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This study proposed the optimal parameter settings for the hospital supply chain system (HSCS) when either the total system
cost (TSC) or patient safety level (PSL) (or both simultaneously) was considered as the measure of the HSCS’s performance. Four
parameters were considered in the HSCS: safety stock, maximum inventory level, transportation capacity, and the reliability of the
HSCS. A full-factor experimental design was used to simulate an HSCS for the purpose of collecting data. The response surface
method (RSM) was used to construct the regression model, and a genetic algorithm (GA) was applied to obtain the optimal
parameter settings for the HSCS.The results show that the best method of obtaining the optimal parameter settings for the HSCS is
the simultaneous consideration of both the TSC and the PSL to measure performance. Also, the results of sensitivity analysis based
on the optimal parameter settings were used to derive adjustable strategies for the decision-makers.

1. Introduction

An optimal supply chain (SC) is a strategy plan that covers
the network of suppliers, hospital’s manufacturing factors,
and customers. An optimal SC will decrease the costs of
material flow from suppliers to customers. Hence, most of
the literature focuses on SC costs. Garćıa-Dastugue and
Lambert [1] established an Internet-based system in order
to integrate business processes using the flow of information
to improve business practices in the SC. The big advantage
of the Internet-based system was the opportunity it offered
to purchase some items at a lower price. Wan et al. [2]
used a simulation-based optimization framework for the
manufacturing processes associated with SC. They used two
small examples to simulate a three-stage SC for the function
of total cost and to obtain the optimal inventory levels.

Their results showed that the framework can accommodate
chance constraints and scales up well. Yao et al. [3] explored
the optimization of the ordering process in considering the
minimization of a collaborative SC’s total costs by using a
vendor-managed inventory. van der Vlist et al. [4] revised
Yao et al.’s model [3] by considering redistributing risk,
coordinating replenishment for multiple buyers, sharing
downstream demand data, a choice of stock positioning,
and giving suppliers the latitude to change delivery times
and the authority to adjust delivery quantities in response
to inventory developments. Thus, the use of the SC model
could optimize total costs when coordinated inventory man-
agement is implemented. Frota Neto et al. [5] developed a
sustainable logistics network and discussed how to evaluate
the effects of the trade-off between the costs of the logistics
network and its environmental impact. Ganga and Carpinetti
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[6] proposed a SC model and used fuzzy logic to forecast
its performance as to cost, responsiveness, reliability, and so
forth.They showed that fuzzy logic is a feasible technique that
is helpful in managing SC performance.

Most studies of SCs are in the industrial field; only a few
have focused on the hospital supply chain system (HSCS).
Schut and van Bergeijk [7] indicated that hospitals in most
developing countries have high medical costs and suggested
that they should go through a centralized government agency
to assist purchasing in order to decrease the general price
level of pharmaceuticals. Shah [8] researched a strategy to
optimize SC in the pharmaceutical industry and concluded
that the pharmaceutical industry needs to balance future
customer demand with the production planning necessitated
by clinical and competitor activity. Hence, effective capacity
utilization planning and robust infrastructure investment
are important key issues. Lapierre and Ruiz [9] studied
an innovative approach for helping hospitals improve their
scheduling logistics by coordinating procurement and dis-
tribution operations while respecting inventory capacities.
Ghandforoush and Sen [10] presented a decision support
system for platelet production SC with flexible scheduling.
They suggested that, to meet daily demand, the decision
support system should implement a superior production and
mobile assignment schedule.

On the other hand, in order to plan a SC with mathe-
matical precision, many studies used an experimental design
to construct the model. Holweg et al. [11] used the Taguchi
method and a simulation of a multitier SC to investigate the
impact of scheduling activities. They concluded with a set of
recommendations on how to improve current vehicle supply
systems by forecasting scheduling systems. Delavar et al. [12]
proposed a SC to coordinate production scheduling and air
transportation. A Taguchi experimental design was applied
to obtain the parameter values that would best improve their
performance. Tiwari et al. [13] addressed the problem of an
integrated SC design, and in order to ensure high service
levels, a novel algorithm combined the Taguchi technique
with an Artificial Immune System that was used to solve
the problem. Yang et al. [14] improved the robustness of
SC information-sharing strategies using a hybrid Taguchi
method. Their results showed that when customer demand
is uncertain, e-shopping has the most robust performance.

Based on the above literature review and significance,
the purpose of this study is to design and plan a robust
HSCS. This study used a simulated HSCS to analyze the
different factors involved and to decide which parameters
would affect the performance of the HSCS.These parameters
were analyzed and used to create a robust design for the
HSCS.

The simulated HSCS used in this study was based on
computation technology, which allowed for the construction
of a dynamic system that included information acquisition,
processing, and management. The computation technology
included a full-factor experimental design and response
surface method (RSM), and a genetic algorithm (GA) was
applied here to obtain the optimal parameter settings for the
HSCS. Three responses, including total system cost (TSC),
patient safety level (PSL), and overall performance (OP),

were considered in the simulated HSCS. This study also
obtained the optimal parameter settings for the robust HSCS
and explored the sensitivity analysis of the HSCS’s OP to
derive the adjustable strategies. In addition, different weight
combinations for exploring the trade-off effects of TSC and
PSL were discussed.

The innovation of this paper is the use of the RSM and
GA method to create the HSCS and to obtain the robust
parameters’ setting. Based on the literatures, the authors
cannot find the research using RSM to design the HSCS. So
this is the knowledge gap this work aims to cover.

2. The Problem of HSCS Parameter Settings

In this paper, three regional hospitals formed an HSCS
alliance that included suppliers and a centralized purchasing
center (CPC). Centralized purchasing allows large orders
to be placed, which may result in a discounted price for
each hospital, thus giving them a competitive advantage by
reducing each participating hospital’s total costs. However,
the parameters used to coordinate the HSCS for centralized
purchasing and distribution are very important. With robust
parameter settings, the HSCS could attempt to minimize the
TSC and maximize the PSL. In order to obtain robust HSCS
parameter settings, the scenario for the HSCS is described
below.

Three hospitals forecast the demand for clinical masks for
each season based on past data.The demand random variable
𝐷𝑙𝑚 (uncertain demand in each period𝑚 for hospital 𝑙) is the
normal probability distribution 𝑁(𝜇𝑙, 𝜎

2

𝑙
), in which 𝜇𝑙 is the

mean (units/month) and 𝜎2
𝑙
is the variance (units2/month2).

Here, the 𝐷𝐴𝑚 for Hospital 𝐴 is 𝑁(460, 1002), 𝐷𝐵𝑚 for Hos-
pital 𝐵 is𝑁(310, 902), and𝐷𝐶𝑚 for Hospital𝐶 is𝑁(400, 832).
Because the 𝐷𝑙𝑚 for each hospital is independent of that
of the others, the CPC collects the total demand from the
three hospitals to calculate the random variable of the total
ordering quantity and aggregates the three hospitals’ nor-
mal probability distribution 𝑁(∑𝐶
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). After

aggregating the forecast demands, the CPC submits the total
order quantity to a pharmaceutical company. The pharma-
ceutical company then delivers quantities according to the
hospitals’ orders, meeting each hospital’s needs. The evalua-
tion indexes of the HSCS’s performances are TSC and PSL.
TSC is procurement cost + inventory cost + transportation
cost. The formulation is as follows:

TSC =

𝐶

∑

𝐻=𝐴

12

∑

𝑚=1

(𝑄𝑚 ∗ 𝑃𝑚 ∗ DI + EI𝑚 ∗ 𝑃𝑚 ∗ ICCR𝑚

+ TQ𝑚 ∗ TP𝑚) .

(1)

TSC is the total system cost of the HSCS.𝐻 is Hospital 𝐴, 𝐵,
or 𝐶. 𝑚 is the period from the 1st to the 12th month. 𝑄𝑚 is
the distributed quantity for period𝑚. 𝑃𝑚 is the procurement
cost for each unit in period 𝑚; it is set to normal probability
distribution 𝑁(5, 0.782). DI is the discount rate for the total
ordering quantity; it is set to normal probability distribu-
tion 𝑁(0.98, 0.22). EI𝑚 is the inventory level for period 𝑚.
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ICCR𝑚 is the rate of the holding cost per unit for period
𝑚; it is set to normal probability distribution 𝑁(0.31, 0.092).
TQ𝑚 is the number of times orders are transported from
the pharmaceutical company to the hospitals. TP𝑚 is the
pharmaceutical company’s shipping cost per time to the
hospitals. When the transportation capacity is 500 units, it
is set to normal probability distribution 𝑁(3400011500

2
).

When the transportation capacity is 230 units, it is set
to normal probability distribution 𝑁(16500, 45002). When
the transportation capacity is 100 units, it is set to normal
probability distribution𝑁(7550, 1402).

In addition, the HSCS’s PSL is broken down as follows.
Because there is a gap between forecasted demand and
actual demand, the material flow of the HSCS [15–18] may
result in a shortage and by extension affect patient safety.
Hence, avoiding a shortage is another aspect of an HSCS’s
performance. Service level can thus be a feasible index to
measure quantity shortages. In this paper, the service level is
the index of PSL [19].

The PSL is defined as “1 − the shortage of quantity/the
actual demand,” formulated as follows:

PSL = 1 −
∑
𝐶

𝐻=𝐴
∑
12

𝑚=1
SO𝑚

∑
𝐶

𝐻=𝐴
∑
12

𝑚=1
𝐷𝑚

, (2)

where SO𝑚 is the shortage quantity for period 𝑚 and 𝐷𝑚 is
the actual demand for period𝑚.

The inventory and shortage level are defined in (4):

EI𝑚−1 + 𝑄𝑚 − 𝐷𝑚 = EI𝑚 − SO𝑚. (3)

The following equation shows the quantity 𝑄𝑚, which is
subject to the safety stock (𝑄min) and the maximal level of
inventory (𝑄max):

𝑄𝑚 = {
0, 𝑄min ≤ EI𝑚−1 ≤ 𝑄max
𝑄max − EI𝑚−1, EI𝑚−1 > 𝑄min,

for 𝑡 = 1, 2, . . . , 𝑇.

(4)

From (1)∼(4), we obtain the decision variable, 𝑄𝑚.
The HSCS’s performances—TSC and PSL—will result in

a trade-off effect because, by obtaining larger quantities, PSL
will improve because of a decrease in the probability of an
inventory shortage; however, the inventory will increase TSC.

The safety stock, maximum inventory level, transporta-
tion capacity, and HSCS reliability were selected as the
parameters for the robust HSCS. Also, the four parameters
affect the TSC and PSL. Generally, an increase/decrease
of safety stock or maximum inventory level will cause an
increase/decrease of TSC and PSL. An increase of trans-
portation capacity will cause a decrease of transportation
times; it will also affect the stock quantity and later affect the
TSC and the PSL. The reliability of supply chains is defined
as the ability to perform the promised service of customer
expectations [20, 21]. Here, the performances include TSC
and PSL, which are based on the distributed quantity. Hence,
the reliability of HSCS is defined as the ratio of quantities
supply in time for different suppliers. Table 1 shows the
different levels of these parameters.

Table 1: The parameter levels in this study.

Parameters Value
Level 1 Level 2 Level 3

A: safety stock 70 80 100
B: maximum inventory level 400 500 600
C: transportation capacity 100 230 500
D: the reliability of HSCS 99% 97% 95%

To solve this HSCS problem, this paper used a full-factor
experimental design in which 81 (34 = 81) combinations
of parameter levels were simulated. Each combination was
simulated 1000 times in order to reduce the variation of the
means of the TSC and the PSL; the means of the TSC and the
PSL were then calculated for each combination. In addition,
because the TSC and the PSL are simultaneously considered
here, to help the decision-makers to set the robust parameters’
level, it is necessary to transfer the two responses to one
multiresponse objective.Hence, in order to integrate TSC and
PSL into one OP, the ideal function was adopted here.

The normalized mean of TSC for each combination
(TSCmean) is defined as NTSC = TSCmin/TSCmean, where
TSCmin is the minimization of TSCmean. Thus, the larger the
NTSC the better, and the value is between 0 and 1.

The normalized mean of PSL for each combination
(PSLmean) is defined as NPSL = PSLmean/PSLmax, where
PSLmax is the maximization of PSLmean. Thus, a larger NPSL
is again better, and the value is between 0 and 1.

The OP is defined by the ideal function; hence, OP =

√NTSC ∗NPSL. Thus, the larger the OP the better, and the
value is between 0 and 1.

The response surface method (RSM) [22] was applied
here in order to obtain the regressionmodel using the param-
eters and the responses—NTSC, NPSL, and OP. Because
the RSM is a model building technique using statistical
experimental design and least square error fitting, it can be
used to approximate a response function in terms of predictor
variables. The approximation of the response functions for
the available data is set as follows. The linear first-order
polynomial approximation of the response function is

𝑓 = 𝛽0 +

𝑛

∑

𝑖=1

𝛽𝑖𝑥𝑖 + 𝜀. (5)

Thequadratic second-order polynomial approximation of the
response function is

𝑓 = 𝛽0 +

𝑛

∑

𝑖=1

𝛽𝑖𝑥𝑖 +

𝑛

∑

𝑖=1

𝛽𝑖𝑖𝑥
2

𝑖
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ⋅ ⋅ ⋅ , (6)

where 𝛽0, 𝛽𝑖, 𝛽𝑖𝑖, and 𝛽𝑖𝑗 are tuning parameters; 𝜀 is the error
item; 𝑛 is the number of model parameters.

The Appendix shows the nonlinear regression formula-
tions of 𝑌1 for NTSC, 𝑌2 for NPSL, and 𝑌3 for OP. The
nonlinear regression formulations are significant for 𝑌1 (𝐹 =
65.34, 𝑃 < 0.0001), 𝑌2 (𝐹 = 3099.554, 𝑃 < 0.0001), and 𝑌3
(𝐹 = 61.373, 𝑃 < 0.0001). Also, the explained variances (𝑅2)
are higher for 𝑌1 (0.996), 𝑌2 (0.999), and 𝑌3 (0.993).
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Furthermore, in order to obtain the optimal parameter
settings, the GA was used to find the solution. A common
method of terminating a GA is to test (after a specified
number of generations) the quality and the convergence at
the global optimum of the best members of the population
against the tested problem definition. The roulette wheel
approachwas used as the selection procedure.Thepopulation
size was set as 50, the mutation rate was set as 0.06,
and the crossover rate was set as 0.5. The mutation rate
and the crossover rate controlled the expected number of
chromosomes to mate and the number of genes to mutate,
respectively [23, 24]. The stopping condition of the GA
procedure was set at 1,000 iterations or when the change in
the previous 100 iterations was less than 1 percent. Parameters
𝐴 and 𝐵 were continuous variables, and Parameters 𝐶 and𝐷
were discrete variables.

Table 2 shows the optimal parameter settings. For TSC,
the safety stock was set as 100 (level 3), the maximum
inventory level was set as 400 (level 1), the transportation
capacity was set as 100 (level 1), and the reliability of theHSCS
was set as 95 percent (level 3); the TSC was 1065479. For
PSL, the safety stock was set as 100 (level 3), the maximum
inventory level was set as 550 (level 2.498), the transportation
capacity was set as 500 (level 3), and the reliability of the
HSCS was set as 99 percent (level 1); PSL was 0.981. For the
OP, the safety stock was set as 78 (level 1.810), the maximum
inventory level was set as 400 (level 1), the transportation
capacity was set as 100 (level 1), and the reliability of the
HSCS was set as 99 percent (level 1); the OP was 0.962. To
compare the results of decision behavior, when the decision-
maker considers that the performance of the HSCS should
depend on OP, the TSC would be 1076531.743 and the PSL
would be 0.918. In this situation, the TSC (1076531.743) is
1.037 percent higher than the derived TSC (1065478.998)
and the PSL (0.918) is 3.146 percent higher than the derived
PSL (0.890) when the decision-maker considers that the
HSCS performance should depend on TSC. Additionally,
when the decision-maker considers that the performance of
the HSCS should depend on the TSC, the TSC would be
1065478.998 and the PSLwould be 0.890. In this situation, the
TSC (1065478.998) is 13.144 percent lower than the derived
TSC (1205528.075) and the PSL (0.890) is 10.225 percent
lower than the derived PSL (0.981) when the decision-maker
considers that the HSCS performance should depend on
the PSL. Finally, when the decision-maker considers that
the HSCS performance should depend on the PSL, the TSC
would be 1205528.075 and the PSL would be 0.981. In this
situation, the TSC (1205528.075) is 11.983 percent higher
than the derived TSC (1076531.743) and the PSL (0.981) is
6.863 percent higher than the derived PSL (0.918) when the
decision-maker considers that the performance of the HSCS
should depend on OP. Hence, from the above comparison of
decision behavior results, the HSCS’s OP for the parameter
settings is the superior choice because the TSC is 1076531.743,
which is 1.037 percent higher than the derived TSC when
the decision-maker considers that the HSCS performance
should depend on the TSC. The PSL is 0.918, which is 6.754
percent lower than the derived PSL when the decision-maker

Table 2: The optimal parameter settings for 𝑌1, 𝑌2, and 𝑌3.

𝐴 𝐵 𝐶 𝐷 Response
Total system cost (𝑌

1
) 3 1 1 3 0.998

Patient safety level (𝑌2) 3 2.498 3 1 1.000
Overperformance (𝑌3) 1.810 1 1 1 0.962
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Figure 1: The changed safety stock levels affecting 𝑌1, 𝑌2, and 𝑌3.

considers that the HSCS performance should depend on the
PSL.

3. Sensitivity Analysis

The sensitivity analysis was based on the most robust param-
eter settings when the performance of the HSCS depends on
OP. The safety stock is from 70 (level 1) units to 100 (level 3)
units, and the other parameter settings are fixed. The results
(see Figure 1) show that the 𝑌1 curve decreases from 0.993
to 0.970, which means that the TSC increased. The 𝑌2 curve
increases from 0.929 to 0.945, which means that the PSL
increased.The𝑌3 curve slightly increases from 0.960 to 0.962
(the safety stock level is 1.810, i.e., 78 units) and then slightly
decreases to 0.958. In addition, the maximum inventory
level ranges from 400 units (level 1) to 600 units (level 3),
and the other parameter settings are fixed. Figure 2 shows
that the 𝑌1 curve decreases from 0.988 to 0.905 (maximum
inventory level is 2.4, i.e., 540 units), which means that the
TSC increased.The 𝑌1 curve subsequently increases to 0.920,
which means that the TSC decreased. The 𝑌2 curve increases
from 0.936 to 0.994 (maximum inventory level is 2.4, i.e., 540
units), which means that the PSL increased. It then decreases
to 0.989, which means that the PSL likewise decreased. The
𝑌3 curve decreases slightly from 0.962 to 0.952.

When the transportation capacity increased from level 1
and level 2 to level 3, the results (see Table 3) show that 𝑌1
decreases, which means that the TSC increased. 𝑌2 decreases
slightly, which means that the PSL decreased slightly. 𝑌3
decreases. Table 4 shows that when the reliability of theHSCS
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Figure 2: The changed maximum inventory levels affecting 𝑌1, 𝑌2,
and 𝑌3.

Table 3: The transportation capacity levels affecting 𝑌1, 𝑌2, and 𝑌3.

Transportation capacity
𝑌1 𝑌2 𝑌3Level Units

3 100 0.850 0.934 0.890
2 230 0.967 0.936 0.951
1 500 0.988 0.936 0.962

Table 4: The reliability of the HSCS levels affecting 𝑌1, 𝑌2, and 𝑌3.

The reliability of the HSCS
𝑌1 𝑌2 𝑌3Level Reliability

3 95% 0.987 0.921 0.953
2 97% 0.984 0.926 0.955
1 99% 0.988 0.936 0.962

increased from level 1 and level 2 to level 3, the 𝑌1 in level 1 is
0.988, in level 2 is 0.984, and in level 3 is 0.987. 𝑌2 decreases,
which means that the PSL similarly decreased. 𝑌3 decreases
slightly.

In addition, to compare the trade-off effect, when differ-
ent weight combinations are formed, OP = 𝑊1∗NTSC+𝑊2∗
NPSL where𝑊1 + 𝑊2 = 1; the results are shown in Figure 3
and as follows.

(1) When𝑊1 is from 0.1 to 0.4, 𝑌1 increases from 0.902
to 0.912 and 𝑌2 decreases from 1.007 to 1.002. The
parameters’ setting for the safety stock is level 3, the
maximum inventory level is from 2.453 to 2.084, the
transportation capacity is level 1, and the reliability of
HSCS is level 1.

(2) When𝑊1 is from 0.4 to 0.5, 𝑌1 immediately increases
from 0.912 to 0.989 and 𝑌2 immediately decreases
from 1.00 to 0.934. The parameters’ setting for the
safety stock level is 1.615, the maximum inventory
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Figure 3: The changed weights affecting 𝑌1, 𝑌2, and 𝑌3.

level is level 1, the transportation capacity is level 1,
and the reliability of HSCS is level 1.

(3) When𝑊1 is from 0.5 to 0.8, 𝑌1 increases from 0.989
to 0.994 and 𝑌2 decreases from 0.934 to 0.929. The
parameters’ setting for the safety stock level is from
1.615 to 1.00, the maximum inventory level is level 1,
the transportation capacity is level 1, and the reliability
of HSCS is level 1.

(4) When 𝑊1 is from 0.9 to 1.0, the 𝑌1 is 0.998, and 𝑌2
is 0.907. The parameters’ setting for the safety stock
is level 3, the maximum inventory level is level 1, the
transportation capacity is level 1, and the reliability of
HSCS is level 1.

(5) When OP is set to √NTSC ∗ NPSL as the ideal
function, 𝑌3 = 0.962, and the safety stock is level
1.810, the maximum inventory level is level 1, the
transportation capacity is level 1, and the reliability
of HSCS is level 1. This situation is near the situation
when OP is set to 𝑊1 ∗ NTSC + 𝑊2 ∗ NPSL; in
the (𝑊1,𝑊2).𝑊1 is set between 0.4 to 0.5, and𝑊2 is
between 0.5 to 0.6. It means that the ideal function
weights 𝑊1 and 𝑊2 are set between 0.4 to 0.5 and
between 0.5 to 0.6. Hence, when W1 is less than the
ideal function weight, the performance 𝑌2 is better
than 𝑌1. When 𝑊1 is larger than the ideal function
weight, the performance 𝑌1 is better than 𝑌2.

4. Conclusion

In this paper, the authors proposed a method of setting
parameters to design a robust HSCS. The full-factor exper-
imental design was used to obtain simulation data for the
HSCS. The RSM was applied here to obtain a regression
model that shows how the parameter settings affect the
HSCS’s performance. Also, GA was used to search for the
solution to the problem of identifying optimal parameter
settings. The results show that the best choice for the HSCS
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parameter settings is when the decision-maker simultane-
ously takes the TSC and the PSL into consideration; in this
scenario, the TSC is only 1.037 percent higher than the
derived TSC when the decision-maker considers that the
HSCS performance should depend on the TSC. The PSL is
only 6.754 percent lower than the derived PSL when the
decision-maker considers that theHSCS performance should
depend on the PSL. Also, the adjustable strategies coming
from the results of sensitivity analysis show that when the OP
is considered and the HSCS parameters’ setting is set in the
optimization (the safety stock: 78 units (level 1.810); the max-
imum inventory level: 400 units (level 1); the transportation
capacity: 100 (level 1); the reliability of the HSCS: 99 percent
(level 1)), if the safety stock is adjusted increasing/decreasing
1 unit, the TSC will be changed (increasing/decreasing)
0.077%, and PSL will be changed (increasing/decreasing)
0.053%. If themaximum inventory level is adjusted increasing
from 400 units to 540 units, the TSC will increase 0.593%
per unit and PSL will increase 0.414% per unit. In addition,
if the maximum inventory level is adjusted increasing from
540 units to 600 units, the TSC will decrease 0.250% per unit
and PSL will decrease 0.083% per unit. If the transportation
capacity is adjusted to level 2 or level 3, the TSC will increase
2.1% or 13.8%, and PSL will decrease 0.000% or 0.002%. If
the reliability of the HSCS is adjusted to level 2 or level 3,
the TSC will increase 0.04% or 0.01%, and PSL will decrease
0.010% or 0.015%. Hence, the decision-makers can evaluate
the changed TSC and PSL to adjust the parameters’ level as
adjustable strategies when dealing with practical problems.
The concept of adjustable strategies will play an important
role in future research on HSCS.

In addition, to compare the trade-off effect between TSC
and PSL, the results show that when the 𝑊1 is less than the
ideal functionweight, the PSLwill be stronger to affect theOP
than the TSC. When the𝑊1 is larger than the ideal function
weight, the TSC will be stronger to affect OP than the PSL.
Future study may consider using any MOO (multiobjective
optimization) method (epsilon constraint, normal boundary
intersection) to obtain the optimal parameter settings for the
HSCS and to evaluate the performance of the HSCS.

Appendix

Regression Formulations

Consider
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