
Research Article
A One-Layer Recurrent Neural Network for Solving
Pseudoconvex Optimization with Box Set Constraints

Huaiqin Wu, Rong Yao, Ruoxia Li, and Xiaowei Zhang

Department of Applied Mathematics, Yanshan University, Qinhuangdao 066001, China

Correspondence should be addressed to Rong Yao; yaorong304@163.com

Received 5 December 2013; Accepted 18 January 2014; Published 27 February 2014

Academic Editor: Wei Bian

Copyright © 2014 Huaiqin Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A one-layer recurrent neural network is developed to solve pseudoconvex optimization with box constraints. Compared with
the existing neural networks for solving pseudoconvex optimization, the proposed neural network has a wider domain for
implementation. Based on Lyapunov stable theory, the proposed neural network is proved to be stable in the sense of Lyapunov. By
applying Clarke’s nonsmooth analysis technique, the finite-time state convergence to the feasible region defined by the constraint
conditions is also addressed. Illustrative examples further show the correctness of the theoretical results.

1. Introduction

It is well known that nonlinear optimization problems arise
in a broad variety of scientific and engineering applications
including optimal control, structure design, image and signal
progress, and robot control. Most of nonlinear programming
problems have a time-varying nature; they have to be solved
in real time. One promising approach to solve nonlinear
programming problems in real time is to employ recurrent
neural networks based on circuit implementation.

In the past two decades, neural networks for optimization
are studied massively and many good results are obtained in
the literature; see [1–19] and references therein. In particular,
Liang and Wang developed a recurrent neural network for
solving nonlinear optimization with a continuously differ-
entiable objective function and bound constraints in [4]. A
projection neural network was proposed for solving nondif-
ferentiable nonlinear programming problems by Xia et al.,
in [20]. In [9, 19], Xue and Bian developed a subgradient-
based neural network for solving nonsmooth convex or
nonconvex optimization problems with a nonsmooth convex
or nonconvex objective function.

It should be noticed tha, many nonlinear programming
problems can be formulated as nonconvex optimization
problems, and among nonconvex programming, as a special

case, pseudoconvex programmings are found to be more
prevalent than other nonconvex programming. Pseudocon-
vex optimization problem has many applications in prac-
tice, such as fractional programming, computer vision, and
production planning. Very recently, Liu et al. presented a
one-layer recurrent neural network for solving pseudoconvex
optimization subject to linear equality in [1]; Hu and Wang
proposed a recurrent neural network for solving pseudo-
convex variational inequalities in [10]. Qin et al. proposed
a new one-layer recurrent neural network for nonsmooth
pseudoconvex optimization in [21].

Motivated by the works above, our objective in this paper
is to develop a one-layer recurrent neural network for solving
pseudoconvex optimization problem subject to a box set.
The proposed network model is an improvement of the
neural network model presented in [10]. To the best of our
knowledge, there are few works treating of the pseudoconvex
optimization problem with a box set constraint.

For convenience, some notations are introduced as fol-
lows. R denotes the set of real numbers, R𝑛 denotes the 𝑛-
dimensional Euclidean space, andR𝑚×𝑛 denotes the set of all
𝑚 × 𝑛 real matrices. For any matrix 𝐴, 𝐴 > 0 (𝐴 < 0)means
that 𝐴 is a positive definite (negative definite). 𝐴−1 denotes
the inverse of 𝐴. 𝐴𝑇 denotes the transpose of 𝐴. 𝜆max(𝐴)
and 𝜆min(𝐴) denote the maximum and minimum eigenvalue
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of 𝐴, respectively. Given the vectors 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

, 𝑦 =

(𝑦
1
, . . . , 𝑦

𝑛
)
𝑇

∈ R𝑛, ‖𝑥‖ = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2, 𝑥𝑇𝑦 = ∑

𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
. ‖𝐴‖

denotes the 2-norm of 𝐴; that is, ‖𝐴‖ = √𝜆(𝐴
𝑇
𝐴), where

𝜆(𝐴
𝑇

𝐴) denotes the spectral radius of 𝐴𝑇𝐴. 𝑥̇(𝑡) denotes the
derivative of 𝑥(𝑡).

Given a set 𝐶 ⊂ R𝑛, 𝐾[𝐶] denotes the closure of the
convex hull of 𝐶.

Let 𝑉 : R𝑛 → R be a locally Lipschitz continuous func-
tion. Clarke’s generalized gradient of 𝑉 at 𝑥 is defined by

𝜕𝑉 (𝑥) = 𝐾[{ lim
𝑖→∞

∇𝑉 (𝑥
𝑖
) : lim
𝑖→∞

𝑥
𝑖
= 𝑥,

𝑥
𝑖
∈ R
𝑛

\ Ω
𝑉
∪M}] ,

(1)

where Ω
𝑉
⊂ R𝑛 is the set of Lebesgue measure zero, ∇𝑉

does not exist, andM ⊂ R𝑛 is an arbitrary set with measure
zero.The set-valuedmap𝐺(⋅) is said to have a closed (convex,
compact) image if for each 𝑥 ∈ 𝐸, 𝐺(𝑥) is closed (convex,
compact).

The remainder of this paper is organized as follows. In
Section 2, the related preliminary knowledge are given, and
the problem formulation and the neural network model are
described. In Section 3, the stability in the sense of Lyapunov
and finite-time convergence of the proposed neural network
is proved. In Section 4, illustrative examples are given to show
the effectiveness and the performance of the proposed neural
network. Some conclusions are drawn in Section 5.

2. Model Description and Preliminaries

In this section, a one-layer recurrent neural network model
is developed to solve pseudoconvex optimization with box
constraints. Some definitions and properties concerning the
set-valued map and nonsmooth analysis are also introduced.

Definition 1 (set-valued map). Suppose that to each point 𝑥
of a set 𝐸 ⊆ 𝑅

𝑛, there corresponds a nonempty set 𝐹(𝑥) ⊂ 𝑅𝑛.
Then 𝑥 → 𝐹(𝑥) is said to be a set-valued map from 𝐸 𝑡𝑜 𝑅

𝑛.

Definition 2 (locally Lipschitz function). A function 𝜙:𝑅𝑛 →
𝑅 is called Lipschitz near 𝑥

0
if and only if there exist 𝜀, 𝜖 > 0,

such that for any𝑥
1
, 𝑥
2
∈ 𝐵(𝑥

0
, 𝜖), satisfying ‖𝜙(𝑥

1
)−𝜙(𝑥

2
)‖ ≤

𝜀‖𝑥
1
− 𝑥
2
‖, where 𝐵(𝑥

0
, 𝜖) = {𝑥 : ‖𝑥 − 𝑥

0
‖ < 𝜖}. The function

𝜙:𝑅𝑛 → 𝑅 is said to be locally Lipschitz in𝑅𝑛 if it is Lipschitz
near any point 𝑥 ∈ 𝑅𝑛.

Definition 3 (regularity). A function 𝜙: 𝑅𝑛 → 𝑅, which is
locally Lipschitz near 𝑥 ∈ 𝑅𝑛, is said to be regular at 𝑥 if there
exists the one-sided directional derivative for any direction
V ∈ 𝑅

𝑛 which is given by 𝜙󸀠(𝑥; V) = lim
𝜉→0
+(𝜙(𝑥 + 𝜉 × V) −

𝜙(𝑥))/𝜉, and we have 𝜙0(𝑥; V) = 𝜙
󸀠

(𝑥; V). The function 𝜙 is
said to be regular in 𝑅𝑛 if it is regular for any 𝑥 ∈ 𝑅𝑛.

Definition 4. A regular function 𝑓 : 𝑅
𝑛

→ 𝑅 is said
to be pseudoconvex on a set Ω, if, for for all 𝑥, 𝑦 ∈

Ω, 𝑥 ̸= 𝑦, 𝛾(𝑥) ∈ 𝜕𝑓(𝑥), we have

𝛾(𝑥)
𝑇

(𝑦 − 𝑥) ≥ 0 󳨐⇒ 𝑓 (𝑦) ≥ 𝑓 (𝑥) . (2)

Definition 5. A function 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 is said to be

pseudomonotone on a set Ω, if, for all 𝑥, 𝑥󸀠 ∈ Ω, 𝑥 ̸= 𝑥
󸀠, we

have

𝐹(𝑥)
𝑇

(𝑥
󸀠

− 𝑥) ≥ 0 󳨐⇒ 𝐹(𝑥
󸀠

)

𝑇

(𝑥
󸀠

− 𝑥) ≥ 0. (3)

Consider the following optimization problem with box
set constraint:

min 𝑓 (𝑥) ,

subject to 𝑑 ≤ 𝐵𝑥 ≤ ℎ,

(4)

where 𝑥, 𝑑, ℎ ∈ 𝑅𝑛, and 𝐵 ∈ 𝑅𝑛×𝑛 is nonsingular.
Substituting 𝐵𝑥 with 𝑧, then the problem (4) can be

transformed into the following problem:

min 𝑓 (𝐵
−1

𝑧) ,

subject to 𝑑 ≤ 𝑧 ≤ ℎ.

(5)

Let

𝐷(𝑧) =

𝑛

∑

𝑖=1

𝑑 (𝑧
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛, (6)

where 𝑑(𝑧
𝑖
) is defined as

𝑑 (𝑧
𝑖
) =

{
{

{
{

{

𝑧
𝑖
− ℎ
𝑖
, 𝑧
𝑖
≥ ℎ
𝑖
,

0, 𝑑
𝑖
< 𝑧
𝑖
< ℎ
𝑖
,

𝑑
𝑖
− 𝑧
𝑖
, 𝑧
𝑖
≤ 𝑑
𝑖
.

(7)

Obviously, 𝑑(𝑧
𝑖
) ≥ 0 and𝐷(𝑧) ≥ 0.

Throughout this paper, the following assumptions on the
optimization problem (4) are made.

(A
1
) The objective function 𝑓(𝑥) of the problem (4) is
pseudoconvex and regular and locally Lipschitz con-
tinuous.

(A
2
) 𝜕𝑓(𝑥) is bounded; that is,

sup
𝛾(𝑥)∈𝜕𝑓(𝑥)

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝑙
𝑓
, (8)

where 𝑙
𝑓
> 0 is a constant.

In the following, we develop a one-layer recurrent neural
network for solving the problem (4). The dynamic equation
of the proposed neural network model is described by differ-
ential inclusion system:

𝑑𝑧

𝑑𝑡

∈ −𝜕𝑓 (𝐵
−1

𝑧) − 𝜇𝐾 [𝑔
[𝑑,ℎ]

] (𝑧) , (9)



Mathematical Problems in Engineering 3

𝜕f(B−1z)/𝜕z1

𝜕f(B−1z)/𝜕z2

𝜕f(B−1z)/𝜕zm

∑

∑

∑

∑

∑

∑

𝜇

𝜇

𝜇

−

−

−

−

−

−

−

−

−

h1

d1

h2

d2

hm

dm

Z1

Z2

Zm

...
...

...· · ·

∫

∫

∫

Figure 1: Architecture of the neural network model (9).

where 𝜇 is a nonnegative constant, 𝜕𝑓(𝐵−1𝑧) = 𝐵
−1

𝜕𝑓(𝑥),
and 𝑔

[𝑑,ℎ]
is a discontinuous function with its components

defined as

𝑔
𝑖[𝑑,ℎ]

(𝑠) =

{
{

{
{

{

1, 𝑠 > ℎ
𝑖
,

0, 𝑑
𝑖
< 𝑠 < ℎ

𝑖
,

−1, 𝑠 < 𝑑
𝑖
,

𝐾 [𝑔
𝑖[𝑑,ℎ]

] (𝑠) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1, 𝑠 > ℎ
𝑖
,

[0, 1] , 𝑠 = ℎ
𝑖
,

0, 𝑑
𝑖
< 𝑠 < ℎ

𝑖
,

[−1, 0] , 𝑠 = 𝑑
𝑖
,

−1, 𝑠 < 𝑑
𝑖
.

(10)

Architecture of the proposed neural network system model
(9) is depicted in Figure 1.

Definition 6. 𝑧 ∈ 𝑅𝑛 is said to be an equilibrium point of the
differential inclusion system (9) if

0 ∈ 𝐵
−1

𝜕𝑓 (𝑥) + 𝜇𝐾 [𝑔
[𝑑,ℎ]

] (𝑧) ; (11)

that is, there exist

𝛾 ∈ 𝜕𝑓 (𝑥) , 𝜉 ∈ 𝐾 [𝑔
[𝑑,ℎ]

] (𝑧) , (12)

such that

𝐵
−1

𝛾 + 𝜇𝜉 = 0, (13)

where 𝑥 = 𝐵−1𝑧.

Definition 7. A function 𝑧(⋅) : [0, 𝑇] → 𝑅
𝑛 is said to be a

solution of the system (9) with initial condition 𝑧(0) = 𝑧
0
,

if 𝑧(⋅) is absolutely continuous on [0, 𝑇], and for almost 𝑡 ∈
[0, 𝑇],

𝑑𝑧 (𝑡)

𝑑𝑡

∈ −𝜕𝑓 (𝐵
−1

𝑧 (𝑡)) − 𝜇𝐾 [𝑔
[𝑑,ℎ]

] (𝑧 (𝑡)) . (14)

Equivalently, there exists measurable functions 𝛾(𝑥) ∈ 𝜕𝑓(𝑥),
𝜉(𝑧) ∈ 𝐾[𝑔

[𝑑,ℎ]
](𝑧) such that

𝑧̇ (𝑡) = −𝐵
−1

𝛾 (𝐵
−1

𝑧 (𝑡)) − 𝜇𝜉 (𝑧 (𝑡)) . (15)
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Definition 8. Suppose that 𝐵 ⊂ 𝑅
𝑛 is a nonempty closed

convex set. The normal cone to the set 𝐵 at 𝑧 ∈ 𝐵 is defined
as𝑁
𝐵
(𝑧) = {V ∈ 𝑅𝑛 : V𝑇(𝑧 − 𝑦) ≥ 0, for all 𝑦 ∈ 𝐵}.

Lemma 9 (see [22]). If 𝜙
𝑖
: 𝑅
𝑛

→ 𝑅, 𝑖 = 1, 2, . . . , 𝑚, is
regular at 𝑥, then 𝜕(∑𝑚

𝑖=1
𝜙
𝑖
(𝑥)) = ∑

𝑚

𝑖=1
(𝜕𝜙
𝑖
(𝑥)).

Lemma 10 (see [22]). If 𝑉 : 𝑅
𝑛

→ 𝑅 is a regular function at
𝑥 and 𝑥(⋅) : 𝑅 → 𝑅

𝑛 is differentiable at 𝑡 and Lipschitz near 𝑡,
then 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 = ⟨𝜉, 𝑥̇(𝑡)⟩, for all 𝜉 ∈ 𝜕𝑉(𝑥(𝑡)).

Lemma 11 (see [22]). If 𝐵
1
, 𝐵
2
⊂ 𝑅
𝑛 are closed convex sets and

satisfy 0 ∈ int(𝐵
1
−𝐵
2
), then for any 𝑧 ∈ 𝐵

1
⋂𝐵
2
,𝑁
𝐵
1
⋂𝐵
2

(𝑧) =

𝑁
𝐵
1

(𝑧) + 𝑁
𝐵
2

(𝑧).

Lemma 12 (see [22]). If 𝑓 is locally Lipschitz near 𝑧 and
attains a minimum over Ω at 𝑧, then 0 ∈ 𝜕𝑓(𝑧) + 𝑁

Ω
(𝑧).

Set Ω = {𝑧 ∈ 𝑅
𝑛

: 𝑑 ≤ 𝑧 ≤ ℎ}. Let 𝑠 ∈ int(Ω); then there
exists a constant 𝑟 > 0, such that Ω ⊆ 𝐵(𝑠, 𝑟), where int(⋅)
denotes the interior of the setΩ, 𝐵(𝑠, 𝑟) = {𝑧 ∈ 𝑅𝑛 : ‖𝑧 − 𝑠‖ ≤
𝑟}. It is easy to verify the following lemma.

Lemma13. For any 𝑧 ∈ 𝑅𝑛\Ω and 𝜉 ∈ 𝐾[𝑔
[𝑑,ℎ]

](𝑧), (𝑧−𝑠)𝑇𝜉 >
𝜔, where 𝜔 = min

1≤𝑖≤𝑛
{ℎ
𝑖
− 𝑠
𝑖
, 𝑠
𝑖
−𝑑
𝑖
}, and 𝑠

𝑖
is the 𝑖th element

of 𝑠 ∈ intΩ.

3. Main Results

In this section, the main results concerned with the con-
vergence and optimality conditions of the proposed neural
network are addressed.

Theorem 14. Suppose that the assumptions (A
1
) and (A

2
)

hold. Let 𝑧
0
∈ 𝐵(𝑠, 𝑟). If 𝜇 > (𝑟𝑙

𝑓
/𝜔)‖𝐵

−1

‖, then the solution
𝑧(𝑡) of the network system (9) with initial condition 𝑧(0) = 𝑧

0

satisfies 𝑧(𝑡) ∈ 𝐵(𝑠, 𝑟).

Proof. Set

𝜌 (𝑡) =

1

2

‖𝑧(𝑡) − 𝑠‖
2

. (16)

By Lemma 10 and (15), evaluating the derivation of 𝜌(𝑡) along
the trajectory of the system (9) gives

𝑑𝜌 (𝑡)

𝑑𝑡

= 𝑧̇(𝑡)
𝑇

(𝑧 (𝑡) − 𝑠)

= [−𝐵
−1

𝛾 (𝑥 (𝑡)) − 𝜇𝜉 (𝑧 (𝑡))]

𝑇

(𝑧 (𝑡) − 𝑠)

= −[𝐵
−1

𝛾 (𝑥 (𝑡))]

𝑇

(𝑧 (𝑡) − 𝑠) − 𝜇𝜉(𝑧 (𝑡))
𝑇

(𝑧 (𝑡) − 𝑠)

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩
‖𝑧 (𝑡) − 𝑠‖

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑥 (𝑡))

󵄩
󵄩
󵄩
󵄩
− 𝜇(𝑧 (𝑡) − 𝑠)

𝑇

𝜉 (𝑧 (𝑡)) .

(17)

If 𝑧(𝑡) ∈ Ω, it follows directly that 𝑧(𝑡) ∈ 𝐵(𝑠, 𝑟). If 𝑧(𝑡) ∈
𝐵(𝑠, 𝑟) \ Ω, according to Lemma 13, one gets that (𝑧(𝑡) −
𝑠)
𝑇

𝜉(𝑧(𝑡)) > 𝜔. Thus, we have

𝑑𝜌 (𝑡)

𝑑𝑡

<

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩
‖𝑧 (𝑡) − 𝑠‖

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑥 (𝑡))

󵄩
󵄩
󵄩
󵄩
− 𝜇𝜔

≤ 𝑟𝑙
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩
− 𝜇𝜔.

(18)

If 𝜇 > (𝑟𝑙
𝑓
/𝜔)‖𝐵

−1

‖, then 𝑑𝜌(𝑡)/𝑑𝑡 < 0; this means that
𝑧(𝑡) ∈ 𝐵(𝑠, 𝑟). If not so, the state 𝑧(𝑡) leaves 𝐵(𝑠, 𝑟) at time
𝑡
1
, and when 𝑡 = 𝑡

1
, we have ‖𝑧(𝑡

1
) − 𝑠‖ = 𝑟. This implies that

(𝑑𝜌(𝑡)/𝑑𝑡)|
𝑡=𝑡
1

≥ 0, which is the contradiction.
As a result, if 𝜇 > (𝑟𝑙

𝑓
/𝜔)‖𝐵

−1

‖, for any 𝑧
0
∈ 𝐵(𝑠, 𝑟),

the state 𝑧(𝑡) of the network system (9) with initial condition
𝑧(0) = 𝑧

0
satisfies 𝑧(𝑡) ∈ 𝐵(𝑠, 𝑟). This completes the proof.

Theorem 15. Suppose that assumptions (A
1
) and (A

2
) hold. If

𝜇 > 𝑙
𝑓
‖𝐵
−1

‖, then the solution of neural network system (9)
with initial condition 𝑧(0) = 𝑧

0
∈ 𝐵(𝑠, 𝑟) converges to the

feasible region Ω in finite time 𝑇, where 𝑇 = 𝑡
∗
= 𝐷(𝑧(0)) /

√𝑛(𝜇 − 𝑙
𝑓
‖𝐵
−1

‖), and stays thereafter.

Proof. According to the definition of 𝐷(𝑧), 𝐷(𝑧) is a convex
function in 𝑅𝑛. By Lemma 10, it follows that

𝑑𝐷 (𝑧)

𝑑𝑡

= 𝜁
𝑇

(𝑡)

𝑑𝑧 (𝑡)

𝑑𝑡

, ∀𝜁 (𝑡) ∈ 𝜕𝐷 (𝑧) . (19)

Noting that 𝜕𝐷(𝑧) = 𝐾[𝑔
[𝑑,ℎ]

](𝑧), we can obtain by (19) that
for all 𝑧 ∈ 𝐵(𝑠, 𝑟) \ Ω, ∃ 𝛾(𝑥) ∈ 𝜕𝑓(𝑥), and 𝜉(𝑡) ∈ 𝐾[𝑔

[𝑑,ℎ]
](𝑧)

such that

𝑑𝐷 (𝑧)

𝑑𝑡

= 𝜉
𝑇

(𝑡) 𝑧̇ (𝑡)

= 𝜉
𝑇

(𝑡) (−𝐵
−1

𝛾 (𝑥) − 𝜇𝜉 (𝑡))

= −𝜉
𝑇

(𝑡) 𝐵
−1

𝛾 (𝑥) − 𝜇
󵄩
󵄩
󵄩
󵄩
𝜉 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝜉 (𝑡)

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑥)

󵄩
󵄩
󵄩
󵄩
− 𝜇

󵄩
󵄩
󵄩
󵄩
𝜉 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝜉 (𝑡)

󵄩
󵄩
󵄩
󵄩
[

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝛾 (𝑥)

󵄩
󵄩
󵄩
󵄩
− 𝜇

󵄩
󵄩
󵄩
󵄩
𝜉 (𝑡)

󵄩
󵄩
󵄩
󵄩
] .

(20)

Since 𝑧 ∈ 𝑅𝑛 \Ω and 𝜉(𝑡) ∈ 𝐾[𝑔
[𝑑,ℎ]

](𝑧), there at least is one of
the components of 𝜉(𝑡)which is −1 or 1. So ‖𝜉(𝑡)‖ ≥ 1. Noting
that ‖𝜉(𝑡)‖ ≤ √𝑛, we have

𝑑𝐷 (𝑧)

𝑑𝑡

≤ √𝑛 [𝑙
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1
󵄩
󵄩
󵄩
󵄩
󵄩
− 𝜇] . (21)

Let 𝛼 = √𝑛(𝜇 − 𝑙
𝑓
‖𝐵
−1

‖). If 𝜇 > 𝑙
𝑓
‖𝐵
−1

‖, then 𝛼 > 0, and

𝑑𝐷 (𝑧)

𝑑𝑡

≤ −𝛼. (22)

Integrating (22) from 0 to 𝑡, we can obtain

𝐷(𝑧 (𝑡)) ≤ 𝐷 (𝑧 (0)) − 𝛼𝑡. (23)
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Let 𝑡
∗
= (1/𝛼)𝐷(𝑧(0)). By (23),𝐷(𝑧(𝑡

∗
)) = 0; that is, 𝑧

𝑖
(𝑡
∗
) =

ℎ
𝑖
or 𝑧
𝑖
(𝑡
∗
) = 𝑑
𝑖
. This shows that the state trajectory of neural

network (9) with initial condition 𝑧(0) = 𝑧
0
reaches Ω in

finite time 𝑇 = 𝑡
∗
= 𝐷(𝑧(0))/√𝑛(𝜇 − 𝑙

𝑓
‖𝐵
−1

‖).
Next, we prove that when 𝑡 ≥ 𝑡

∗
, the trajectory stays inΩ

after reaching Ω. If this is not true, then there exists 𝑡
1
> 𝑡
∗

such that the trajectory leavesΩ at 𝑡
1
, and there exists 𝑡

2
> 𝑡
1

such that for 𝑡 ∈ (𝑡
1
, 𝑡
2
), 𝑧(𝑡) ∈ 𝑅𝑛 \ Ω.

By integrating (22) from 𝑡
1
to 𝑡
2
, it follows that

∫

𝑡
2

𝑡
1

𝑑𝐷 (𝑧 (𝑡))

𝑑𝑡

𝑑𝑡 = 𝐷 (𝑧 (𝑡
2
)) − 𝐷 (𝑧 (𝑡

1
))

≤ −𝛼 (𝑡
2
− 𝑡
1
) < 0.

(24)

Due to 𝐷(𝑧(𝑡
1
)) = 0, 𝐷(𝑧(𝑡

2
)) < 0. By the definition of

𝐷(𝑧(𝑡)), 𝐷(𝑧(𝑡)) ≥ 0 for any 𝑡 ∈ [0,∞], which contradicts
the result above. The proof is completed.

Theorem 16. Suppose that assumptions (A
1
) and (A

2
) hold. If

𝜇 > max{𝑙
𝑓
‖𝐵
−1

‖, (𝑟𝑙
𝑓
/𝜔)‖𝐵

−1

‖}, then the equilibrium point
of the neural network system (9) is an optimal solution of the
problem (4) and vice versa.

Proof. Denote 𝑧
∗ as an equilibrium point of the neural

network system (9); then there exist 𝛾∗ ∈ 𝜕𝑓(𝑥
∗

), 𝜉∗ ∈

𝐾[𝑔
[𝑑,ℎ]

](𝑧
∗

) such that

𝐵
−1

𝛾
∗

+ 𝜇𝜉
∗

= 0, (25)

where 𝛾∗ = 𝐵−1𝑧∗. By Theorem 15, 𝑧∗ ∈ Ω; hence, 𝜉∗ = 0. By
(25), 𝛾∗ = 0.We can get the following projection formulation:

𝑧
∗

= 𝜙
[𝑑,ℎ]

(𝑧
∗

− 𝐵
−1

𝛾
∗

) , (26)

where 𝜙
[𝑑,ℎ]

= (𝜙
[𝑑
1
,ℎ
1
]
(𝑦
1
), . . . , 𝜙

[𝑑
𝑛
,ℎ
𝑛
]
(𝑦
𝑛
)) with 𝜙

[𝑑
𝑖
,ℎ
𝑖
]
(𝑦
𝑖
),

𝑖 = 1, . . . , 𝑛, defined as

𝜙
[𝑑
𝑖
,ℎ
𝑖
]
(𝑦
𝑖
) =

{
{

{
{

{

ℎ
𝑖
, 𝑦
𝑖
≥ ℎ
𝑖
,

𝑦
𝑖
, 𝑑
𝑖
< 𝑦
𝑖
< ℎ
𝑖
,

𝑑
𝑖
, 𝑦
𝑖
≤ 𝑑
𝑖
.

(27)

By the well-known projection theorem [17], (26) is equivalent
to the following variational inequality:

(𝐵
−1

𝛾
∗

)

𝑇

(𝑧 − 𝑧
∗

) ≥ 0, ∀𝑧 ∈ Ω. (28)

Since 𝑓(𝑥) is pseudoconvex, 𝑓(𝐵−1𝑧) is pseudoconvex on Ω.
By (28), we can obtain that 𝑓(𝐵−1𝑧) ≥ 𝑓(𝐵

−1

𝑧
∗

). This shows
that 𝑧∗ is a minimum point of 𝑓(𝐵−1𝑧) overΩ.

Next, we prove the reverse side. Denote 𝑧∗ as an optimal
solution of the problem, then 𝑧

∗

∈ [𝑑, ℎ]. Since 𝑧
∗ is

a minimum point of 𝑓(𝐵−1𝑧) over the feasible region Ω,
according to Lemma 12, it follows that

0 ∈ 𝜕𝑓 (𝐵
−1

𝑧
∗

) + 𝑁
Ω
(𝑧
∗

) . (29)

From (29), it follows that there exist 𝜂∗ ∈ 𝑁
Ω
(𝑧
∗

), 𝐵−1𝛾∗ =
−𝜂
∗

∈ 𝐵
−1

𝜕𝑓(𝑥
∗

), and ‖𝜂∗‖ ≤ 𝑙
𝑓
‖𝐵
−1

‖. Noting that𝑁
Ω
(𝑧
∗

) =

{V𝜉∗ : V ≥ 0, 𝜉
∗

∈ 𝐾[𝑔
[𝑑,ℎ]

](𝑧
∗

), and at least one 𝜉∗
𝑖
is 1

or − 1}, there exist 𝛽 ≥ 0 and 𝜉∗ ∈ 𝐾[𝑔
[𝑑,ℎ]

](𝑧
∗

) such that
𝛽𝜉
∗

∈ 𝑁
Ω
(𝑧
∗

), and 𝜂∗ = 𝛽𝜉∗.
In the following, we prove that 𝜂∗ ∈ 𝜇𝐾[𝑔

[𝑑,ℎ]
](𝑧
∗

). We
say that𝛽 ≤ 𝜇. If not, then𝛽 > 𝜇. Since (𝑧∗−𝑠)𝑇𝜉∗ = ∑𝑛

𝑖=1
(𝑧
∗

𝑖
−

𝑠
𝑖
)𝜉
𝑖
≥ 𝜔, we have

(𝑧
∗

− 𝑠)
𝑇

𝜂
∗

= 𝛽(𝑧
∗

− 𝑠)
𝑇

𝜉
∗

≥ 𝜔𝛽 ≥ 𝜇𝜔. (30)

Thus ‖𝜂∗‖ ≥ 𝜇𝜔/‖𝑧
∗

− 𝑠‖ > 𝜇𝜔/𝑟. By the condition of
Theorem 16, 𝜇 > max(𝑙

𝑓
‖𝐵
−1

‖, (𝑟𝑙
𝑓
/𝜔)‖𝐵

−1

‖). Hence, ‖𝜂‖ >
𝑙
𝑓
‖𝐵
−1

‖, which contradicts with ‖𝜂‖
2
≤ 𝑙
𝑓
‖𝐵
−1

‖. This implies
that 𝛽𝜉∗ ∈ 𝜇𝐾[𝑔

[𝑑,ℎ]
](𝑧
∗

); that is, 0 ∈ 𝜕𝐹(𝑧∗)+𝜇𝐾[𝑔
[𝑑,ℎ]

](𝑧
∗

)

which means that 𝑧∗ is the equilibrium point of neural
network system (9). This completes the proof.

Theorem 17. Suppose that assumptions (A
1
) and (A

2
) hold. If

𝜇 > max{𝑙
𝑓
‖𝐵
−1

‖, (𝑟𝑙
𝑓
/𝜔)‖𝐵

−1

‖}, then the equilibrium point of
the neural network system (9) is stable in the sense of Lyapunov.

Proof. Denote 𝑧
∗ as an equilibrium point of the neural

network system (9); that is,

0 ∈ 𝜕𝐹 (𝑧
∗

) + 𝜇𝐾 [𝑔
[𝑑,ℎ]

(𝑧
∗

)] . (31)

By Theorem 16, we get that 𝑧∗ is an optimal solution of
the problem (4); that is, 𝑓(𝐵−1𝑧) ≥ 𝑓(𝐵

−1

𝑧
∗

), 𝑧 ∈ Ω. By
Theorem 15, the trajectory 𝑧(𝑡) with initial condition 𝑧(0) =
𝑧
0
∈ 𝐵(𝑠, 𝑟) converges to the feasible region Ω in finite time

𝑇 = 𝑡
∗
= 𝐷(𝑧(0))/√𝑛(𝜇 − 𝑙

𝑓
‖𝐵
−1

‖) and will remain in Ω

forever. That is, for all 𝑡 ≥ 𝑡∗, 𝑧(𝑡) ∈ Ω. Let

𝑉
1
(𝑧) = 𝑓 (𝐵

−1

𝑧) + 𝜇𝐷 (𝑧) . (32)

Since 𝑧∗ is a minimum point of𝑓(𝐵−1𝑧) onΩ, we can get that
𝑉
1
(𝑧) ≥ 𝑉

1
(𝑧
∗

), for all 𝑧 ∈ Ω.
Consider the following Lyapunov function:

𝑉 (𝑧) = 𝑉
1
(𝑧) − 𝑉

1
(𝑧
∗

) +

1

2

󵄩
󵄩
󵄩
󵄩
𝑧 − 𝑧
∗󵄩
󵄩
󵄩
󵄩

2

. (33)

Obviously, from (33), 𝑉(𝑧) ≥ (1/2)‖𝑧 − 𝑧∗‖2, and

𝜕𝑉 (𝑧) = 𝜕𝑉
1
(𝑧) + 𝑧 − 𝑧

∗

. (34)

Evaluating the derivation of 𝑉 along the trajectory of the
system (9) gives

𝑑𝑉 (𝑧 (𝑡))

𝑑𝑡

= 𝜉
𝑇

(𝑡)

𝑑𝑧 (𝑡)

𝑑𝑡

, ∀𝜉 (𝑡) ∈ 𝜕𝑉 (𝑧 (𝑡)) . (35)

Since 𝑧̇(𝑡) ∈ −𝜕𝑉
1
(𝑧(𝑡)), by (34), we can set 𝜉(𝑡) = −𝑧̇(𝑡) + 𝑧 −

𝑧
∗. Hence,
𝑑𝑉 (𝑧 (𝑡))

𝑑𝑡

= (−𝑧̇ (𝑡) + 𝑧 − 𝑧
∗

)
𝑇

𝑧̇ (𝑡)

= −‖𝑧̇ (𝑡)‖
2

+ (𝑧 − 𝑧
∗

) 𝑧̇ (𝑡)

≤ sup
𝜃∈𝜕𝑉
1
(𝑧)

(−‖𝜃‖
2

) + sup
𝜃∈𝜕𝑉
1
(𝑧)

[−(𝑧 − 𝑧
∗

)
𝑇

𝜃]

= − inf
𝜃∈𝜕𝑉
1
(𝑧)

(‖𝜃‖
2

) − inf
𝜃∈𝜕𝑉
1
(𝑧)

(𝑧 − 𝑧
∗

)
𝑇

𝜃.

(36)
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For any 𝜃 ∈ 𝜕𝑉
1
(𝑧), there exists 𝛾 ∈ 𝜕𝑓(𝑥), 𝜉 ∈ 𝐾[𝑔

[𝑑,ℎ]
](𝑧)

such that 𝜃 = 𝐵
−1

𝛾 + 𝜇𝜉. Since 𝑓(𝑥) is pseudoconvex
on Ω, 𝜕𝑓(𝑥) is pseudomonotone on Ω. From the proof of
Theorem 16, for any 𝑧 ∈ Ω, (𝑧 − 𝑧

∗

)
𝑇

𝐵
−1

𝛾 ≥ 0. By the
definition of 𝑔

[𝑑,ℎ]
(𝑧), (𝑧 − 𝑧∗)𝑇𝜉 ≥ 0. Hence, (𝑧 − 𝑧∗)𝑇𝜃 ≥ 0.

This implies that

𝑑𝑉 (𝑧 (𝑡))

𝑑𝑡

≤ − inf
𝜃∈𝜕𝑉
1
(𝑧)

‖𝜃‖
2

≤ 0. (37)

Equation (37) shows that the neural network system (9) is
stable in the sense of Lyapunov. The proof is complete.

4. Numerical Examples

In this section, two examples will be given to illustrate the
effectiveness of the proposed approach for solving the pseu-
doconvex optimization problem.

Example 1. Consider the quadratic fractional optimization
problem:

min 𝑓 (𝑥) =

𝑥
𝑇

𝑄𝑥 + 𝑎
𝑇

𝑥 + 𝑎
0

𝑐
𝑇
𝑥 + 𝑐
0

,

subject to 𝑑 ≤ 𝐵𝑥 ≤ ℎ,

(38)

where𝑄 is an 𝑛 × 𝑛matrix, 𝑎, 𝑐 ∈ 𝑅𝑛, and 𝑎
0
, 𝑐
0
∈ 𝑅. Here, we

choose 𝑛 = 3,

𝑄 = (

5 −1 2

−1 5 −1

2 −1 3

) , 𝐵 = (

2 1 1

11 −16 11

11 −92 −10

) ,

𝑎 = (

1

−2

−2

) , 𝑐 = (

2

1

−1

) , 𝑑 = (

−2

−1

−6

) ,

ℎ = (

2

2

6

) , 𝑎
0
= −2, 𝑐

0
= 4.

(39)

It is easily verified that 𝑄 is symmetric and positive
definite and consequently is pseudoconvex onΩ = {𝑑 ≤ 𝐵𝑥 ≤

ℎ}. The proposed neural network in (9) is capable of solving
this problem.Obviously, neural network (9) associated to (38)
can be described as

𝐵𝑥̇ (𝑡) = −𝐵
−1

∇𝑓 (𝑥) − 𝜇𝜉 (𝐵𝑥 (𝑡)) , (40)

where

∇𝑓 (𝑥) =

2𝑄𝑥 + 𝑎

𝑐
𝑇
𝑥 + 𝑐
0

−

𝑥
𝑇

𝑄𝑥 + 𝑎
𝑇

𝑥 + 𝑎
0

(𝑐
𝑇
𝑥 + 𝑐
0
)
2

𝑐,

𝜉 (𝐵𝑥 (𝑡)) ∈ 𝐾 [𝑔
[𝑑,ℎ]

] (𝐵𝑥 (𝑡)) .

(41)

Let 𝑥 = {−1, −1, −1}, 𝑠 = 𝐵𝑥 ∈ int(Ω), then we have
𝜔 = 3. Moreover, the restricted region [𝑑, ℎ] ⊂ 𝐵(𝑠, 𝑟) with
𝑟 = 2√3. An upper bound of 𝜕𝑓(𝑥) is estimated as 𝑙

𝑓
= 3.

0 5 10 15

0

1

2

−1

−2

t

x1[t]

x2[t]

x3[t]

Figure 2: Time-domain behavior of the state variables 𝑥
1
, 𝑥
2
, and

𝑥
3
with initial point 𝑥

0
= (0, 0, 0.3).

0 5 10 15

0

1

2

3

−1

−2

t

x1[t]

x2[t]

x3[t]

Figure 3: Time-domain behavior of the state variables 𝑥
1
, 𝑥
2
, and

𝑥
3
with initial point 𝑥

0
= (−0.2, 0, 0.4).

Then the designed parameter 𝜇 is estimated as 𝜇 > 10.32. Let
𝜇 = 11 in the simulation.

We have simulated the dynamical behavior of the neural
network by using the mathematical software when 𝜇 = 11.
Figures 2, 3, and 4 display the state trajectories of this neural
network with different initial values, which shows that the
state variables converge to the feasible region in finite time.
This is in accordance with the conclusion of Theorem 15.
Meanwhile, it can be seen that the trajectory is stable in the
sense of Lyapunov.

Example 2. Consider the following pseudoconvex optimiza-
tion:

min 𝑓 (𝑥) = (𝑥
1
− 𝑥
3
)
2

+ (𝑥
2
− 𝑥
3
)
2

,

subject to 𝑑 ≤ 𝐵𝑥 ≤ ℎ,

(42)
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0 5 10 15 20 25 30

0

1
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3

−1
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t

x1[t]

x2[t]

x3[t]

Figure 4: Time-domain behavior of the state variables 𝑥
1
, 𝑥
2
, and

𝑥
3
with initial point 𝑥

0
= (0.1, 0, 0.3).

where

𝐵 = (

1 2 6

0 1 2

2 3 1

) , 𝑑 = (

1

1

3

) , ℎ = (

2

4

5

) . (43)

In this problem, the objective function 𝑓(𝑥) is pseudo-
convex.Thus the proposed neural network is suitable for solv-
ing the problem in this case. Neural network (9) associated to
(42) can be described as

𝐵𝑥̇ (𝑡) = −𝐵
−1

∇𝑓 (𝑥) − 𝜇𝜉 (𝐵𝑥 (𝑡)) , (44)

where

∇𝑓 (𝑥) = (

2 (𝑥
1
− 𝑥
3
)

2 (𝑥
2
− 𝑥
3
)

−2 (𝑥
1
+ 𝑥
2
− 2𝑥
3
)

) ,

𝜉 (𝐵𝑥 (𝑡)) ∈ 𝐾 [𝑔
[𝑑,ℎ]

] (𝐵𝑥 (𝑡)) .

(45)

Let 𝑥 = {0, 1, 0}, 𝑠 = 𝐵𝑥 ∈ int(Ω); then we have 𝜔 = 2.
Moreover, the restricted region [𝑑, ℎ] ⊂ 𝐵(𝑠, 𝑟) with 𝑟 = √13.
An upper bound of 𝜕𝑓(𝑥) is estimated as 𝑙

𝑓
= 4√6. Then the

designed parameter 𝜇 is estimated as 𝜇 > 29.4. Let 𝜇 = 30 in
the simulation.

Figures 5 and 6 display the state trajectories of this neural
network with different initial values. It can be seen that these
trajectories converge to the feasible region in finite time as
well.This is in accordance with the conclusion ofTheorem 15.
It can be verified that the trajectory is stable in the sense of
Lyapunov.

5. Conclusion

In this paper, a one-layer recurrent neural network has
been presented for solving pseudoconvex optimization with
box constraint. The neural network system model has been
described with a differential inclusion system. The con-
structed recurrent neural network has been proved to be
stable in the sense of Lyapunov.The conditions which ensure
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the finite time state convergence to the feasible region have
been obtained. The proposed neural network can be used in
a wide variety to solve a lot of optimization problem in the
engineering application.
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