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Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years.
This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking
control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the
globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control
signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem.
The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in
a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy
by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online,
the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning
procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and
experiments realised using the wheeled mobile robot Pioneer 2-DX.

1. Introduction

A rapid development of the mobile robotics applications in
the last few years can be observed. Autonomous wheeled
mobile robots (WMRs) have attractedmuch attention among
researchers and engineers, while construction of robots, their
sensory systems, and control algorithmswere developed.One
of the most challenging tasks, which occurs in the imple-
mentations of autonomous WMR, is the tracking control
problem. It is widely discussed in literature, where differ-
ent control strategies [1–4] are presented. This shows how
significant the problem is. Difficulties met in the realisation
of the desired trajectory by WMRs result from the fact that
these control objects are described using nonlinear dynamic
equations, where some parameters of the model can be
unknown or change during the movement, for the sake of
disturbances. This results in the necessity of application of
computationally complex methods, which can adjust their
parameters during the realisation of the trajectory and assure

required quality of tracking. Artificial intelligence (AI) meth-
ods, like neural networks (NNs) [1, 2, 5, 6], are willingly
applied in control systems of robots, for the sake of weights
adaptation possibility.Thedevelopment ofAImethodsmakes
the implementation of Bellman’s dynamic programming
(DP) [7] idea possible. This group of methods is called
approximated dynamic programming algorithms (ADP) [8–
12], adaptive critic designs (ACD), neurodynamic program-
ming algorithms, or actor-critic structures. It is included in
the larger family of methods adapted using the reinforcement
learning (RL) idea. According to [9, 12], the ADP algorithms
family is composed of six main schemes: heuristic dynamic
programming (HDP), dual heuristic dynamic programming
(DHP), globalised DHP (GDHP), and action dependant
versions of mentioned earlier algorithms: action-dependent
HDP (ADHDP), ADDHP, and ADGDHP. Very good surveys
on ADP are given in [9, 13–16]. ADP algorithms have been
firstly described for discrete-time systems [8, 9, 12] and few
years later, for time-continuous systems [17–21].
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Simultaneously with continuous high interest in RL algo-
rithms, a growing number of its applications can be observed.
The challenging applications of RL methods are the control
problems of autonomous robots like the helicopter [22] or
the underwater vehicle [23]. There are implementations of
RL algorithms in mobile robot path planning [24], urban
traffic signal control [25], or power system control [26],
but these are mostly implementations of the Q-learning
algorithm [10].There are not many recent articles concerning
ADP algorithms; the example is the application of ADHDP
algorithm for a static compensator connected to a power
system [27] or HDP and DHP algorithms in target recogni-
tion [28]. Application of the ADP algorithms in the control
of the wheeled mobile robot is presented in [4] and in the
trajectory generating process in [29]. In [30, 31] the HDP
algorithm is applied to the control of the nonlinear system
with some simulation results. Interesting results are shown
in [32], where based on the HDP and the DHP algorithms,
new kernel versions were proposed that can obtain better
performance than original ones. The performance was tested
using the inverted pendulum and the ball and plate bench-
mark systems. The implementation of the GDHP algorithm
for the control of the linear object is described in [33] and
for the control of the nonlinear system in [3, 34, 35], the
control problem of the turbo-generator, solved using this
algorithm, is presented in [36]. The article [37] summarizes
the novel developments in policy-gradient and presents the
novel RL architecture, the natural actor-critic (NAC), and
the simulation test performed in the cart-pole balancing
problem. Recent works onADP algorithms have attempted to
solve the problem of implementation of ADP based control
systems without a system model knowledge [17–19]. Recent
advances in this field also include implementation of ADP
algorithms for partially unknown nonlinear systems [19] and
robust optimal tracing control for the unknown nonlinear
system [38].

The paper presents the application of the ADP algorithm
in the GDHP configuration [3, 33–35] in the tracking control
problem of the WMR. The discrete tracking control system
guarantees a high tracking performance and a stable reali-
sation of the desired trajectory in the face of disturbances.
The GDHP algorithm consists of two structures, the actor
and the critic, both realised in the form of random vector
functional link (RVFL) NNs [2]. Solutions of the tracking
control problems presented in literature are often theoretical
considerations; there are not many real applications of ADP
algorithms in control problems.The proposed discrete neural
tracking control system is used for the tracking control of the
WMR Pioneer 2-DX, where a series of computer simulations
and experiments were realised to illustrate the performance
of the control algorithm.

The results of the research presented in the paper continue
the authors’ earlier works related to the problem of control of
the ball and beam systems [39] and the robotic manipulator
[40] using DHP algorithm, tracking control of the WMR
[41–44] using different ADP algorithms, and the problem of
trajectory generating using ADHDP [45]. The remainder of
this paper is organised as follows. The WMR dynamics is
given in Section 2. The ADP algorithms family is described

in Section 3. In Section 4 the GDHP algorithm implemented
in the proposed discrete tracking control system is presented
and in the following section, the stability is analysed using
the Lyapunov function. In Section 6, the effectiveness of
the proposed control algorithm is demonstrated through
a numerical illustration and an experiment realised using the
WMR Pioneer 2-DX. Finally, Section 7 gives the conclusion.

2. Dynamical Model of the Wheeled Mobile
Robot Pioneer 2-DX

The WMR Pioneer 2-DX is the control object, shown in
Figure 1(a). It is a nonholonomic object, which dynamics is
described using nonlinear equations.TheWMR is composed
of two driving wheels 1 and 2, a third, free rolling castor wheel
3, and a frame 4 (Figure 1(b)). The movement of the WMR is
analysed in the 𝑥𝑦 plane.

Point 𝐴 is a central point of the WMR’s frame, 𝛽 is an
angle of the frame’s turn, 𝑟

1
, 𝑟
2
, 𝑙, and 𝑙

1
are dimensions that

result from the WMR’s geometry, 𝛼
[1]
, 𝛼
[2]

are angles of the
driving wheels 1 and 2 rotation, and 𝑢

[1]
, 𝑢
[2]

are control
signals.The dynamical model of theWMRwas derived using
Maggie’s formalism [2, 46] and assumed in the form
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𝑑
(𝑡) = u, (1)
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]
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ities of driving wheels, M is the positive defined inertia
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vector of disturbances, and u is the control vector. Matrices
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(2)

where a = [𝑎
[1]
, . . . , 𝑎

[6]
]
𝑇 is the vector of WMR’s parameters

that result from the object’s geometry, mass distribution,
and resistances to motion [2, 46]. The nominal parame-
ters of the WMR Pioneer 2-DX were assumed as a =

[0.1207, 0.0768, 0.037, 0.0001, 2.025, 2.025]
𝑇.

The proposed tracking control system is discrete. A con-
tinuous model of the WMR’s dynamics (1) was discretised
using Euler’s method and assumed in the form

z
1{𝑘+1}

= z
1{𝑘}

+ ℎz
2{𝑘}

,

z
2{𝑘+1}

= z
2{𝑘}

− ℎM−1 [C (z
2{𝑘}

) z
2{𝑘}

+ F (z
2{𝑘}

) + 𝜏
𝑑{𝑘}

− u
{𝑘}
] ,

(3)
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Figure 1: (a) TheWMR Pioneer 2-DX, (b) scheme of the WMR.

where z
2{𝑘}

= [𝑧
2[1]{𝑘}

, 𝑧
2[2]{𝑘}

]
𝑇 is a vector that corresponds to

the continuous vector of angular velocities �̇�, 𝑘 is an index of
iteration steps, and ℎ is a time discretisation parameter. The
state vector was assumed in the form z

{𝑘}
= [z
1{𝑘}

, z
2{𝑘}

]
𝑇.

The discrete tracking errors of angles of the driving wheels
rotation z

1{𝑘}
and errors of angular velocities z

2{𝑘}
were

defined as

e
1{𝑘}

= z
1{𝑘}

− z
𝑑1{𝑘}

,

e
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,

(4)

where the desired trajectory (z
𝑑{𝑘}

= [z
𝑑1{𝑘}

, z
𝑑2{𝑘}

]
𝑇) was

generated earlier. On the basis of (4) the filtered tracking
error s

{𝑘}
was defined in the form

s
{𝑘}

= e
2{𝑘}

+ Λe
1{𝑘}

, (5)

where Λ is a positive defined, fixed diagonal matrix.
Substituting the WMR dynamics model (3) and the

tracking errors (4) into s
{𝑘+1}

, calculated on the base of (5),
the filtered tracking error was assumed in the form

s
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where
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(7)

where z
𝑑3{𝑘}

is the vector of desired angular accelerations that
derives from the expansion of the vector z

𝑑2{𝑘+1}
using Euler’s

method.The vectorY
𝑓
(z
2{𝑘}

) includes all nonlinearities of the
controlled object.

3. Approximate Dynamic Programming

Bellman’s dynamic programming (DP) is based on the calcu-
lation of the value function, the control law, and the state of
the object for every step of the process, from the last to the
first. That is why it is not applicable in online control. ADP
algorithms are also called adaptive critic designs (ACD) [8–
16] or neuro-dynamic programming (NDP) algorithms.They
derive from the application ofNNs into Bellman’s approach to
the optimal control theory, where the value function and the
optimal control law are approximated by the critic and the
actor. This approach makes real-time control of dynamical
objects possible. The ADP algorithms family is schematically
shown in Figure 2. It is composed of six algorithms, which
differ from each other by the critic’s structure and the weights
adaptation rule of the actor’s and the critic’s NN.

The basic structure is the HDP algorithm, in which
the critic approximates the value function and the actor
generates the suboptimal control law. In the DHP algorithm
the critic approximates the difference of the value function
with respect to the state of the controlled system. The actor
has the same structure as in HDP. Complexity of the critic
grows proportionally to the size of the state vector, because
the difference of the value function with respect to the
𝑛-dimensional state vector is approximated by 𝑛 critic’s NNs,
and the critic’s weights adaptation law is also more complex.
TheDHP algorithm assures higher quality of tracking control
in comparison to HDP [43]. The GDHP algorithm is built in
the same way as HDP; its characteristic feature is the critic’s
weights adaptation law. It is based on the minimisation of
the value function and its difference with respect to the state
and can be seen as a combination of the HDP and the DHP
critic’s NN adaptation law. The actor structure is the same as
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Figure 3: (a) Scheme of the actor’s and the critic’s structure complexity in HDP and GDHP, (b) scheme of the actor’s and the critic’s structure
complexity in DHP.

in HDP. The difference in complexity of the three basic ADP
algorithms is schematically shown in Figure 3.

In the HDP and the GDHP algorithm the critic is
composed of one NN that approximates the value function,
while in the DHP algorithm critic consists of 𝑛 NNs, where
𝑛 is the size of the state vector. For example, in the case of the
WMR, where the state vector for the system (6) is of 𝑛 = 2

size, the DHP algorithm consists of the actor and the critic
realised in a form of two NNs each. In the GDHP algorithm,

the actor is composed of two NNs, but the critic is realised in
the form of only one NN.The advantage of GDHP over DHP,
in the case of complexity of the critic, is even more evident
considering the instance of the 6 degrees of freedom robotic
manipulator (𝑛 = 6).TheDHP algorithm implemented in the
control system for this controlled object should be composed
of the actor and the critic realised in a form of six NNs each,
while the GDHPwould be composed of the actor realised in a
form of six NNs, and only one NN in the critic structure.The
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difference of the complexity of the critic structure increases
simultaneously as the state vector of the controlled object
increases. The rest of the ADP algorithms are AD versions of
the basic algorithms, where the control law generated by the
actor’s NN is also the input to the critic’s NN.

4. Globalised Dual Heuristic Dynamic
Programming in Tracking Control

The main part of the proposed tracking control system is
the GDHP algorithm. There are not many applications of
the GDHP algorithms in literature, and existing publications
concern rather with theoretical studies [3, 33–36]. In this
paper, both the numerical tests and the verification experi-
ments of the neural tracking control system, realised using
theWMR Pioneer 2-DX, are presented.The GDHP structure
generates the control law that minimises the value function
𝑉
{𝑘}
(s
{𝑘}
) [8–16], assumed in the form of equation

𝑉
{𝑘}

(s
{𝑘}
) =

𝑁

∑

𝑘=0

𝛾
𝑘
𝐿
𝐶{𝑘}

(s
{𝑘}
) , (8)

where𝑁 is a number of iteration steps, 𝛾 is a discount factor,
0 < 𝛾 ≤ 1, and 𝐿

𝐶{𝑘}
(s
{𝑘}
) is the local cost function for the 𝑘th

step, assumed in the form

𝐿
𝐶{𝑘}

(s
{𝑘}
) =

1

2

s𝑇
{𝑘}
Rs
{𝑘}
, (9)

where R is a positive defined, fixed diagonal matrix.
The GDHP algorithm, schematically shown in

Figure 4(a), consists of the following:
(i) the predictive model that predicts the WMR’s closed-

loop state s
{𝑘+1}

, according to the equation

s
{𝑘+1}

= Y
𝑑
(z
{𝑘}
, z
𝑑{𝑘}

, z
𝑑3{𝑘}

) − Y
𝑓
(z
2{𝑘}

) + ℎM−1u
{𝑘}
, (10)

where u
{𝑘}

is the overall tracking control signal of the pro-
posed control system. Its structure derives from the stability
analysis presented in the next section. The controlled sys-
tem’s dynamical model is necessary in the synthesis of the
actor’s and the critic’s weights adaptation law in the GDHP
algorithm;

(ii) the actor, realised in the form of two RVFL NNs,
that generate the suboptimal control law u

𝐴{𝑘,𝑙}
= [𝑢
𝐴[1]{𝑘,𝑙}

,
𝑢
𝐴[2]{𝑘,𝑙}

]
𝑇 and are expressed by the formula

𝑢
𝐴[𝑗]{𝑘,𝑙}

(x
𝐴𝑗{𝑘}

,W
𝐴𝑗{𝑘,𝑙}

) = W𝑇
𝐴𝑗{𝑘,𝑙}

S (D𝑇
𝐴
x
𝐴𝑗{𝑘}

) , (11)

where 𝑗 = 1, 2, 𝑙 is an index of the internal loop iteration,
x
𝐴𝑗{𝑘}

is the input vector of the 𝑗th actor’s NN, it consists of
normalised values of the filtered tracking error s

{𝑘}
, errors

e
{𝑘}
, desired (z

𝑑2{𝑘}
) and realised (z

2{𝑘}
) angular velocities of

the driving wheels, 𝑥
𝐴𝑗[𝑖]{𝑘}

𝜖⟨−1; 1⟩, W
𝐴𝑗{𝑘,𝑙}

is the vector of
output layer weights of the 𝑗th actor’s NN, S(⋅) is the vector of
sigmoidal bipolar neuron activation functions, andD

𝐴
is the

matrix of fixed input weights selected randomly in the NNs
initialisation process. Actor’s NNs weights are adapted by the
gradient method according to equation

W
𝐴𝑗{𝑘,𝑙+1}

= W
𝐴𝑗{𝑘,𝑙}

− 𝑒
𝐴[𝑗]{𝑘,𝑙}
Γ
𝐴
S (D𝑇
𝐴
x
𝐴𝑗{𝑘}

) , (12)

where Γ
𝐴
is the fixed diagonal matrix of positive learning

rates. The quality rating e
𝐴{𝑘,𝑙}

was assumed in the form

e
𝐴{𝑘,𝑙}

=

𝜕𝐿
𝐶{𝑘}

(s
{𝑘}
)

𝜕u
{𝑘}

+ [

𝜕s
{𝑘+1}

𝜕u
{𝑘}

]

𝑇
𝜕�̂�
{𝑘+1,𝑙}

(x
𝐶{𝑘+1}

,W
𝐶{𝑘,𝑙}

)

𝜕s
{𝑘+1}

,

(13)

where �̂�
{𝑘+1,𝑙}

(x
𝐶{𝑘+1}

,W
𝐶{𝑘,𝑙}

) is the output of the critic’s NN,
generated on the basis of the predicted state for the step 𝑘+1;

(iii) the critic, realised in the form of one RVFL NN,
estimates the value function (8). It is expressed by the formula

�̂�
{𝑘,𝑙}

(x
𝐶{𝑘}

,W
𝐶{𝑘,𝑙}

) = W𝑇
𝐶{𝑘,𝑙}

S (D𝑇
𝐶
x
𝐶{𝑘}

) , (14)

where x
𝐶{𝑘}

is the input vector of the critic’s NN, x
𝐶{𝑘}

=

𝜅
𝐶
[1, s𝑇
{𝑘}
]

𝑇, 𝜅
𝐶
is the constant diagonal matrix of positive

scaling coefficients, W
𝐶{𝑘,𝑙}

is the vector of output layer
weights of the critic’s NN, andD

𝐶
is the matrix of fixed input

weights selected randomly in the critic’s NN initialisation
process. The critic’s RVFL NN is schematically shown in
Figure 4(b).

The critic’s weights adaptation procedure in the GDHP
algorithm is the most complex among all the ADP structures
family. It is based on theminimisation of errors characteristic
for the critic’s weights adaptation rule of the HDP algorithm
(𝑒
𝐻{𝑘,𝑙}

) and the DHP algorithm (𝑒
𝐷{𝑘,𝑙}

), expressed by the
formula
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)

𝜕u
{𝑘}

+ 𝛾[

𝜕s
{𝑘+1}

𝜕s
{𝑘}

+ [

𝜕u
{𝑘}

𝜕s
{𝑘}

]

𝑇
𝜕s
{𝑘+1}

𝜕u
{𝑘}

]

𝑇

×

𝜕�̂�
{𝑘+1,𝑙}

(x
𝐶{𝑘+1}

,W
𝐶{𝑘,𝑙}

)

𝜕s
{𝑘+1}

−

𝜕�̂�
{𝑘,𝑙}

(x
𝐶{𝑘}

,W
𝐶{𝑘,𝑙}

)

𝜕s
{𝑘}

} ,

(16)

where I
𝐷
is a constant vector, I

𝐷
= [1, 1]

𝑇. Weights of the
critic’s NN are adapted using the gradient method according
to the equation

W
𝐶{𝑘,𝑙+1}

= W
𝐶{𝑘,𝑙}

− 𝜂
1
𝑒
𝐻{𝑘,𝑙}
Γ
𝐶

𝜕�̂�
{𝑘,𝑙}

(x
𝐶{𝑘}

,W
𝐶{𝑘,𝑙}

)

𝜕W
𝐶{𝑘,𝑙}

− 𝜂
2
𝑒
𝐷{𝑘,𝑙}
Γ
𝐶

𝜕
2
�̂�
{𝑘,𝑙}

(x
𝐶{𝑘}

,W
𝐶{𝑘,𝑙}

)

𝜕s
{𝑘}
W
𝐶{𝑘,𝑙}

,

(17)

whereΓ
𝐶
is the fixed diagonalmatrix of positive learning rates

and 𝜂
1
, 𝜂
2
are positive constants.
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Figure 4: (a) Scheme of the GDHP algorithm, (b) scheme of the critic’s RVFL NN.

Adaptation process of NNs’ weights is an interesting
feature of the ADP algorithms. It is realised in a form of an
internal loop with the iteration index 𝑙. In every step 𝑘 of the
discrete control process calculations, which are connected to
the actor’s and the critic’s weights adaptation procedure, are
executed according to the scheme shown in Figure 5.

The actor-critic structure adaptation process is organised
in the following way: at the beginning of every 𝑘th iteration
step 𝑙 = 0. Actor’s NNs weights are adapted according
to the assumed adaptation law (12) by minimisation of the
error rate (13). This part of the algorithm, called the “control
law improvement routine” [9], leads to the evaluation of the
actor’s NNs weights W

𝐴𝑗{𝑘,𝑙+1}
. The next step consists of the

adaptation of the critic’s NN weights; it is called the “value
function determination operation.” The critic’s NN weights
are adapted according to the assumed adaptation law, by
the minimisation of the error rate (15), called the temporal
difference error (TDE) [12], and the error rate (16).This leads
to the calculation of the critic’s NN weights W

𝐶{𝑘,𝑙+1}
. Next,

the internal loop iteration index 𝑙 is increased, and a new cycle
of the ADP algorithm adaptation is started. In the presented
algorithm, the internal loop breaks, when the number of
internal iterations 𝑙 ≥ 𝑙

𝑚𝑥
, where 𝑙

𝑚𝑥
is the maximal number

of iteration cycles, or when the error 𝑒
𝐴[𝑗]{𝑘,𝑙}

is smaller than
the assumed positive limit 𝐸

𝐴[𝑗]
, 𝑒
𝐴[𝑗]{𝑘,𝑙}

< 𝐸
𝐴[𝑗]

, 𝑗 = 1, 2.
When one of these conditions is satisfied,W

𝐴𝑗{𝑘,𝑙+1}
becomes

W
𝐴𝑗{𝑘+1,𝑙}

and W
𝐶{𝑘,𝑙+1}

becomes W
𝐶{𝑘+1,𝑙}

. Next index 𝑘 is
increased. The actor’s NNs generate control signals and the
GDHP structure receives information about a new state of the

controlled object. In the next sections index 𝑙 is omitted for
the sake of simplicity.

5. Stability Analysis

This paper focuses on the implementation of the ADP algo-
rithm in the network-based tracking control system of the
two-wheeled mobile robot, Pioneer 2-DX. The proposed
discrete tracking control system consists of the GDHP algo-
rithm, the PD controller, the supervisory term, and the addi-
tional control signal.

The filtered tracking error s
{𝑘}

was defined in the form
(5), where Λ is a positive defined, fixed diagonal matrix
selected in the way that the eigenvalues are within a unit
disc. Consequently, if the filtered tracking error (5) tends to
zero then all the tracking errors go to zero. Filtered tracking
error s

{𝑘+1}
can be expressed as (6), where the vectorY

𝑓
(z
2{𝑘}

)

includes all nonlinearities of the controlled object.
Let us define the control input u

{𝑘}
as

u
{𝑘}

= ℎ
−1M [Y

𝑑
(z
{𝑘}
, z
𝑑{𝑘}

, z
𝑑3{𝑘}

) − Ŷ
𝑓
(z
2{𝑘}

) − K
𝐷
s
{𝑘}
] ,

(18)

where ̂Y
𝑓
(z
2{𝑘}

) is an estimate of the unknown function.
Then, the closed-loop system becomes

s
{𝑘+1}

= K
𝐷
s
{𝑘}

−
̃Y
𝑓
(z
2{𝑘}

) −Y
𝜏{𝑘}

, (19)

where the functional estimation error is given by Ỹ
𝑓
(z
2{𝑘}

) =

̂Y
𝑓
(z
2{𝑘}

)−Y
𝑓
(z
2{𝑘}

). Equation (19) relates the filtered tracking
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Figure 5: Schematic conception of the ADP structure adaptation
process.

error with the functional estimation error. In general, the
filtered tracking error system (19) can also be expressed as

s
{𝑘+1}

= K
𝐷
s
{𝑘}

+ d
0{𝑘}

, (20)

where d
0{𝑘}

= −(
̃Y
𝑓
(z
2{𝑘}

)+Y
𝜏{𝑘}

). If the functional estimation
error Ỹ

𝑓
(z
2{𝑘}

) is bounded in such a way that |𝑌
𝑓[𝑗]

(z
2{𝑘}

)| ≤

𝐹
[𝑗]
, 𝐹
[𝑗]

is a positive constant and 𝑌
𝜏[𝑗]{𝑘}

< 𝑏
𝑑[𝑗]

, where 𝑏
𝑑[𝑗]

is a positive constant, then the next stability results hold.
Let us consider the system given by (3). Let the control

action be provided by (18) and assume that the functional
estimation error and the unknown disturbance are bounded.
The filtered tracking error system (6) is stable provided that

0 < 𝐾
𝐷max < 1, (21)

where 𝐾
𝐷max ∈ 𝑅 is the maximum eigenvalue of the matrix

K
𝐷
.
Let us consider the following Lyapunov function candi-

date:

𝐿
{𝑘}

= s𝑇
{𝑘}
s
{𝑘}
. (22)

The first difference is

Δ𝐿
{𝑘}

= s𝑇
{𝑘+1}

s
{𝑘+1}

− s𝑇
{𝑘}
s
{𝑘}
. (23)

Substituting the filtered tracking error dynamics (19) into (23)
results in

Δ𝐿
{𝑘}

= [K
𝐷
s
{𝑘}

−
̃Y
𝑓
(z
2{𝑘}

) −Y
𝜏{𝑘}

]

T

× [K
𝐷
s
{𝑘}

−
̃Y
𝑓
(z
2{𝑘}

) −Y
𝜏{𝑘}

] − s𝑇
{𝑘}
s
{𝑘}
,

(24)

what implies that Δ𝐿
{𝑘}

≤ 0 provided that





K
𝐷
s
{𝑘}

−
̃Y
𝑓
(z
2{𝑘}

) −Y
𝜏{𝑘}






≤ 𝐾
𝐷max





s
{𝑘}





+ 𝐹 + 𝑏

𝑑
<




s
{𝑘}





,

(25)

where 𝐹 and 𝑏
𝑑
are positive constants. This further implies

that





s
{𝑘}





≥

𝐹 + 𝑏
𝑑

1 − 𝐾
𝐷max

. (26)

The closed-loop system is uniformly ultimately bounded
(UUB) [47]. The PD controller parameter 𝐾

𝐷max ∈ 𝑅 has to
be selected using (21) in order for the closed-loop system to
be stable. This outer-loop signal is viewed as the supervisor’s
evaluation feedback to the actor and the critic. In the NN
actor-critic control scheme derived in this paper there is no
preliminary offline learning phase. The weights are simply
initialized at zero, for then the control system is just the PD
controller. Therefore, the closed-loop system remains stable
until the NNs begin to learn.

The proposed discrete tracking control system is com-
posed of theGDHP structure that generates the control signal
u
𝐴{𝑘}

, the PD controller (uPD{𝑘}), the supervisory term (u
𝑆{𝑘}

),
and the additional control signal u

𝐸{𝑘}
. Structure of the super-

visory term derives from the stability analysis performed
using the Lyapunov stability theorem.The additional control
signal u

𝐸{𝑘}
derives from the process of the WMR dynamics

model discretisation. The overall tracking control signal was
assumed in the form

u
{𝑘}

= −ℎ
−1M [u

𝐴{𝑘}
+ uPD{𝑘} + u

𝐸{𝑘}
− u
𝑆{𝑘}

] , (27)

where

uPD{𝑘} = K
𝐷
s
{𝑘}
,

u
𝐸{𝑘}

= ℎ [Λe
2{𝑘}

− z
𝑑3{𝑘}

] ,

u
𝑆{𝑘}

= I
𝑆
u∗
𝑆{𝑘}

,

(28)

where K
𝐷
is a fixed diagonal matrix of positive PD controller

gains, I
𝑆
is a diagonal matrix, with elements 𝐼

𝑆[𝑗,𝑗]
= 1 if

|𝑠
[𝑗]{𝑘}

| ≥ 𝜌
[𝑗]

or 𝐼
𝑆[𝑗,𝑗]

= 0 in the other case, 𝑗 = 1, 2, 𝜌
[𝑗]

is a positive constant.
The scheme of the discrete neural tracking control system

with actor-critic structure in the GDHP configuration is
shown in Figure 6.

The stability analysis was performed under the assump-
tion that 𝐼

𝑆[𝑗,𝑗]
= 1. Substituting (27) into (6), the closed-loop

system equation is expressed by the formula

s
{𝑘+1}

= Y
𝑑
(z
{𝑘}
, z
𝑑{𝑘}

, z
𝑑3{𝑘}

) −Y
𝑓
(z
2{𝑘}

) − Y
𝜏{𝑘}

− [u
𝐴{𝑘}

+ uPD{𝑘} + u
𝐸{𝑘}

− u
𝑆{𝑘}

] .

(29)

The stability analysis was realised using the positive definite
Lyapunov candidate function

𝐿 =

1

2

s𝑇s, (30)

which discretised derivative was assumed in the form

Δ𝐿
{𝑘}

= s𝑇
{𝑘}

[s
{𝑘+1}

− s
{𝑘}
] . (31)
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Figure 6: Scheme of the tracking control system.

Substituting (29) into (31), Δ𝐿
{𝑘}

takes the form

Δ𝐿
{𝑘}

= s𝑇
{𝑘}

[−Y
𝑓
(z
2{𝑘}

) − Y
𝜏{𝑘}

− u
𝐴{𝑘}

− K
𝐷
s
{𝑘}

+ u∗
𝑆{𝑘}

] .

(32)
On the assumption that all elements of the vector of distur-
bances are bounded, 𝑌

𝜏[𝑗]{𝑘}
< 𝑏
𝑑[𝑗]

, where 𝑏
𝑑[𝑗]

is a positive
constant, the difference of the Lyapunov candidate function
takes the form

Δ𝐿
{𝑘}

≤ − s𝑇
{𝑘}
K
𝐷
s
{𝑘}

+

2

∑

𝑗=1






𝑠
[𝑗]{𝑘}







× [






𝑌
𝑓[𝑗]

(z
2{𝑘}

)






+






𝑢
𝐴[𝑗]{𝑘}






+






𝑌
𝜏[𝑗]{𝑘}






]

+

2

∑

𝑗=1

𝑠
[𝑗]{𝑘}

𝑢
∗

𝑆[𝑗]{𝑘}
.

(33)

The supervisory term’s control signal was assumed in the
form

𝑢
∗

𝑆[𝑗]{𝑘}
= − sgn (𝑠

[𝑗]{𝑘}
) [𝐹
[𝑗]

+






𝑢
𝐴[𝑗]{𝑘}






+ 𝑏
𝑑[𝑗]

+ 𝜎
[𝑗]
] ,

(34)
where |𝑌

𝑓[𝑗]
(z
2{𝑘}

)| ≤ 𝐹
[𝑗]
,𝐹
[𝑗]

is a positive constant, and𝜎
[𝑗]

is
a positive constant. On the above assumptions the difference
of the Lyapunov function (30) is a negative definite.

6. Research Results

Performance of the proposed discrete tracking control system
was tested during a series of computer simulations and then
verified using the laboratory stand schematically shown in
Figure 7.

The laboratory stand consists of the WMR Pioneer 2-
DX, the power supply and a PC equipped with the dSpace
DS1102 digital signal processing board and software: dSpace
Control Desk and Matlab/Simulink. The WMR Pioneer 2-
DX is equipped with the sensory system composed of eight
ultrasonic sensors and a scanning laser range finder. The
movement of the robot is realised using two independently
supplied DC motors with gears (ratio 19.7 : 1) and encoders
(500 ticks per shaft revolution). The WMR weights 𝑚

𝑅
=

9 kg, its frame is 𝑙
𝑅
= 0.44m long, 𝑙

𝑊
= 0.33m width, and

its maximal velocity is equal to V
𝐴
= 1.6m/s.

Pioneer 2-DXPower supply

DS1102

Figure 7: Scheme of the laboratory stand.

6.1. Simulation Results. Performance of the proposed control
system was tested during a series of numerical simulations
performed using theMatlab/Simulink software environment.
In this section the notation of variables is simplified and the
index 𝑘 is omitted. The same set of parameters during simu-
lations as in the experiment was used.The time discretisation
parameter was equal to ℎ = 0.01 s. In the GDHP structure
NNs with eight neurons each were used. The output layer
weights of NNs were set to zero in the initialisation process.
Parameters of the PD controller K

𝐷
= diag{0.036, 0.036},

Λ = diag{0.5, 0.5} were assumed. One must select K
𝐷
using

some trial and error experiments or computer simulations.
In practice, this has not shown itself to be a problem.The PD
controller gains were selected heuristically to satisfy (21). For
the sake of the noise that occurs in the signals of the driving
wheels angular velocities, incremental encoders were used
in the experiment for measurement, the amplification of PD
gains in a range of conditions (21) does not improve tracking
control quality and can lead to instability.ThematrixR, in the
cost function, was set to R = diag{1, 1}, the discount factor
was equal to 𝛾 = 0.5, learning rates of the actor’s NNs and the
critic’s NNwere equal to Γ

𝐴[𝑖,𝑖]
= 0.1 and Γ

𝐶[𝑖,𝑖]
= 0.9 properly,

𝑖 = 1, . . . , 8, 𝜂
1
= 𝜂
2
= 1. Parameters of the supervisory term

were set to 𝜌
[𝑗]

= 3 and 𝜎
[𝑗]

= 0.09. The maximal velocity
of point 𝐴 of the WMR’s frame was equal to V

𝐴
= 0.4m/s.

During the movement of the WMR two parametric distur-
bances were simulated (marked on diagrams by ellipses),
first in 𝑡

1
= 12.5 s, when the nominal set of parameters

was changed to a
𝑑

= [0.1343, 0.0945, 0.037, 0.0001, 2.296,

2.296]
𝑇 and the second one, when in 𝑡

1
= 32.5 s, nominal
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Figure 8: (a) The desired angles of wheels 1 and 2 rotation, 𝑧
𝑑1[1]

and 𝑧
𝑑1[2]

, (b) the desired angular velocities of driving wheels 1 and 2, 𝑧
𝑑2[1]

and 𝑧
𝑑2[2]

.

values of parameters were restored. The first change of
parameters corresponds to the situation, when the WMR is
loaded by an additional mass 𝑚

𝐿
= 5 kg, and a return to the

nominal set of parameters corresponds to the situation, when
the additional load is removed.

The desired trajectory of theWMRwas computed earlier.
In Figure 8(a) the desired angles of the driving wheels’, 1
and 2, rotation are shown; in Figure 8(b) the desired angular
velocities are presented. Realisation of the presented trajec-
tory results in movement of point𝐴 of theWMR on the path
in a shape of a digit “8,” with a stop phase in the middle point.

The overall tracking control signal u, shown in
Figure 9(a), consists of the control signals generated by
the actor’s NNs u

𝐴
, (Figure 9(b)), the PD control signals uPD,

(Figure 9(c)), the supervisory term’s control signals u
𝑆
, and

the additional control signals u
𝐸
, shown both in Figure 9(d).

At the beginning of the numerical test, values of the PD
control signals are big. Next, they are reduced during the
NNs adaptation process. The control signals of the actor take
the main part in the overall control signals. In time 𝑡

1
, when

the first parametric disturbance occurs, a change in values of
the generated control signals can be observed.The additional
load changes the dynamics of the WMR; realisation of the
desired trajectory requires generating higher values of the
control signals. The influence of the disturbance on the
WMR’s dynamics is compensated by the actor’s NNs control
signals. Analogically, the change of the WMR’s parameters
in time 𝑡

2
, which simulates removal of the additional load,

is compensated in the generated control law by reduction of
the actor’s NNs control signals values.

The desired and realised angular velocities of driving
wheels 1 and 2 are shown in Figures 10(a) and 10(b),
respectively. The biggest differences between the desired and
realised angular velocities occur at the beginning of the
numerical test. Small changes of realised angular velocities
can be observed at the moment, when the parametric distur-
bances occur.

The desired trajectory was realised with tracking errors
shown in Figures 11(a) and 11(b) for adequate driving wheels.
In Figures 11(c) and 11(d), values of filtered tracking errors
𝑠
[1]

and 𝑠
[2]

are shown that are minimised by the ADP

structure. The highest values of the tracking errors occur
at the beginning of the numerical test, when values of the
PD control signals are at their highest, and the process of
NNs’ zero initial weights adaptation starts. Next, the control
signals of the actor’s NNs take the main part of the overall
control signals, and the values of tracking errors are reduced.
A noticeable increase of the tracking error values occurs at
the time of simulated disturbances, but it is reduced by the
change of the actor’s NNs control signals.

Values of the GDHP structure’s NNs weights are shown
in Figure 12(a) for the first actor’s NN, in Figure 12(b) for the
second one, and in Figure 12(c) for the critic’s NN. In the
numerical test, zero initial weights values were used. At the
time of the disturbances, changes of weights’ values occur as
a result of the adaptation performed in order to reduce the
tracking errors.

6.2. Verification Results. After numerical tests were per-
formed, a series of experiments were realised using the
WMR Pioneer 2-DX. The control algorithm operated in real
time during the experiment, thanks to the application of
the dSpace DS1102 digital signal processing board. In the
experiment, the same parameters of the control system as
in the simulation were used. The values of signals from the
experiment were not filtered. The control signals are shown
in Figure 13. The first disturbance occurs at time 𝑡

1
= 13 s

and the second one at time 𝑡
2
= 33 s. The PD control signals

(Figure 13(c)) based on the tracking errors calculated on the
basis of the realised trajectory, determined by using signals
form incremental encoders. These signals are noised, which
has an effect on the overall control signals (Figure 13(a)). In
contrast, the actor’s NNs control signals (Figure 13(b)) and
residual control signals (Figure 13(d)) are smooth. As it was
observed in the simulation, at the time of the disturbances,
the values of the actor’s NNs control signals changed to
compensate the effect of the WMR’s dynamics change.

The biggest differences between the desired and realised
angular velocities, shown in Figure 14, occur at the beginning
of the experiment, when the process of the actor’s NNs
weights adaptation starts and at the time when the distur-
bances occur.
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The tracking errors of wheels 1 and 2 are shown in
Figures 15(a) and 15(b); filtered tracking errors are shown in
Figures 15(c) and 15(d). Values of errors are noisy, because
of the realised method of measurement of the movement
parameters.The errors at the beginning of the experiment are
at their highest. The change of the load transported by the
WMR has noticeable influence on the trajectory realisation

process. The method of placing the load on the WMR and
removing it has a big influence on temporary values of errors.
The increase of errors values results in the adaptation of the
actor’s and the critic’s NNs weights in order to minimise
tracking errors.

Values of NNs’ weights are shown in Figure 16. At a time,
when the WMR transports an additional load, values of the
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actor’s NNs weights increase. This is a result of generating
higher values of the actor’s control signals for the heavier
WMR. The critic’s NN approximates the value function
based on the filtered tracking errors, values of its weights
increase and when the values of filtered tracking errors
increase.

The tracking quality of the proposed control system was
compared to the results obtained by the tracking control
systems presented earlier, where ADP algorithms in HDP
and DHP [43] configuration, or the PD controller (K

𝐷
=

diag{1, 1}, Λ = diag{0.5, 0.5}), were used. Every experiment
was performed in the same conditions, using the same or
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Figure 15: (a) Tracking errors of wheel 1, 𝑒
1[1]

and 𝑒
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analogical values of parameters, and the same type of the
disturbance.

To evaluate the tracking control quality, the following
quality ratings were used:

(i) average of maximal values of the filtered tracking error
for wheels 1 (𝑠max[1]) and 2 (𝑠max[2]):

𝑠mavr =
1

2

(𝑠max[1] + 𝑠max[2]) , (35)

(ii) average of root mean square error (RMSE) of the
filtered tracking errors 𝑠

[1]
and 𝑠
[2]
:

𝜀avr =
1

2

(√
1

𝑁

𝑁

∑

𝑘=0

𝑠
2

[1]{𝑘}
+ √

1

𝑁

𝑁

∑

𝑘=0

𝑠
2

[2]{𝑘}
) , (36)

where𝑁 = 4500.
Values of quality ratings are shown in Table 1.
Average of maximal values of the filtered tracking error

for wheels 1 (𝑠max[1]) and 2 (𝑠max[2]) is shown in Figure 17(a),
and values of RMSE of the filtered tracking errors 𝑠

[1]
and 𝑠
[2]

are shown in Figure 17(b).
On the basis of the obtained results, the higher quality

of tracking for the control systems with ADP algorithms
in comparison to the PD controller can be noticed. In
the presented paper the goal was not to demonstrate the
maximal quality of the tracking control attainable using

Table 1: Values of quality ratings.

Control algorithm PD HDP GDHP DHP
𝑠mavr 4.06 2.24 1.66 1.52
𝜀avr 1.99 0.42 0.32 0.24

highest feasible to apply the PD controller gains but to
illustrate the increase of the quality of the tracking control
after adding, to the control system, a part that compensates
for nonlinearities of the control system. Values of the quality
ratings for the control system with the GDHP structure are
close to the ones obtained by the control system with the
DHP structure. Simultaneously values of quality ratings are
lower than obtained using the HDP algorithm, which means
that the application of more complex critic’s NN weights
adaptation rule improves the quality of control.

7. Conclusion

The paper presents the discrete tracking control system of
the WMR Pioneer 2-DX. The main element of the control
system is the ADP algorithm in the GDHP configuration.
It consists of the actor and the critic, realised in a form of
RVFL NNs. The additional elements of the control system,
like the PD controller or the supervisory term, assure stability
of the tracking control in case of disturbances, or at the
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beginning ofmovement, in the case when values of the actor’s
NNs weights are not adequately selected for the controlled
system; for example, the process of preliminary learning
was not realised, or zero initial weights were applied. PD
controller gains were selected experimentally for the control
system with the GDHP algorithm. Next the experiment for
the control system with only the PD controller, with the
same parameters, was performed to demonstrate the increase
of the tracking control quality for the tracking control
system compensating nonlinearities of the control object. It is

important to indicate that in a case of realisation of the control
system, with nonlinearities compensation, the primary part
of the system is the nonlinear compensator. The nonlinear
compensator, realised in the form of a GDHP algorithm,
compensates for the nonlinearities of the controlled object,
as well as the parametrical and the structural disturbances.
The GDHP algorithm has the same structure as HDP and
its critic’s structure is simpler than in DHP. In the GDHP
algorithm the critic’s NN weights are adapted using a more
complex adaptation law, which is composed of the critic’s
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NN weights adaptation rule of the HDP algorithm and
the DHP algorithm. This feature assures a high quality of
tracking, higher than the quality of tracking obtained when
using the control system with the HDP algorithm, and
close to the quality of tracking for the control system with
the DHP algorithm, which is a significant advantage. The
presented control system is stable; the values of errors and
NNs’ weights are bounded. Even in the case of zero initial
weights of NNs application, or in the case of disturbances,
the proposed control system guarantees a stable tracking
process. The discrete tracking control system works online
and does not require a process of preliminary learning of
NNs. Performance of the control system was verified by
a series of numerical tests and experiments realised using the
WMR Pioneer 2-DX.
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