chennai Hotel Standard 750
122 Goa Hotel Economy 400
134 Kolkata Hotel Economy 450
201 Delhi Hotel Deluxe 3000

(c)

Service ID Destination Type Amount
75 Goa Taxi 200
11 Kolkata Jeep 300
21 Delhi Van 500
5 Bangalore Taxi 100
3 Chennai Taxi 75

combinations.Themajor steps in composition plan generator
are

(i) creation of individual tasks tables,
(ii) computation of service composition tables.

In the proposed travel reservation system, there can be three
different tasks: travel, accommodation, and local transport
reservation. QAWSC algorithm is implemented using the
registry. Three separate tables named travel composition,
hotel composition, and cab composition tables are created
which are shown in Tables 2(a), 2(b), and 2(c).

As soon as the user submits the request, entries are deleted
from those three tables. Based on the service type in the user
request, services from the registry are added to these tables.
Services that match with the service type are inserted into
those tables. From the ranked services lists (RSL), based on
the service type, services from the lists are entered into the
corresponding tables. For example, if the service types in
the service request are flight, Hotel Deluxe, and taxi, then
three lists (ranked flight service list, ranked Hotel Deluxe
service list, and ranked taxi services list) are created by the
service ranker and inserted into the travel composition, hotel
composition, and cab composition tables.

Suppose the ranked services list (RSL) contains “𝑚”
candidate ranked services for each task “𝑡” and there are
“𝑛” tasks in the user request; possible compositions are
𝑚𝑛. Cartesian product of the ranked services list generates



8 The Scientific World Journal

Feedback and 
update

Service
composition 

table

QoSDB
(service

Composition 
plan generator

Aggregated QoS
computation

Constraint 
analyzer

User

Pareto optimal
based selection

User 
preference 

based ranking

Service 
composition 

execution

Ranked services 
lists

Composition 
plan list
(CPL)

Filtered web service composition list (FWSCL)

Pareto optimal 
based selected 

list (POSL)

Ranked 
composition 

plan list

Web service composition 

Reputation

repository)

(RCPL)

Figure 4: QoS aware automatic web service composition framework.

Begin
(1) Rank Services

(1.1) Perform UPWSR for each task 𝑡
𝑖
in 𝑇

(1.2) Save the RSL
𝑖
for each task 𝑡

𝑖
in 𝑇

(2) Store each RSL
𝑖
in task tables

(3) Compute Service Composition (SC) table
(3.1) Generate all possible Composition plans by taking Cartesian product of all the

task tables obtained in Step (2)
(3.2) Save the Composition plans (CP) in Service Composition Table

(4) Calculate QoS Aggregated value for each CP in Service Composition and save in
Composition Plan List (CPL)

(5) Constraint Analyzer
(5.1) Perform ConstraintAnalyzer(SC, 𝐶) for each CP in CPL
(5.2) Save composite services that satisfy constraints in Filtered Composition Plan

List (FCP)
(6) Pareto Optimal based Selection

(6.1) Perform ParetoSelection(FCP)
(6.2) Save Composition Plans after filtering in Pareto Optimal based Selected
List (POSL)

(7) Compute Aggregated QoS Rank for each CP in POSL
(7.1) Evaluate all the 𝑄

𝑖
Rank for each CP in POSL

(7.2) Save the CP with 𝑄
𝑖
Rank in POSL

(8) Calculate Final rank(POSL, QWV)
(8.1) Compute Final rank for all CP in POSL
(8.2) Sort and save the Composition Plan in Ranked Composition Plan List (RCPL)

based on Final Rank
(9) Execute all the Composition Plan in RCPL
(10) Get feedback and update Rep(𝑆

𝑖
)

End

Algorithm 2: QoS aware web service composition algorithm (UR(𝑇, QWV, 𝐶), RSL
𝑖
).

all possible service compositions. Join operation of travel
composition, hotel composition, and cab composition tables;
generate the possible composition plans and store them in
the service composition table shown in Table 3. As soon as

the user request is received by the travel reservation system,
all the entries from the service composition table are deleted.
Computed service compositions from the join operation of
the individual tasks table are inserted.



The Scientific World Journal 9

Table 3: Service composition table.

Composition ID Travel ID Travel Name Hotel ID Hotel Name Cab ID Cab Name
1 11 Flight Service H 101 Hotel Service A 201 Van Service A
2 11 Flight Service H 101 Hotel Service A 202 Van Service B
3 11 Flight Service H 101 Hotel Service A 203 Van Service C
4 11 Flight Service H 101 Hotel Service A 204 Van Service D
5 11 Flight Service H 101 Hotel Service A 205 Van Service E

Table 4: Example of Pareto optimal based selection.

Composition plan ID Response time (ms) Cost (Rs) Frequency Succ. rate (%) Reputation (1 to 5) Availability
CP
1

400 500 590 78 4 0.6
CP
2

500 700 56 43 1 0.75
CP
5

678 765 567 65 2 0.8

4.4.3. Aggregated QoS Computation. For all the composition
plans in the service composition table, aggregated QoS values
are calculated using Table 1. Composition plans are executed
using serial execution pattern. Serial pattern is an execution
pattern in which services are executed one after another and
there is no overlap between execution periods ofweb services.
Average response time of the composition plan is the sum of
the average times required to complete a service request of its
component services. It is the average of elapse times between
request and response time of a web service. The reputation
of the composition plan is the average ranking given by the
end user according to their experiences. Reputation score
given by the user ranges from 1 to 5. The frequency of the
composition plan is the sum of the frequencies of the atomic
services. It is the number of times the client used the web
services. The cost of the composition plan is the sum of
the execution costs of invoking atomic services. Successful
execution rate of the composition plan is the average of
the successful execution rates of the atomic service. After
computing the aggregated QoS value of composition plans,
it is stored in composition plan list (CPL) and given to
constraint analyzer.

4.4.4. Constraint Analyzer. Constraint analyzer is used to
check all the composition plans, whether they satisfy the con-
straints specified by the user. It eliminates all the composition
plans that do not satisfy the constraints.

Travel reservation system allows user to specify the
budget range for the entire trip. Also the user can specify
the constraints over theQoS. AggregatedQoS of composition
plan should satisfy the constraints specified by the user.
QoS properties can be classified as positive and negative
QoS properties. QoS attributes like successful execution
rate, reputation, frequency, and availability are positive QoS
attributes. Higher the value of those positive QoS attributes;
the efficiency of the composition process is high. Negative
QoS attributes are average response time and execution
cost. Lower the value of those negative QoS attributes; the
efficiency of the composition is high. Equation (6) describes

the constraint, where 𝑖 denote the QoS property, CP denotes
composition plan, and 𝐶 denote the constraint specified by
the user:

AggregatedQoS
𝑖
(CP)

{

{

{

≤ 𝐶
𝑖
(for negative QoS properties)

≥ 𝐶
𝑖
(for Positive QoS properties) .

(6)

Composition plan that satisfies the user constraints is saved
in the Filtered Composition Plan (FCP) List and given to the
Pareto optimal based selector.

4.4.5. Pareto Optimal Based Selection. A Pareto optimal
based selection is employed to delete the bad service com-
position plans in order to improve the efficiency of the
web service composer. Based on the QoS values of the
composition plans, if a composition plan is dominated by
another composition plan in all QoS properties, then that
plan is removed. Only compositions that are not dominated
by other composition plans are retained. One thumb rule
maintained by the Pareto optimal based selection is that
the minimum response time composition plan, minimum
execution cost composition plan, maximum frequency com-
position plan, maximum reputation composition plan, and
maximum success ability rate composition plan are retained.

Pareto optimal based selection process reduces the com-
plexity of the composition process by eliminating all the
dominatable composition plans. Table 4 shows the sample
output of Pareto optimal based selection process. First the
minimum response time composition plan, minimum exe-
cution cost composition plan, maximum frequency com-
position plan, maximum reputation composition plan, and
maximum success ability rate composition plan are com-
puted.Then elimination of dominating services is performed.
Here composition plan CP

2
is being dominated by CP

1
in all

QoS properties. Response time and cost are higher than CP
1

and also frequency, successful execution rate, availability, and
reputation of CP

2
are lower than CP

1
. Hence CP

2
is removed.

Only the nondominated composition plans are retained in
the Pareto optimal based selected list (POSL).



10 The Scientific World Journal

Table 5: Aggregated QoS rank example.

Composition plan ID Response time rank Cost rank Frequency rank Succ. rate rank Reputation rank Availability rank
CP
12

4 5 59 8 4 6
CP
2

5 7 56 3 1 5
CP
5

8 65 7 65 2 8

4.4.6. User Preference Based Ranking on Composition Plans.
Composition plans in the Pareto optimal based selected list
(POSL) are sorted based on the average response time rank,
cost rank, frequency rank, successful execution rate rank,
availability rank, and reputation rank. Aggregated QoS ranks
for all the composition plans in the Pareto optimal based
selected list (POSL) are computed. For each composition
plan, response time rank, cost rank, frequency rank, success-
ful execution rate rank, availability rank, and reputation rank
are stored as a structure as shown in Table 5.

After the aggregated QoS rank computation, QoS weight
vector (QWV) specified by the user is multiplied by the
corresponding QoS rank. Based on the user preference and
QoS values, composition plans are sorted. Equation (7) shows
the formula to calculate the final rank of composition plans:

Final RankCP𝑖 = CosRankCP𝑖 ∗ 𝑞1 + SuccRateRankCP𝑖

∗ 𝑞
2
+ FreqRankCP𝑖 ∗ 𝑞3

+ RespRankCP𝑖 ∗ 𝑞4 + RepRankCP𝑖

∗ 𝑞
5
+ AvailRankCP𝑖 ∗ 𝑞6.

(7)

Thus the proposed automatic web service composition sup-
ports flexibility in allowing the user to specify the preferences
over composed services as well as individual web services.
Composition plans are sorted based on the final rank and
stored in the ranked composition plan list (RCPL).

4.4.7. Feedback and Update. Ranked Composition plans are
executed and the user can select any composition plan of his
choice and view the response to the user’s request. The user
can select many composition plans from the list. QoS param-
eters like frequency, average response time, cost, successful
execution rate, reputation, and availability of the composition
plans can be viewed by the user. User provides feedback about
the web services which improves the reputation score of that
web service. Providing feedback is optional for the user. The
user can click any of the composition plans from the ranked
composition list. The user can view the details about the
composed services. The user can provide the feedback by
rating the service from 1 to 5, where 1 indicates that the service
is poor, 2 denotes that the service is satisfactory, 3 indicates
that the service is good, 4 indicates that service is very good,
and 5 denotes that the service is excellent. As soon as the user
provides feedback, reputation of that service is updated in the
QoSDB which contains the QoS details of the web services.

Table 6: List of web services.

S. number Functionality of
the web service Web service types

1 Travel services Flight/train/bus

2 Accommodation
services

Hotel deluxe/hotel
standard/hotel economy

3 Local transport
rental services Jeep/van/taxi

5. Experimental Analysis

In this section, we present the results of our experiments to
analyze the performance of QAWSC framework. Both the
UPWSR and the QAWSC are analyzed. The performance
measure is the execution time required by the proposed
framework to satisfy the user request.

5.1. Experimental Setup. Our evaluation environment con-
sists of three machines: QAWSC server (Intel Core i3 CPU,
2.13 GHz, 3GB RAM, and Windows XP 3), which performs
all the web service discovery, selection, ranking and com-
position; the client (Intel Core 2 Duo CPU, 2GHz, 2GB
RAM, andWindows 7) which provides the user interface; the
service registry (Intel Core i3 CPU, 2.13 GHz, 3GB RAM, and
Windows XP 3) to store the web services hosted by the web
service providers along with the QoS related information,
and, lastly, the composition plan repository to store the com-
position plans. We have utilized Java programming language
to implement the UPWSR, QAWSC algorithms and all the
machines used in the evaluation were in the same network.

Services in the registry are manually created. Services
related to travel domain as shown in Table 6 are created.
QoS information about those services is monitored regularly
in QoSDB. Composition plans from the composition plan
repository are deleted periodically. Service providers can
register their services manually in the service registry and
our proposed framework calculates QoS of those services
dynamically.

5.2. Experimental Results. QoS parameters considered in our
work are frequency, cost, reputation, response time, success
rate, and availability. Here flight reservation, hotel of standard
class, and renting the taxi are the set of tasks which are
denoted as 𝑡

𝑖
and value of 𝑖 ranges from 1 to 3.User preferences

over the QoS parameters range from 1 to 6 where 6 denotes
the highest value.

Let QoS weight vector QWV = ⟨QWV⟩ = ⟨𝑞𝑤
1
, 𝑞𝑤
2
,

. . . , 𝑞𝑤
𝑗
⟩, where 𝑞𝑤 denotes QoS weight specified by the user



The Scientific World Journal 11

0

0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500

Co
m

pu
ta

tio
na

l t
im

e 
(m

s)

Number of web services

Time

Figure 5: Performance of UPWSR.

0
5

10
15
20
25
30
35

100 200 300 400 500

Co
m

pu
ta

tio
na

l t
im

e 
(m

s)

Number of web services

Time

Figure 6: Performance of QAWSC.

and 𝑗 ranges from 1 to 6 indicating the corresponding QoS
parameters. In this example value of 𝑞𝑤

1
is 3, value of 𝑞𝑤

2
is

4, value of 𝑞𝑤
3
is 3, value of 𝑞𝑤

4
is 4, value of 𝑞𝑤

5
is 5, and

value of 𝑞𝑤
6
is 6. Budget lesser thanRs 20000 is the constraint

specified by the user. The budget for the entire trip which
includes flight booking, reserving a room in hotel of class
standard, and renting a taxi should be lesser than Rs 20000.
The experiments were carried out by increasing the number
of services in the service registry. Services in the registry are
increased from 100 to 500 with the step size of 100.

Figure 5 shows the performance of user preference based
web service ranking (UPWSR) algorithm. Our UPWSR
algorithm ranks the web services for each task and we have
evaluated UPWSR algorithm for a single task and six QoS
properties with user constraints over these parameters. Num-
bers of candidate web services are increased and time to rank
those candidateweb services also increases. QoS properties of
the candidate web services are calculated dynamically, which
increases the accuracy of the results.

Figure 6 depicts the performance of QoS aware automatic
web service composition algorithm. Number of web services
is increased from 100 to 500. Number of tasks in the user
request is set to 3. Execution time for composition algorithm,
that is, time taken to compose web services by the QAWSC,
is the evaluationmetric used. All the experiments repeated 10
times and average execution time is presented here.

0
5

10
15
20
25
30
35
40

100 200 300 400 500

C
om

pu
ta

tio
na

l t
im

e (
s)

Number of web services

3 tasks
5 tasks
10 tasks

Figure 7: Performance of QAWSC for different number of tasks.

Figure 7 depicts the performance of QoS aware automatic
web service composition framework by increasing the num-
ber of tasks. Number of web services is increased from 100
to 500 and number of tasks in the user request is set to 3,
5, and 10. Number of candidate services for each task is also
increased. Execution time for composition algorithm, that is,
time taken to compose web services by the QAWSC, is the
evaluationmetric used. All the experiments repeated 10 times
and average execution time is presented here.

Working Example. For the web service “Ginger Hotels,” the
three operations identified from the WSDL are bookRoom,
getAvailability, and getBookingHistory as given in Figure 8.
A sample set of data is obtained from the service provider
and based on the numerous other clients that are created. A
certificate is issued to the web service based on the values
obtained in the quality assessment phase as specified in
Figure 9. The certificate along with the WSDL document is
then registered to the jUDDI, the service registry.

Any service request raised is parsed syntactically and
semantically to identify the keywords. For example, for a
query for “Travel from Chennai to Salem,” the keywords
obtained are travel, mode-of-transport, taxi, hotel, tourist-
interest, and so forth. The keyword “travel” derives from the
service request; the result is obtained by matching “travel”
with domain ontology and retrieving the related concepts.
The service selection algorithmuses the keywords and condi-
tions the presence of functional and nonfunctional properties
of the web services and the QoS requirements of the service
request.The services are ranked based on the parametric data
available on the certificate (issued by the QoS agent). The
composition plans are generated by configuring an action
plan, eliminating the faults, negotiation, and ranking of
compositions as shown in Figure 10.

From the available set of 6 services (in our example),
five compositions could be derived. However, availability of
a candidate web service influences the availability of the
composition.The best available composition is composition 1
as shown in Table 7. Even though the availability is increased
with composition 5, there exists incompatibility between
Services C and F and hence it is not considered in Table 8.



12 The Scientific World Journal

Figure 8: Service registration.

Figure 9: QoS assessment for web service: Ginger Hotels.

Table 8 is the interface provided to the web service
requester as the result of invoking the proposed QBroker
Framework. Providing the top 𝑛 web service compositions to
the service request makes the framework more reliable. On
selection of an option in the plan offered, a BPELfile is created
and the web service composition is executed and provided
to the service requester for further usage. The composition
is also saved for future reference and undergoes a feedback
analysis to utter impressive composition delivery.

The time taken by the UPWSR algorithm to rank the
candidate web services for each task increases by very small
duration with the increase in the number of web services
in the service registry. It mainly depends on the number
of candidate web services. Computation time of QAWSC
algorithm increases linearly with the increase in number
of web services. Computation time of QAWSC algorithm
mainly depends on the number of services in the ranked
services list (RSL). By changing the number of the services in

Table 7: Possible compositions from the available web services.

Compositions Web services Availability
1 A-C-E 73
2 B-C-E 72
3 B-D-F 71
4 B-E-F 71
5 A-C-F 83

ranked lists, computation time of QAWSC algorithm can be
significantly reduced. Composition Influence Factor decides
the number of the services in the ranked services lists. We set
the value of CIF to 100. This factor should be set manually
before any user sends the request. CIF is used to reduce the
complexity of the QAWSC algorithm. Number of possible
composition reduced from 𝑚

𝑛 to (CIF)𝑛, where 𝑚 denotes



The Scientific World Journal 13

A B B B

C C D

E E

E

F F

73 72 71 71

0

50

100

150

200

250

Co
m

po
sit

io
n 

1:
A

, C
, E

Co
m

po
sit

io
n 

2:
B,

 C
, E

Co
m

po
sit

io
n 

3:
B,

 D
, F

Co
m

po
sit

io
n 

4:
B,

 E
, F

A
va

ila
bi

lit
y

Compositions

Availability of composition

Figure 10: Composition generated for the service request.

Table 8: Generated composition plans.

Plan Rank Action
SouthernrailwaysSR12054ChennaiToSalem
GingerhotelsSalem
HelitaxiSalem

1

KsrtcKSRTC12036ChennaiToSalem
GingerhotelsSalem
HelitaxiSalem

2

KsrtcKSRTC12036ChennaiToSalem
GingerhotelsSalem
InfotaxiSalem

3

KsrtcKSRTC12036ChennaiToSalem
RamhotelsSalem
InfotaxiSalem

4

number of ranked services and 𝑛 denotes the number of tasks
in the user request.

6. Conclusion

The proposed framework addresses the challenge issues web
service composition. We proposed a QoS aware automatic
web service composition framework which is flexible in satis-
fying multiple QoS requirements and also considers the user
preferences. We proposed a user preference based ranking
algorithmwhich reduces the overhead in web service compo-
sition. User can specify his preferences over QoS parameters
which makes the web service composition more flexible.
The proposed approach dynamically composes web services
and the composition plans are generated automatically. We
have considered six QoS criteria and also considered user’s
constraints over these parameters. Our system also allows
user to provide feedback after compositionwhich updates the
reputation of those services immediately. We have evaluated
our algorithmbased on the computation time for ranking and
composition based on different number of service providers
and number of tasks. Our experiments showed that our
QAWSC composition framework yields lower execution time
and supports user preferences. We have implemented our
framework for travel application. In the future, we plan to test

our framework using standard datasets like WS-Challenge
datasets.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] K. Kritikos and D. Plexousakis, “Requirements for QoS-based
Web service description and discovery,” IEEE Transactions on
Services Computing, vol. 2, no. 4, pp. 320–337, 2009.

[2] D. Lee, J. Kwon, S. Lee, S. Park, and B. Hong, “Scalable and effi-
cient web services composition based on a relational database,”
Journal of Systems and Software, vol. 84, no. 12, pp. 2139–
2155, 2011.

[3] L. Sha, G. Shaozhong, C. Xin, and L. Mingjing, “A QoS based
web service selection model,” in Proceedings of the International
Forum on Information Technology and Applications (IFITA ’09),
pp. 353–356, May 2009.

[4] C.-F. Lin, R.-K. Sheu, Y.-S. Chang, and S.-M. Yuan, “A relaxable
service selection algorithm for QoS-based web service compo-
sition,” Information and Software Technology, vol. 53, no. 12, pp.
1370–1381, 2011.

[5] W. Rong, K. Liu, and L. Liang, “Personalized web service rank-
ing via user group combining association rule,” in Proceedings of
the IEEE International Conference on Web Services (ICWS ’09),
pp. 445–452, July 2009.

[6] N. Laga, E. Bertin, and N. Crespi, “User-centric services and
service composition, a survey,” in Proceedings of the 32nd
Annual IEEE Software Engineering Workshop (SEW ’08), pp. 3–
9, November 2009.

[7] Z. Gu, J. Li, and B. Xu, “Automatic service composition based
on enhanced service dependency graph,” in Proceedings of the
IEEE International Conference on Web Services (ICWS ’08), pp.
246–253, IEEE, Beijing, China, September 2008.

[8] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: a framework for executing adaptive web-service pro-
cesses,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[9] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Stein-
metz, “Heuristics for QoS-aware web service composition,”
in Proceedings of the IEEE International Conference on Web
Services (ICWS ’06), pp. 72–79, September 2006.

[10] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, andM.
Mecella, “Automatic service composition based on behavioral
descriptions,” International Journal of Cooperative Information
Systems, vol. 14, no. 4, pp. 333–376, 2005.

[11] R. Hamadi and B. Benatallah, “A petri net-based model for web
service composition,” in Proceedings of the 14th Australasian
Database Conference (ADC ’03), pp. 191–200, Adelaide, Aus-
tralia, February 2003.

[12] D. Skogan, R. Gronmo, and I. Solheim, “Web service com-
position in uml,” in Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference (EDOC
’04), pp. 47–57, IEEE, September 2004.

[13] L.-Z. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Z. Sheng, “Quality driven web services composition,” in
Proceedings of the 12th International Conference on World Wide
Web (WWW ’03), pp. 411–421, ACM, May 2003.



14 The Scientific World Journal

[14] M. Zhenhua, C. Hongming, and J. Lihong, “Service selection
problem with multiple QoS constraints based on genetic algo-
rithm,” Computer Applications and Software, 2009.

[15] B.-Y. Wu, C.-H. Chi, S.-J. Xu, M. Gu, and J.-G. Sun, “QoS
requirement generation and algorithm selection for composite
service based on reference vector,” Journal of Computer Science
and Technology, vol. 24, no. 2, pp. 357–372, 2009.

[16] J. M. Ko, C. O. Kim, and I.-H. Kwon, “Quality-of-service
oriented web service composition algorithm and planning
architecture,” Journal of Systems and Software, vol. 81, no. 11, pp.
2079–2090, 2008.

[17] L. Zhao, Y. Ren,M. Li, andK. Sakurai, “Flexible service selection
with user-specific QoS support in service-oriented architec-
ture,” Journal of Network and Computer Applications, vol.
35, no. 3, pp. 962–973, 2012.


