Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 373902, 7 pages
http://dx.doi.org/10.1155/2014/373902

Research Article

Hindawi

Web Service Reputation Evaluation Based on QoS Measurement

Haiteng Zhang, Zhiqing Shao, Hong Zheng, and Jie Zhai

Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Correspondence should be addressed to Zhiqing Shao; zshao@ecust.edu.cn

Received 9 March 2014; Accepted 13 March 2014; Published 13 April 2014

Academic Editor: Yu-Bo Yuan

Copyright © 2014 Haiteng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the early service transactions, quality of service (QoS) information was published by service provider which was not always true
and credible. For better verification the trust of the QoS information was provided by the Web service. In this paper, the factual
QoS running data are collected by our WS-QoS measurement tool; based on these objectivity data, an algorithm compares the
difference of the offered and measured quality data of the service and gives the similarity, and then a reputation evaluation method
computes the reputation level of the Web service based on the similarity. The initial implementation and experiment with three
Web services’ example show that this approach is feasible and these values can act as the references for subsequent consumers to

select the service.

1. Introduction

Nowadays, Web services are one of the important innovations
in software which bring many benefits in software design and
implementation. With the fast growth of Web services, a large
number of Web services with the same or similar function
are developed and released. How to select a suitable and best
service has become an important research topic. The Web
service selection technology based on QoS has been referred
to for solving this problem, which considers distinguishing
those Web services with the same function using a set of
different QoS levels [1].

The existing QoS-based services selection approaches
always assume that the QoS data coming from service
providers are effective and trustworthy. However, the values
of QoS attributes which are provided by service providers
may be incredible, since service providers sometimes may
advertise higher QoS data than the factual level of the service
in order to attract more users to use their services and so gain
better benefits [2]. For example, the maximum response time
of these services may be increased, while the invocation rate
remains under a certain threshold during runtime. Therefore,
how to give the objective and effective evaluation to service
provider’s reputation to help the consumer to reference and
choose the appropriate service becomes a problem to solve

[3].

To ensure the impartiality and objectivity of a Web service
reputation evaluation, this paper proposes a trust Web service
reputation evaluation framework based on QoS similarity
of the factual values and the advertised values. Firstly, a
Web services QoS measurement tool which is independent
of service providers or consumers was developed, which
provides an automatic approach on measuring and storing
QoS values of the service. Secondly, Web service reputation
evaluating component computes the similarity of advertised
QoS values and factual values, and then the similarity is
used to evaluate the reputation level of the Web service.
Lastly, a set of experiments are given, which show that this
approach can effectively evaluate the reputation of the service
provider and thus can strengthen the effectiveness of the
service selection.

The rest of this paper is organized as follows. In Section 2,
we give an overview of our Web service reputation evaluation
framework. Section 3 illustrates the core component of our
WS-QoS measurement tool. The similarity algorithm and
QoS reputation evaluation method are given in Section 4.
In Section 5 we present the main implementation and the
experiment to verify the efficiency of our method. This is
followed by an overview of the related work in Section 6.
Section 7 concludes our paper and presents further research
directions.

The Scientific World Journal

Factual
QS

Search

Services consumer

Services registry

Reputation
score

WS-QoS reputation evaluating
component

‘WS-QoS measurement

Bind and invoke

Advertised

S
Qo Publish

Invoking and measurement

\ Services provider

FIGURE 1: The Web service reputation evaluation framework.

2. The Web Service Reputation
Evaluation Framework

The Web service reputation evaluation framework is shown
in Figure 1. The framework consists of the basic Web service
model components like the Web service provider, Web
service consumer, and the Web service registry. Two major
components are introduced into traditional Web services
architecture to realize the reputation evaluation of the service
provider.

WS-QoS measurement tool is a client side technique
which works completely on Web service consumer and
provider independently. It measures the performance related
QoS values which are achieved by dynamic invoking Web
services together with aspect-oriented programming (AOP).
So that factual QoS values are provided and stored by this
component.

WS-QoS reputation evaluating component supports ser-
vice reputation measurement based on QoS similarity. Ser-
vice providers issue the advertised values of the QoS informa-
tion into Service Registry Center. WS-QoS measurement also
gives feedback of the factual values of QoS to Service Registry
Center after invoking the service. QoS similarity is computed
firstly according to the differences between advertised QoS
and factual QoS values, and then the Web service reputation
score was given based on these similarities.

3. The WS-QoS Measurement Tool

To objectively measure service related quality information,
the WS-QoS measurement tool is designed to acquire QoS
attribute values for a given set of Web services. The main
processes of the WS-QoS measurement tool are depicted in

Figure 2. In the first phase, Web services description language
(WSDL) file is acquired from UDDI. The WSDL file is parsed
to get service related information, and the test data are
generated for each input element of the operations. As a next
step, the Web service stub classes are generated as Java files by
using the WSDL2Java tool from Axis, which gives the service
invoker all the exposed methods and parameters™ types by
the Web service. In the third step, the Web service invoker
assembles the generated test date to stub code to cause the
Web service to be invoked and its response results and status
to be collected which can be used to compute the QoS typical
parameters such as availability, reliability, and accessibility.
In the last step, timeAspect code weaves time measurement
codes before and after the byte code of the Web service
invoking method; then the start time and end time of Web
service call are acquired, and the Web service response time
is computed.

3.1. Test Case Generation Based on WSDL. In the distributed
environment, the service provider exposes the functionality
of the service in the form of a Web services description
language. WSDL describes Web services by using the fol-
lowing major elements: portType, message, parts, types,
binding, port, and service [4]. For Web services dynamical
invocation, WSDL parser is first needed to get service related
information such as service name, description, operations,
and the data type of the input arguments and the output
arguments. WSDL4] has been used to parse the WSDL files by
many Web services underlying technology implementations
[5]. To obtain a complete Web service information needed
to invoke the service, this technology is also used in our
component. The parser reads the WSDL specification and
extracts the operation and the message tags that are exposed

The Scientific World Journal

QoS database

Result collection and

calculation
timeAspect
Cn
Web ,' E:S 1: Generate
el]
A L Java stub Stub generator
service invoker Invoke >
WSDL UDDI
Service

Test Generate [Test case | information [yspL
case generator K< | parser

C: connector
A: aspect bean

FIGURE 2: The architecture of the WS-QoS measurement tool.

by a particular Web service from the WSDL; in this way the
methods and their input arguments’ and return arguments’
types of the service are acquired which will later on help the
Web service invoker in invoking the required method of that
service.

Then a test case knowledge base is established based on
these pieces of information, as described in [6, 7], where each
simple data type is associated with default facets definition
and sets of candidate values based on the test strategies such
as random values and boundary values. Complex data type
defines a composition of simple and/or complex data types.
To generate test data of complex data types, the generator
recursively analyzes the structure of the data type until it
reaches the simple type. The generated service information
and test cases are documented in XML-based test files, which
can be easily used by service invoker.

3.2. Web Service Stubs Generation Based on WSDL. Stubs
are client side programs which act as a proxy for the server.
Stubs are used to make calls to the Web services. Using
stubs simplifies our applications considerably. We do not
have to write a complex client program that dynamically
generates SOAP requests and interprets SOAP responses. We
can simply concentrate on writing the Web service invoking
client code and leave all the other work to the stubs. The
stubs are generally generated only once and then we can reuse
the stubs as many times as we want. WSDL2Java from Axis
is a tool that generates Java classes from an existing WSDL
document. Generated classes represent a service and port
combination with operations as methods. A data type class
represents an input or output message part [8].

WSDL2Java generates the following stub and skeleton
classes from existing WSDL documents: (1) the data type
class that represents the input message part defined in

the WSDL document; (2) the data type class that represents
the output message part defined in the WSDL document;
(3) the stub class that represents a combination of service
and port defined in the WSDL document; (4) the default
constructor method to create a stub object with information
defined in the WSDL document; (5) the stub method that
represents an operation defined in the WSDL document.

3.3. The Web Service Invoker. WSDL2Java analyzes WSDL
file of Web service and creates the stub program and some
interface programs. However we have to create the client
program to execute the Web service by composing those stub
and interface programs. Therefore, the Web service invoker
is developed which tries to invoke a service operation just by
“probing” arbitrary test values for the input parameters for an
operation. Firstly the Web service invoker analyzes the Java
code using “Class” and “Method” API in Java reflection and
we can get the getter method and its return type. Secondly,
the information from the test case file is acquired and some
parameters required for the dynamic invocation of Web
service are set in our system. Thirdly, Java reflection is used
to dynamically instantiate these complex classes and Web ser-
vice stubs. By dealing with the transactions described above,
the Web service’s operation is executed. Lastly, responses’
results and status of the Web service are analyzed and
collected by Result Collector and Calculation Component
and stored in the QoS database. ome computation models of
QoS properties are given in [9], which can be computed on
the basis of the Web service invoker results and status.

3.4. The timeAspect. Response time is the time needed to
process a query, from the moment of sending a request
until receiving the response [9]. For measuring Web service
response time, before sending the request, the current date

and time are saved, and after receiving the response from
Web service, the date and time are saved again. The response
time of the Web method is calculated by subtracting the
sending request time from the receiving response time. For
keeping flexibility, this paper proposes using aspect-oriented
programming technology to measure the response time of
Web services. AOP approaches introduce a new concept to
modularize crosscutting concerns, called an aspect. An aspect
defines a set of join points in the target application where
the normal execution is altered. Aspect weavers are used to
weave the aspect logic into the target application [10]. The
goal of AOP is to achieve a better separation of concerns,
which makes it particularly suitable for solving the problems
of Web services response time collection. This is because time
record part is such a crosscutting concern since it spans over
each service we have to invoke. Before the service invoking
method starts execution, timeAspect points to the codes and
records the start time; after the service invoking method is
performed, timeAspect also weaves the codes and records the
end time. The response time is equal to subtracting the start
time from end time.

4. WS-QoS Reputation Evaluation

In order to provide better evaluation of the service provider’s
reputation, this section gives the computing model of the Web
service’s QoS similarity. The values of similarity can be used
to represent the reputation level; higher values of similarity
represent a better reputation level.

4.1. The Calculation of the Global QoS. For each call to the
service by WS-QoS measurement tool, the collected Web
services QoS attribute values may be different. In order to
be able to reflect the real property of the dynamic changes
of QoS, global QoS value of the service must be recomputed
and stored based on the historical data and current data.

Given a Web service, it has m QoS attributes can be
expressed as A: {A;,1 < j < m}. The Web service QoS
attribute values set is defined as Q: {q;, 1 < j < m}; q; is the
attribute value of the attribute A J The nth current factual QoS
data collected by the WS-QoS measurement tool is defined
by the set fa_Q,: {fa_q,;,1 < j < m}; fa_q,; is the nth actual
value of the attribute A ;. Then the global QoS value of the
service can be computec{ by using two-time average method.
We randomly sample p(p < n) numeric from the # values
(p < n); the Ith QoS value fa_g;; can be computed as in
formula (1), so sample k times can get k sampling value, and
then the global QoS value of the service fa,Qg = {fag pl <
j < m}fa_q; can be computed as in formula (2):

L2

fa_qy; = — Z fag;, p#0, 1
P
1 k

fag; = Y fagqy, k#0.)
I=1

4.2. The Calculation of the QoS Similarity. Similarity
is acquired by calculating the accumulation average of

The Scientific World Journal

the comparative result between the advertising quality
values and the factual global quality values. QoS attributes
hold two different directions or tendencies of their values;
if the tendency of the attribute is positive, it means that
a bigger value is better. On the contrary if the tendency
is referred to as negative, it means that smaller values
are preferred. For example, for attribute “response time”
the smaller value is usually preferred, so the tendency
of this parameter is negative, whereas for attribute
“availability” the bigger value indicates a better quality
for the specified parameter, so the tendency is positive.
Based on the direction of the attribute, the similarity can be
computed by the following formulas (3)-(5). As described in
Section 4.1, the global QoS value of the service is fa_Q g and
faQ, = {fa_g;,1 < j < m}; the advertised QoS which reflects
the quality offered by the Web service provider is defined
by the set ad_Q = {(ad,min,qj,ad,max,qj),l < j < mh
ad_min_q; and ad-max_q; refer to the minimum value and
the maximum value of the advertised quality attribute A,
respectively. Consider

Z;‘il C. (3)

m

sim =

If the tendency of attribute is negative,

_ |0 iffag; <ad maxg; @
ol if faq; >ad_max_q;.

If the tendency of attribute is positive,
_ |0 if fag; <ad_min g; 5)
Sl if faq; >ad_min_q;.

4.3. The Evaluation of the QoS Reputation Level. The QoS
similarity obtained by using the aforementioned methods is
between 0 and 1 (0 < sim < 1). The interval is divided
into 5 stages, that is, [0,0.2], [0.2,0.4], [0.4,0.6], [0.6,0.8],
and [0.8, 1]; each stage can correspond to a reputation level.
According to the rank, the reputation level is ordered from
low to high, respectively, that is, 1,2, 3, 4, 5, which represent
reputation scores of the service. It is shown that if sim is
higher, then the difference between the factual value and the
advertised value of QoS is smaller and the reputation score is
higher and vice versa.

5. Implementation and Experiment

We choose Java-based open source platforms and tools
to implement the measurement tool. Axis provides better
support to call Java and Java-based service, so we use the Axis
to develop the client invoker part and deploy the simulation
Web service in Axis. For parsing and analyzing the WSDL
files we use the WSDLA4J library from SourceForge [5]. The
transformation from WSDL to Java classes is handled by the
Axis WSDL2Java tool. timeAspect code is implemented with
Aspect].

To demonstrate the validity of our approach, the follow-
ing three Web services are used as a sample in our experiment:

The Scientific World Journal

120
100

60
40

|

Response time (ms)

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

The number of invocations
—o— getWeatherInformation
—m— SendService
GlobalWeather

FIGURE 3: Global response time.

(1) getWeatherInformation: which allows you to get
your city forecast over the next 7 days and is updated hourly;
WSDL address is http://wsf.cdyne.com/WeatherWS/Weather
.asmx?WSDL; (2) SendService: methods to send SMS mess-
ages individually and in batches; WSDL address is http://
www.esendex.com/secure/ messenger/soap/SendService
.asmx?wsdl; (3) GlobalWeather: which gets country weather
information; WSDL address is http://www.webservicex.com/
globalweather.asmx?WSDL.

We invoked and monitored the mentioned services for
1000 times by using our tool, and then the factual QoS values
such as response time, availability, and accessibility can be
acquired. Figures 3-4 give changes of the global response time
and availability with the difference of the invoking times.
From the figure we can see that the global QoS values are
more stable by using two-time average method with the
increasing of the invoking times. In addition, Even if only 50
calls, we can still achieve good results. The experiment proved
that our QoS measurement tool is useful and the calculation
method of the global QoS is feasible; the global QoS value can
fully represent the factual QoS value.

Table 1 gives the similarity between the factual values and
the advertised values and shows the reputation level of the
three Web services. From this table, we can see that not only
our approach gives the reputation level objectively, but also
similarity can be used as a rank of Web service, which can be
useful to help service consumer select service.

6. Related Works

Artaiam and Senivongse [11] review a QoS model which
covers various dimensions of service quality (i.e., availability,
accessibility, performance, reliability, security, and regula-
tory) and propose metrics to enhance QoS measurement on
the service side. A monitoring tool is designed and developed
as an extension to Web services monitoring feature of Java
system application server under Sun’s Glass Fish project.
Chen et al. [I12] propose a novel trustable mechanism to
monitor and evaluate SLA compliance based on the AOP
paradigm. Authoritative monitoring aspects are supplied by
a trustable SLA manager and by weaving the aspects into
susceptible service runtime; service providers are ensured
to monitor and report their service status obligatorily and

100 -
95 |
—
S
g
2 90 4
=
E
= 85
g
< 80
75
L= R e R e B o R R o I o e e R =l == R il R R o R o R o)
nonownownown own o O N O wn o wno
— o AN NN N <FFN N O OININ0 0NN O
=

The number of invocations
—o— getWeatherInformation
—m— SendService
GlobalWeather

FIGURE 4: Global availability.

accurately. In contrast, our WS-QoS measurement tool is a
client tool and measures QoS values standing in the position
of customers.

Michlmayr et al. [9] present a framework that combines
the advantages of client and server side QoS monitoring. It
builds on event processing to inform interested subscribers
of current QoS values and possible violations of service
level agreements. Rosenberg et al. [13] present an evaluation
approach for QoS attributes of Web services, which works
completely on service and provider independently; it also
assesses performance of specific values (such as latency or
service processing time) that usually require access to the
server which hosts the service. Their approach is similar to
ours, but they omit a way to specify how QoS test parameters’
values are generated.

Nonintrusive monitoring [14-16] requires the establish-
ment of mechanisms for capturing runtime information on
service execution, for example, service operation calls and
responses. In this way, monitoring logic is responsible for
evaluation service QoS. This paper also employs aspect-
oriented programming to ensure monitoring aspect codes
separated from the service code. References [17-19] focus on
the provision of a QoS monitoring architecture and measure
QoS compliance in SOA infrastructures. Compared with our
work, it is not specified how QoS attributes are actually
measured.

Kalepu et al. [3] consider that the reputation of Web
service consists of user ranking, compliance, and verity.
They measure the consistency in service providers to deliver
the QoS level specified in their contracts, which has been
proposed as a metric to evaluate the reputation of Web
services. According to the paper’s proposal, we do an in-
depth study and provide the concrete implementation. Fu et
al. [2] design corresponding upper and lower QoS ontology
for computing QoS consistency of factual value with adver-
tised value automatically. The QoS consistency computing
algorithm supports hierarchical QoS item consistency com-
puting. Compared with our work, it is not specified how QoS
values are actually measured. Nianhua et al. [20] propose
a reputation evaluation algorithm for the new added Web
service based on the similarity theory. Similarities and trust

The Scientific World Journal

TABLE 1: Similarity and reputation level.

QoS attribute/service name getWeatherInformation SendService GlobalWeather
Adv_Response (ms) (30, 40) (40, 60) (80, 95)
Fac_Response (ms) 38.9 76.9 98.1 ms
Adv_Availability (98%, 100%) (80%, 90%) (90%, 100%)
Fac_Availability 97.2% 87.5% 94.8%
Adv_accessibility (80%, 100%) (85%, 90%) (90%, 100%)
Fac_accessibility 88.6% 82.4% 93%
Similarity 1 0.33 0.67
Reputation level 5 2 4

are used as weights for computing reputations from different ~ Acknowledgments

recommenders. Zhao et al. [21] propose a gradually adjusting
reputation evaluation method of Web services based on
eliminating the collusive behaviors of consumers step by
step, and a reputation-aware model for service selection is
designed. Unlike us, the reputation score is computed based
on subjective judgment of service users but not objective
measurement. Shao et al. [22] propose a similarity computing
algorithm for Web services and their consumers based on
Euclidean distance theory. Consumers’ similarities are used
as weights of indirect experiences. However, their similarity
computing algorithm is different from us and mainly used in
the QoS comparison between service providers and service
consumers. Josang et al. [23] combine Bayesian reputation
systems with a trust model for evaluating the quality of
service in a single framework. Nepal et al. [24] propose a fuzzy
trust evaluation approach for Web services. Both of them
pay attention to propose a trust and reputation management
framework for Web service selection.

7. Conclusions

This paper gives the factual QoS values by using our QoS
measurement tool, compares the similarity of the factual
QoS values and advertising QoS values, and completes the
impartiality and objective Web service reputation evaluation.
WS-QoS measurement tool is implemented by dynamically
invoking the Web services and weaving aspects code into
the Web service invoking code. Similarity is acquired by
comparing the advertising quality values and the global
quality values. According to the similarity, the reputation
level is ordered from low to high. By a set of experiments,
we prove the effectiveness and feasibility of the method. In
the future, we will consider improving the QoS measurement
tool, supporting more runtime data acquisition; furthermore,
we plan to research on the updating algorithms for trust and
reputations, making trustworthiness information reflect the
latest changes in service.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

The authors are pleased to acknowledge the support of the
National Natural Science Foundation of China under Grant
61103115 and the Key Project of Guangdong and Hong Kong
under Grant 2007A090601001. The authors are also grateful
to the anonymous referees for their insightful and valuable
comments and suggestions.

References

[1] K. Yue, X.-L. Wang, and A.-Y. Zhou, “Underlying techniques
for web services: a survey, Journal of Software, vol. 15, no. 3, pp.
428-442,2004.

[2] X. Fu, P. Zou, Y. Jiang, and Z. Shang, “QoS consistency as basis
of reputation measurement of web service,” in Proceedings of the
Ist International Symposium on Data, Privacy, and E-Commerce
(ISDPE °07), pp. 391-396, IEEE, November 2007.

[3] S. Kalepu, S. Krishnaswamy, and S. W. Loke, “Reputation =
f(user ranking, compliance, verity),” in Proceedings of the IEEE
International Conference on Web Services (ICWS *04), pp. 200-
207, July 2004.

[4] Web Services Description Language[EB/OL], http://www.w3
.org/TR/2001/NOTE-wsdl-20010315.

[5] Web Services Description Language for Java [EB/OL],
http://sourceforge.net/projects/wsdl4j/files/ WSDL4].

[6] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-based
automatic test case generation for Web Services testing,” in
Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE "05), pp. 207-212, October
2005.

[7] S. Hanna and M. Munro, “An approach for specification-based
test case generation for Web services,” in Proceedings of the
IEEE/ACS International Conference on Computer Systems and
Applications (AICCSA 07), pp. 16-23, May 2007.

[8] WSDL2Java (Apache-Axis) [EB/OL], http://cxf.apache.org/
docs/wsdl-to-java.html.

[9] A. Michlmayr, E Rosenberg, P. Leitner, and S. Dustdar, “Com-
prehensive QoS monitoring of Web services and event-based
SLA violation detection,” in Proceedings of the 4th Workshop on
Middleware for Service Oriented Computing (MW4SOC °09), pp.
1-6, December 2009.

[10] Eclipse Aspect] [EB/OL], http://www.eclipse.org/aspect;j/.

[11] N. Artajam and T. Senivongse, “Enhancing service-side QoS
monitoring for Web services,” in Proceedings of the 9th ACIS
International Conference on Software Engineering, Artificial

The Scientific World Journal

(16]

(17]

Intelligence, Networking and Parallel/Distributed Computing
(SNPD *08), pp. 765-770, IEEE, August 2008.

C. Chen, L. Li, and J. Wei, “AOP based trustable SLA compliance
monitoring for web services,” in Proceedings of the 7th Interna-
tional Conference on Quality Software (QSIC 07), pp. 225-230,
October 2007.

E Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping per-
formance and dependability attributes of Web services,” in Pro-
ceedings of the IEEE International Conference on Web Services
(ICWS °06), pp. 205-212, September 2006.

H. Foster and G. Spanoudakis, “Advanced service monitoring
configurations with SLA decomposition and selection,” in
Proceedings of the 26th Annual ACM Symposium on Applied
Computing (SAC 1), pp. 1582-1589, ACM, March 2011.

R. Kazhamiakin, M. Pistore, and A. Zengin, “Cross-layer adap-
tation and monitoring of service-based applications,” in Service-
Oriented Computing, vol. 6275 of Lecture Notes in Computer
Science, pp. 325-334, 2010.

W. M. P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and
E. Verbeek, “Conformance checking of service behavior, ACM
Transactions on Internet Technology, vol. 8, no. 3, article 13, 2008.
A. Wahl, A. Al-Moayed, and B. Hollunder, “An architecture to
measure QoS compliance in SOA infrastructures,” in Proceed-
ings of the 2nd International Conferences on Advanced Service
Computing, pp. 27-33, ThinkMind, November 2010.

M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour,
“Establishing and monitoring slas in complex service based
systems,” in Proceedings of the IEEE International Conference on
Web Services (ICWS "09), pp. 783-790, July 2009.

C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, and
A. Ruiz-Cortes, “SALMonADA: a platform for monitoring and
explaining violations of WS-agreement-compliant documents,”
in Proceedings of the ICSE Workshop on Principles of Engineering
Service Oriented Systems (PESOS ’12), pp. 43-49, IEEE, June
2012.

Y. Nianhua, C. Xin, and Y. Huiqun, “A reputation evaluation
technique for web services,” International Journal of Security
and Its Applications, vol. 6, no. 2, pp. 329-334, 2012.

S. Zhao, G. Wu, G. Chen, and H. Chen, “Reputation-aware
service selection based on QOS similarity;” Journal of Networks,
vol. 6, no. 7, pp. 950-957, 2011.

L.-S. Shao, L. Zhou, J.-E. Zhao, B. Xie, and H. Mei, “Web service
QoS prediction approach,” Journal of Software, vol. 20, no. 8, pp.
2062-2073, 2009.

A. Josang, T. Bhuiyan, Y. Xu, and C. Cox, “Combining trust
and reputation management for Web-based services,” in Trust,
Privacy and Security in Digital Business, vol. 5185 of Lecture
Notes in Computer Science, pp. 90-99, 2008.

S. Nepal, W. Sherchan, J. Hunklinger, and A. Bouguettaya,
“A fuzzy trust management framework for Service Web,” in
Proceedings of the 8th IEEE International Conference on Web
Services (ICWS ’10), pp. 321-328, July 2010.

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

