
Research Article
Date Attachable Offline Electronic Cash Scheme

Chun-I Fan, Wei-Zhe Sun, and Hoi-Tung Hau

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

Correspondence should be addressed to Chun-I Fan; cifan@faculty.nsysu.edu.tw

Received 15 January 2014; Accepted 26 February 2014; Published 18 May 2014

Academic Editors: T. Cao, M. Ivanovic, and F. Yu

Copyright © 2014 Chun-I Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Electronic cash (e-cash) is definitely one of the most popular research topics in the e-commerce field. It is very important that
e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types
of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used
to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with
date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash
simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited
growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the
future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are
anonymity control, unforgeability, conditional-traceability, and no-swindling.

1. Introduction

Due to the rapid growth of the Internet and communication
developments, electronic commerce has become much more
popular andwidely used than ever [1–8].Themobile telecom-
munications have been developed from 2G to 3.5 G. Further-
more, LTE Advanced, 4G, and 5G are being implemented to
the market in recent years. With the convenience of mobile
network, people can do shopping or electronic payments by
using any devices with network capability instead of leaving
home. As a result, electronic commerce has been emphasized
nowadays. Electronic cash (e-cash) is definitely one of the
most popular research topics among electronic commerce.
E-cash and the traditional cash notes are very much alike
except e-cash is digitized and used on Internet transactions;
therefore, it is very important that e-cash be able to hold the
accuracy, privacy, and all other security concerns.

A typical e-cash system usually consists of payers (cus-
tomers), payees (shops), and a bank. There are two types of
e-cash in general which are online e-cash [9–13] and offline
e-cash [14–27]. Online e-cash system involves participation
of the bank during transactions (the payment stage). Banks
are able to check whether customers have double-spent the e-
cash(s) or not, and if yes, banks can terminate the transactions
at once. Thus, the bank has to be online during every

transaction and it may lead to a bottleneck of the system. On
the other hand, while banks do not participate in the payment
stage of offline e-cash systems, double-spending check is only
held during the deposit stage. Yet, the bank is set to be offline,
but the system design is usually muchmore complicated than
the online type and it may lead to a longer transaction time.
Since both systems have their own pros and cons, they are
used under different circumstances.

Extending online and offline e-cash systems, many e-cash
schemes with other different features have been proposed
over the years. For instance, e-cash can be stored compactly
such that the space to store these e-cash is much reduced
[15, 16], e-cash is generated by multiauthorities instead of one
bank only [25], exact payments e-cash [13], recoverable e-cash
which can be recoveredwhen an e-cash is lost [26], and so on.

Based on the majority of the existing approaches, we
summarize that a secure e-cash system should satisfy the
following requirements.

(i) Anonymity: no one, except the judge, can obtain any
information of the e-cash owner’s identity from the
contents of e-cash.

(ii) Unlinkability: no one, except the judge, can link any
e-cash payment contents.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 216973, 19 pages
http://dx.doi.org/10.1155/2014/216973

2 The Scientific World Journal

(iii) Unforgeability: no one, except the bank, can generate
a legal e-cash.

(iv) Double-Spending Control: banks should have the
ability to check if the e-cash is double-spent or not.
No e-cash is allowed to be spent twice or more in an
e-cash system.

(v) Conditional-Traceability: the system should be able to
trace and revoke the anonymity of users who violate
any of the security rules so that they will receive
penalties.

(vi) No-swindling: no one, except the real owner, can
spend a valid offline e-cash successfully.

In order to perform double-spending checks, banks have
to store information of e-cash(s) in their database. Thus, the
database of banks grows in direct proportion to the number
of e-cash(s) withdrawn. Embedding an expiration date into
each e-cash has been considered since it helps the banks
to manage the database more easily. On the other hand,
customers have to exchange their expired e-cash(s) with
banks for new ones so as to keep the validity of the e-cash.
Furthermore, customers will receive interest from banks after
cash is deposited. In order to guarantee customers will receive
the right amount of interest, it is necessary for customers to
attach the deposit date to their e-cash(s) and the date cannot
be modified by anyone else [11]. So far, there are a number
of online e-cash schemes with an expiration date attachment
[9, 11, 28]. However, there are very few offline approaches [21].

In this paper, we are going to propose an efficient date
attachable offline e-cash scheme and provide formal proofs
on essential properties to it in the random oracle model.
Considering the practical needs, we pioneer to embed two
kinds of date, which are expiration data and deposit date, to
the offline e-cash. Moreover, we will offer an E-cash renewal
protocol in our scheme (Section 3.2.5). Users can exchange
their unused expired e-cash for a new one with another valid
expiration datemore efficiently. Comparedwith other similar
works, our scheme is efficient from the aspect of considering
computation cost.

The rest of this paper is organized as follows. In
Section 2, we briefly review techniques employed through-
out our scheme. Our proposed scheme is described in
Section 3 in detail. Security proofs and analysis are covered in
Section 4. Features and performance comparisons are made
in Section 5, and the conclusion is given in Section 6.

2. Preliminaries

In this section, we briefly review techniques used in our date
attachable offline e-cash scheme.

2.1. Chaum’s Blind Signature Scheme. Blind signaturewas first
introduced by Chaum [29]. It has been widely used in e-cash
protocols since it has been proposed. A signer will not be able
to view the content of the message while she/he is signing
the message. Afterwards, a user can get a message with the
signature of the signer by unblinding the signedmessage.The
protocol is described as follows.

(1) Initialization:
The signer randomly chooses two distinct large
primes 𝑝 and 𝑞, then computes 𝑛 = 𝑝𝑞 and
𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1). Afterwards, the signer selects
two integers 𝑒 and 𝑑 at random such that 𝑒𝑑 ≡

1(mod 𝜙(𝑛)). Finally, the signer publishes the public
parameters (𝑒, 𝑛) and a one-way hash function𝐻.

(2) User → Signer: 𝛼
The user chooses a message 𝑚 and a random integer
𝑟 in Z∗

𝑛
, then blinds the message by computing 𝛼 =

𝑟
𝑒

𝐻(𝑚)mod 𝑛 and sends it to the signer.

(3) Signer → User: 𝑡
After receiving 𝛼, the signer signs it with her/his
private key 𝑑 and sends it back to the user.The signed
message will be 𝑡 = 𝛼

𝑑 mod 𝑛.

(4) Unblinding:
After receiving 𝑡 from the signer, the user unblinds it
by computing 𝑠 = 𝑟

−1

𝑡mod 𝑛. The signature-message
pair is (𝑠, 𝑚).

(5) Verification:
The (𝑠, 𝑚) can be verified by checking if 𝑠𝑒 ≡ 𝐻(𝑚)

(mod 𝑛) is true or not.

2.2. Chameleon Hashing Based on Discrete Logarithm.
Chameleon hashing was proposed by Krawczyk and Rabin
[30]. The chameleon hash function is associated with a one-
time public-private key pair; it is a collision resistant function
except for users who own a trapdoor for finding collision.
Any user who knows the public key can compute the hashing,
and for those who do not know the private key (trapdoor),
it is impossible for them to find any two inputs which lead
to the same hashing output. On the contrary, any user who
knows the trapdoor can find the collision of given inputs.
The construction of the chameleon hashing based on discrete
logarithm is described as follows.

(1) Setup:

(i) 𝑝, 𝑞: two large primes such that 𝑝 = 𝑘𝑞 + 1,
(ii) 𝑔: an element order 𝑞 in Z∗

𝑝
,

(iii) 𝑥: private key in Z∗

𝑞
,

(iv) 𝑦: public key, where 𝑦 = 𝑔
𝑥 mod 𝑝.

(2) The function: a message 𝑚 ∈ Z∗

𝑞
is given and a

random integer 𝑟 ∈ Z∗

𝑞
is chosen. The hash is defined

as cham-hash
𝑦
(𝑚, 𝑟) = 𝑔

𝑚

𝑦
𝑟 mod 𝑝.

(3) Collision: for a user who knows 𝑥, she/he is able to
find the collision of the hash for any given 𝑚, 𝑚󸀠

such that cham-hash
𝑦
(𝑚, 𝑟) = cham-hash

𝑦
(𝑚

󸀠

, 𝑟
󸀠

).
The user derives 𝑟

󸀠 in the equation 𝑚 + 𝑥𝑟 = 𝑚
󸀠 +

𝑥𝑟
󸀠 (mod 𝑞).

The Scientific World Journal 3

3. The Proposed Date Attachable Offline
Electronic Cash Scheme

In this section, we will introduce a new date attachable
offline e-cash scheme. Considering the issues mentioned in
Section 1, we propose a secure offline e-cash scheme with
two specific kinds of date attached to the e-cash, which are
expiration date and deposit date.

3.1. Outline of the Proposed Scheme. Here we are going to
briefly describe the procedures of our scheme. The proposed
scheme contains four protocols, withdrawal protocol, pay-
ment protocol, deposit protocol, and e-cash renewal protocol.
A user withdraws an e-cash with an expiration date attached
to it from the bank. A trusted computing platform (i.e.,
judge device) [31, 32], as stated in the proposed scheme, is
installed in the bank to hold the identity information of all
users and it will further help trace users when it is needed.
It is impossible for anyone except the judge to obtain any
information embedded in the device [33]. Nowadays, judge
device can be implemented by the technique of Trusted
Platform Module (TPM) [32, 34] in practice.

Before an e-cash is deposited, the depositor attaches the
deposit date on the e-cash and sends it to the bank during
the deposit stage. When the bank receives an e-cash, it will
perform double-spending checking to verify whether the e-
cash is doubly spent or not. The bank can derive secret
parameters of the user who does double-spending and let the
judge revoke the anonymity of the user. Besides, when an
unused e-cash is expired, a user will be able to exchange it for
a new one with a new expiration date. In our scheme, for the
efficiency concerns, some of the unused parameters of users
can remain unchanged while exchanging for a new valid e-
cash. In the following sections, we will describe our scheme
in detail.

3.2. The Proposed Scheme. Firstly, we define some notations
as follows.

(1) 𝐻
1
, 𝐻

2
, 𝐻

3
: three one-way hash functions,

𝐻
1
, 𝐻

2
, 𝐻

3
: {0, 1}

∗

→ {0, 1}
𝑛.

(2) 𝐻
4
, 𝐻

5
: two one-way hash functions,

𝐻
4
, 𝐻

5
: {0, 1}∗ → {0, 1}

𝑞.

(3) 𝐸
𝑥
,𝐷

𝑥
: a secure symmetric cryptosystem. Plaintext is

both encrypted and decrypted with a symmetric key
𝑥.

(4) 𝐸
𝑝𝑘

, 𝐷
𝑠𝑘
: a secure asymmetric cryptosystem. Plaintext

is encrypted with a public key 𝑝𝑘 and decrypted with
the corresponding private key 𝑠𝑘.

(5) (𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
): the public-private key pair of the judge.

(6) (𝑒
𝑏
, 𝑑

𝑏
): the public-private key pair of bank.

(7) 𝐷𝑎𝑡𝑒: expiration date. It represents an effective spend-
ing date of awithdrawn e-cash. Any e-cashwithdrawn
in the same period will have the same expiration date,
and vice versa.

(8) ID
𝑐
: the identity of user 𝐶.

(9) 𝑙
𝑘
, 𝑙
𝑟
: the security parameters.

(10) A judge device: a tamper-resistant device which is
issued by the judge. It is installed into the system of
the bank. It is impossible to intercept or modify any
information stored in the device.

3.2.1. Initialization. Initially, the bank randomly chooses two
distinct large primes (𝑝

𝑏
, 𝑞

𝑏
) and computes RSA parameters

𝑛
𝑏

= 𝑝
𝑏
𝑞
𝑏
. It selects an integer 𝑒

𝑏
at random such that

GCD(𝜙(𝑛
𝑏
), 𝑒

𝑏
) = 1, where 𝜙(𝑛

𝑏
) = (𝑝

𝑏
− 1)(𝑞

𝑏
− 1) and

1 < 𝑒
𝑏
< 𝜙(𝑛

𝑏
). Then, it finds a 𝑑

𝑏
such that 𝑒

𝑏
𝑑
𝑏
≡ 1(mod

𝜙(𝑛
𝑏
)). Secondly, it also chooses two other large primes 𝑝 and

𝑞 and two generators 𝑔
1
and 𝑔

2
of order 𝑞 in Z∗

𝑝
. Then, the

bank publishes (𝑛
𝑏
, 𝑒

𝑏
, 𝑝, 𝑞, 𝑔

1
, 𝑔

2
, 𝑝𝑘

𝑗
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
,

𝐸,𝐷, 𝐸,𝐷). Meanwhile, the judge embeds (𝑛
𝑏
, 𝑒
𝑏
, 𝑝, 𝑞, 𝑔

1
, 𝑔

2
,

𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
, 𝐸, 𝐷, 𝐸, 𝐷) into a judge device

and issues it to the bank.

3.2.2. Withdrawal Protocol. Users run the withdrawal pro-
tocol with banks to get an e-cash, as shown in Figure 1,
yet banks have to obtain information of users’ identity,
such as ID

𝑐
or account numbers, before the withdrawal

protocol is proceeded. Therefore, users should perform an
authentication with banks beforehand. Users can execute the
withdrawal protocol by any devices that have the ability to
compute and connect to the network. For instance, users can
use mobile phones or computers to perform the withdrawal
protocol and store the withdrawn e-cash. The detailed steps
of the protocol are as follows.

(1) Bank → User:𝐷

Firstly, the user prepares parameters for withdrawing
an e-cash. The user chooses integers 𝑎, 𝑥

1
, 𝑥

2
, 𝑟

1
, 𝑟

2
,

and 𝑟
3
in random, where 𝑎 ∈

𝑅
Z∗

𝑛𝑏

and 𝑥
1
, 𝑥

2
, 𝑟

1
, 𝑟

2
,

𝑟
3
∈
𝑅
{0, 1, . . . , 𝑞 − 1} and selects a string 𝑘 ∈

𝑅
{0, 1}

𝑙𝑘

randomly. The user then computes (𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
),

where 𝑦
𝑖

= 𝑔
𝑥𝑖

𝑖
mod𝑝 and 𝑤

𝑖
= 𝑔

𝑟𝑖

𝑖
mod𝑝 for

𝑖 = {1, 2}. Secondly, the bank computes parameters
for expiration date. It randomly chooses a 𝑟 in Z∗

𝑛
,

prepares𝐷 = Date ‖ 𝑟 for some expiration date𝐷𝑎𝑡𝑒.
The bankwill send𝐷 to the user when she/he requests
to withdraw an e-cash.

(2) User → Bank: (𝛼, 𝜖)

After receiving𝐷, the user prepares 𝜖 = 𝐸
𝑝𝑘𝑗

(𝑘 ‖ ID
𝑐
)

and

𝛼 = [𝑎
𝑒𝑏𝐻

2

1
(𝑚 ‖ 𝐷)]

−1

mod 𝑛
𝑏
, (1)

where 𝑚 = (𝑦
1
‖ 𝑤

1
‖ 𝑦

2
‖ 𝑤

2
‖ 𝑟

3
). Finally, the user

sends (𝛼, 𝜖) to the bank.

(3) Bank → Judge device: (𝜖, 𝜇, 𝐷)

The bank sets 𝜇 = ID
𝑐
, where ID

𝑐
is the identity of

user𝐶, and inputs it togetherwith 𝜖 and𝐷 to the judge
device.

4 The Scientific World Journal

User
Bank

y1 = g
x1
1 mod p, w1 = g

r1
1 mod p

y2 = g
x2
2 mod p, w2 = g

r2
2 mod p

D

pb, qb, nb = pbqb
𝜙(nb) = (pb − 1)(qb − 1)

p, q: two large primes
g1, g2: generator of order q in Z∗

p

(𝛼, 𝜖)

Input (𝜖, 𝜇) to the judge device

Judge device

No: abort, return ID error

t = (𝛼𝛽H2(D))
d𝑏 mod nb

(𝛽, Ẽk(b, 𝜎, rj))

(t, Ẽk(b, 𝜎, rj))

Decrypt Ẽk(b, 𝜎, rj)

E-cash tuple: (s, y1, w1, y2, w2, r3, 𝜎, D)

(𝜖, 𝜇, D)

Compute s = abt mod nb

x1, x2, r1, r2, r3 ∈R {0, 1, . . . , q − 1}

m = y1 ‖w1 ‖y2 ‖w2 ‖ r3

𝛼 = [ae𝑏H2
1 (m ‖D)]−1 mod nb

?
= H2(D)(mod nb)Verify se𝑏H2

1 (m ‖D)H3(𝜎 ‖D)

a∈RZ
∗
n𝑏
, k ∈R {0, 1}

l𝑘

r ∈RZ
∗
n ;Date: Expiration date

D = Date ‖ r

b∈RZ
∗
n𝑏
, rj ∈R {0, 1}

l𝑟𝑗

𝜎 = Êpk𝑗 (𝜇 ‖ rj)

𝛽 = [be𝑏H3(𝜎 ‖D)]
−1 mod nb

𝜖 = Êpk𝑗 (k ‖ IDc)

= D̂sk𝑗
(𝜖)Compute (k ‖ IDc

Set 𝜇 = IDc

)

𝜇
?
= If yes: continue;IDc

Verify 𝜎 ?
= Êpk𝑗 (IDc ‖ rj)

Figure 1: Withdrawal protocol.

(4) Judge device → Bank: (𝛽, 𝐸
𝑘
(𝑏, 𝜎, 𝑟

𝑗
))

The judge device decrypts 𝜖 and checks if 𝜇 = ID
𝑐
. If

not, it returns “ID error” to the bank; or else, it picks
a random integer 𝑏 ∈

𝑅
Z∗

𝑛𝑏

and a string 𝑟
𝑗
∈
𝑅
{0, 1}

𝑙𝑟𝑗

randomly. Then it computes 𝜎 = 𝐸
𝑝𝑘𝑗

(𝜇 ‖ 𝑟
𝑗
) and

𝛽 = [𝑏
𝑒𝑏𝐻

3
(𝜎 ‖ 𝐷)]

−1 mod 𝑛
𝑏
. (2)

Finally, it encrypts (𝑏, 𝜎, 𝑟
𝑗
) by using the symmetric

key 𝑘 and outputs it together with 𝛽 to the bank.

(5) Bank → User: (𝑡, 𝐸
𝑘
(𝑏, 𝜎, 𝑟

𝑗
))

After receiving (𝛽, 𝐸
𝑘
(𝑏, 𝜎, 𝑟

𝑗
)) from the judge device,

it computes

𝑡 = (𝛼𝛽𝐻
2
(𝐷))

𝑑𝑏 mod 𝑛
𝑏

(3)

and sends (𝑡, 𝐸
𝑘
(𝑏, 𝜎, 𝑟

𝑗
)) to the user.

(6) Verifications
After receiving (𝑡, 𝐸

𝑘
(𝑏, 𝜎, 𝑟

𝑗
)), the user firstly

decrypts the ciphertext by using the symmetric key 𝑘

in order to obtain (𝑏, 𝜎, 𝑟
𝑗
). Secondly, she/he checks

if his/her ID is embedded correctly by computing
if 𝜎 = 𝐸

𝑝𝑘𝑗
(ID

𝑐
‖ 𝑟

𝑗
) is true or not. Thirdly, she/he

computes

𝑠 = 𝑎𝑏𝑡 mod 𝑛
𝑏

(4)

and verifies 𝑠 by checking if

𝑠
𝑒𝑏𝐻

2

1
(𝑚 ‖ 𝐷)𝐻

3
(𝜎 ‖ 𝐷) = 𝐻

2
(𝐷) (mod 𝑛

𝑏
) (5)

is true or not. Finally, when all verifications are done,
the user gets the e-cash tuples (𝑠, 𝑚, 𝜎,𝐷) and stores
(𝑥

1
, 𝑥

2
, 𝑟
1
, 𝑟
2
) for further payment usages.

3.2.3. Payment Protocol. When a user has to spend the e-cash,
she/he performs the protocol as shown in Figure 2. The steps
of the protocol are described as follows.

(1) User → Shop: (𝑠, 𝑚, 𝜎,𝐷, 𝑥
2
, 𝑟
2
)

Theuser sends (𝑠, 𝑚, 𝜎,𝐷, 𝑥
2
, 𝑟
2
) to the shop, where𝐷

contains the expiration date of the e-cash.

The Scientific World Journal 5

User Shop

(s, m, 𝜎, D, x2, r2)

Check the validity of D

rs

u = H4

s󳰀 = (r1 − ux1) mod q
(s󳰀, ru)

?
= H2(D)(mod nb)Verify se𝑏H2

1 (m ‖D)H3(𝜎 ‖D)

ru ∈RZ
∗
q

Verify w1
?
= y

H4(r𝑢 ‖ r𝑠)
1 gs

󳰀

(mod p)

(ru ‖ rs)

r󳰀s ∈R {0, 1}
l𝑟𝑗 ; rs = (IDs ‖ r

󳰀
s)

Figure 2: Payment protocol.

(2) Shop → User: 𝑟
𝑠

The shop first checks 𝐷 to verify if the e-cash is still
within the expiration date or not. If not, it terminates
the transaction. Otherwise, it continues to verify
𝑠
𝑒𝑏𝐻

2

1
(𝑚 ‖ 𝐷)𝐻

3
(𝜎 ‖ 𝐷) = 𝐻

2
(𝐷)(mod𝑛

𝑏
). If it is

not valid, the protocol is aborted; or else, it selects a
string 𝑟

󸀠

𝑠
∈
𝑅
{0, 1}

𝑙𝑟𝑗 and sets a challenge 𝑟
𝑠
= (ID

𝑠
‖

𝑟
󸀠

𝑠
), where ID

𝑠
is the identity of the shop. Finally, it

sends 𝑟
𝑠
to the user.

(3) User → Shop: (𝑠󸀠, 𝑟
𝑢
)

After receiving 𝑟
𝑠
from the shop, the user randomly

selects a 𝑟
𝑢
∈
𝑅
Z∗

𝑞
and computes a response to the

challenge

𝑠
󸀠

= (𝑟
1
− 𝑢𝑥

1
) mod 𝑞, (6)

where 𝑢 = 𝐻
4
(𝑟
𝑢
‖ 𝑟

𝑠
). Then, the user sends (𝑠󸀠, 𝑟

𝑢
) to

the shop.
(4) Verifications

After receiving (𝑠
󸀠

, 𝑟
𝑢
) from the user, the shop verifies

if 𝑤
1
= 𝑦

𝐻4(𝑟𝑢‖𝑟𝑠)

1
𝑔
𝑠
󸀠

(mod𝑝) is true or not. If it is true,
the shop will accept the e-cash. On the other hand, if
it is not, the shop will reject it. Since it is an offline e-
cash, the shop does not have to deposit it to the bank
immediately. It can store the e-cash and deposit it later
together with other received e-cash(s).

3.2.4. Deposit Protocol. As Figure 3 shows, shops attach the
deposit date to their e-cash(s) and deposit them to banks in
this protocol. Banks perform double-spending checks when
they receive these e-cash(s). If any e-cash is double-spent, the
bank will revoke the anonymity of the e-cash owner with the
help of the judge. The steps are described in detail as follows.

(1) Shop → Bank: (𝑠, 𝑚, 𝜎,𝐷, 𝑑, 𝑟
4
, 𝑠
󸀠

, 𝑟
𝑢
, 𝑟
𝑠
)

The shop computes 𝑟
4

= 𝑟
2
− 𝑥

2
𝐻
5
(𝑑), where 𝑑 is

the deposit date, and sends (𝑠, 𝑚, 𝜎,𝐷, 𝑑, 𝑟
4
, 𝑠
󸀠

, 𝑟
𝑢
, 𝑟
𝑠
)

to the bank.

(2) Verifications
Firstly, the bank checks the correctness of expiration
date 𝐷 and deposit date 𝑑, respectively, and also
checks if

𝑤
2
= 𝑦

𝐻5(𝑑)

2
𝑔
𝑟4

2
mod 𝑝,

𝑤
1
= 𝑦

𝐻4(𝑟𝑢‖𝑟𝑠)

1
𝑔
𝑠
󸀠

2
mod 𝑝

(7)

are true or not. Secondly, the bank verifies if
𝑠
𝑒𝑏𝐻

2

1
(𝑚 ‖ 𝐷)𝐻

3
(𝜎 ‖ 𝐷) = 𝐻

2
(𝐷)(mod 𝑛

𝑏
) and

checks the uniqueness of (𝑠, 𝑚, 𝜎,𝐷). Finally, if all of
the above facts are verified successfully, the bank will
accept and store the e-cash in its database and record
𝐻
1
(𝑚 ‖ 𝐷) in exchange list. Otherwise, it will reject

this transaction and trace the owner of the e-cash.

3.2.5. E-Cash Renewal Protocol. In order to reduce the unlim-
ited growth database problem of the bank, we have expiration
date and renewal protocol in our scheme to achieve it,
as shown in Figure 4. When an unused e-cash is expired,
the user has to exchange it for another e-cash with a new
expiration date from the bank.

(1) User → Bank: (𝑠, 𝜌, 𝜎, 𝐷)

The user recalls 𝑚 = (𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
3
) and

prepares

𝜌 = 𝐻
1
(𝑚 ‖ 𝐷) (8)

and sends it together with the unused (𝑠, 𝜎, 𝐷) to the
bank.

(2) Verifications
Firstly, the bank checks the correctness of expiration
date𝐷 andmakes sure𝜌 does not exist in the exchange
list. Secondly, the bank verifies if 𝑠

𝑒𝑏𝐻
1
(𝜌)𝐻

3
(𝜎 ‖

𝐷) ≡ 𝐻
2
(𝐷)(mod 𝑛

𝑏
). Finally, if all of the above

facts are verified successfully, the bank will accept to

6 The Scientific World Journal

Shop Bank

r4 = r2 − x2H5(d)

(s, y1, w1, y2, w2, r3, r4, 𝜎, D, d, s
󳰀, ru, rs)

Check the validity of D, d

Check w2
?
= y

H5(d)
2 g

r4
2 mod p

?
= H2(D)(mod nb)

Check if (s, m, 𝜎, D) are unique or not
Yes: store the coin to deposit list
No: trace the owner of the coin

d: deposit date

Verify se𝑏H2
1 (y1 ‖w1 ‖y2 ‖w2 ‖D‖ r3)H3(𝜎 ‖D)

w1
?
= y

H4(r𝑢 ‖ r𝑠)
1 gs

󳰀

1 mod p

Figure 3: Deposit protocol.

User Bank

(s, 𝜌, 𝜎, D)

Check if 𝜌 exists in exchange list

Check if s is unique or not
Yes: accept to exchange the coin

and store 𝜌 in the exchange list
No: reject and trace the owner of the coin

Accept

D󳰀 = new expiration date

(𝛼̂, 𝜖)

Repeat withdrawal protocol

𝜌 = H1(y1 ‖w1 ‖y2 ‖w2 ‖D‖ r3)

𝛼̂ = [ae𝑏H2
1 (y1 ‖w1 ‖y2 ‖w2 ‖D󳰀 ‖ r󳰀3)]−1 mod nb

Check the expiration date D

Verify se𝑏H1(𝜌)H3(𝜎 ‖D)
?
= H2(D)(mod nb)

Figure 4: E-Cash renewal protocol.

exchange the e-cash. It will send a new expiration date
𝐷
󸀠 and store 𝜌 in the exchange list. Otherwise, it will

reject the exchange request.
(3) User → Bank: (𝛼̂, 𝜖)

The user computes

𝛼̂ = [𝑎
𝑒𝑏𝐻

2

1
(𝑚

󸀠

‖ 𝐷
󸀠

)]
−1

mod 𝑛
𝑏
, (9)

where 𝑚
󸀠

= (𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
󸀠

3
), 𝑟󸀠

3
is a random,

and𝐷
󸀠 is the new expiration date issued by the bank.

The user sends (𝛼̂, 𝜖, ID
𝑐
) to the bank. Then the bank

repeats the withdrawal protocol in Section 3.2.2 from
Step 2 with the user.

3.2.6. Double-Spending Checking and Anonymity Control.
In our scheme, the identity of the users is anonymous in
general except when the users violate any security rules and,
therefore, their identities will be revealed.

(1) Double-Spending Checking

When an e-cash is being doubly spent, there must
be two e-cash(s) with the same record prefixed by
(𝑠, 𝑦

1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑟
3
, 𝜎, 𝐷) stored in the database of the

The Scientific World Journal 7

Linkage game

Random bit b

mb m1−b

U0 U1 Output
(mb, 𝜎b) and (m1−b , 𝜎1−b)

b󳰀

= |2Pr[b󳰀 = b] − 1|

Engage with ℬ

ℬ

ℬ wins if b󳰀 = b

AdvLinkability
𝒟𝒜𝒪ℰ𝒞𝒮

(ℬ)

Figure 5: The game environment of linkage game.

bank.Therefore, the bank is able to detect any double-
spent e-cash easily by checking the above parameters.
For instance, the bank has received two e-cash(s),

(𝑠, 𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
3
, 𝑟
4
, 𝜎, 𝐷, 𝑑, 𝑠

󸀠

, 𝑟
𝑢
, 𝑟
𝑠
) ,

(𝑠, 𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
3
, 𝑟
4
, 𝜎, 𝐷, 𝑑, 𝑠󸀠, 𝑟

𝑢
, 𝑟
𝑠
) .

(10)

Thus, the bank can obtain two equations as follows:

𝑠
󸀠

≡ 𝑟
1
− 𝐻

4
(𝑟
𝑢
‖ 𝑟

𝑠
) 𝑥

1
(mod 𝑞) ,

𝑠󸀠 ≡ 𝑟
1
− 𝐻

4
(𝑟
𝑢
‖ 𝑟

𝑠
) 𝑥

1
(mod 𝑞) .

(11)

The bank can derive (𝑥
1
, 𝑟
1
) from the above equations

and send (𝑠, 𝑦
1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
3
, 𝜎, 𝐷) and (𝑥

1
, 𝑟
1
) to

the judge to trace the owner of the e-cash.
(2) Revocation

The judge can trace any user who doubly spends e-
cash(s) or violates any transaction regulations. When
the judge receives (𝑠, 𝑦

1
, 𝑤

1
, 𝑦

2
, 𝑤

2
, 𝑥

2
, 𝑟
3
, 𝜎, 𝐷) and

(𝑥
1
, 𝑟
1
) from the bank, it checks the following equa-

tions:

𝑠
𝑒𝑏𝐻

2

1
(𝑚 ‖ 𝐷)𝐻

3
(𝜎 ‖ 𝐷)

?

≡ 𝐻
2
(𝐷) (mod 𝑛

𝑏
) ,

𝑦
1

?

≡ 𝑔
𝑥1

1
(mod 𝑝) ,

𝑤
1

?

≡ 𝑔
𝑟1

1
(mod 𝑝) .

(12)

If all of the above equalities are true, the judge will
decrypt 𝜎 and return the extracted ID

𝑐
to the bank.

4. Security Proofs

In this section, we provide security definitions and for-
mal proofs of the following security features: unlinkabil-
ity, unforgeability, traceability, and no-swindling for our

proposed date attachable offline electronic cash scheme
(DAOECS).

4.1. E-Cash Unlinkability. Based on the definition of unlink-
ability introduced by Abe and Okamoto [35] and Juels
et al. [36], we formally define the unlinkability property of
DAOECS.

Definition 1 (The Linkage Game). Let 𝑈
0
, 𝑈

1
, and J be

two honest users and the judge that follows DAOECS,
respectively. LetB be the bank that participates the following
game with𝑈

0
,𝑈

1
, andJ. The game environment is shown in

Figure 5.

Step 1. According to DAOECS, B generates the bank’s
public key (𝑒

𝑏
, 𝑛

𝑏
), the bank’s private key (𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
), system

parameters (𝑝, 𝑞, 𝑔
1
, 𝑔

2
), the expiration date 𝐷, and the five

public one-way hash functions 𝐻
1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, and 𝐻

5
. J

generates the judge’s public-private key pair (𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
).

Step 2. B generates 𝑥
1𝑖
, 𝑥

2𝑖
, 𝑟
1𝑖
, 𝑟
2𝑖
, 𝑟
3𝑖
in random, where 𝑥

1
,

𝑥
2
, 𝑟

1
, 𝑟

2
, 𝑟

3
∈
𝑅
{0, 1, . . . , 𝑞 − 1}, and computes (𝑦

𝑘𝑖
, 𝑤

𝑘𝑖
) for

𝑘 = {1, 2} and 𝑖 = {0, 1}, where 𝑦
𝑘𝑖

= 𝑔
𝑥𝑘

𝑘
mod 𝑝 and𝑤

𝑘𝑖
= 𝑔

𝑟𝑘

𝑘

mod 𝑝.

Step 3. We choose a bit 𝑏̂ ∈ {0, 1} randomly and place (𝑦
1̂𝑏
,

𝑤
1̂𝑏
, 𝑦

2̂𝑏
, 𝑤

2̂𝑏
) and (𝑦

11−
̂
𝑏
, 𝑤

11−
̂
𝑏
, 𝑦

21−
̂
𝑏
, 𝑤

21−
̂
𝑏
) on the private

input tapes of𝑈
0
and𝑈

1
, respectively, where 𝑏̂ is not disclosed

toB.

Step 4. B performs the withdrawal protocol of DAOECS
with 𝑈

0
and 𝑈

1
, respectively.

Step 5. If 𝑈
0
and 𝑈

1
output two e-cash(s) (𝑠̂

𝑏
, 𝑚̂

𝑏
, 𝜎̂

𝑏
, 𝐷̂

𝑏
) and

(𝑠
1−
̂
𝑏
, 𝑚

1−
̂
𝑏
, 𝜎

1−
̂
𝑏
, 𝐷

1−
̂
𝑏
), where 𝑚

𝑖
= (𝑦

1𝑖
, 𝑤

1𝑖
, 𝑦

2𝑖
, 𝑤

2𝑖
, 𝑟
3𝑖
), on

their private tapes, respectively, we give the two e-cash(s) in
a random order toB; otherwise, ⊥ is given toB.

8 The Scientific World Journal

Experiment ExpFG-1A (𝑙
𝑘
)

(𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) ← Setup (𝑙

𝑘
)

{(𝑠
1
, 𝑚

1
, 𝜎

1
, 𝐷

1
) , . . . , (𝑠

ℓ+1
, 𝑚

ℓ+1
, 𝜎

ℓ+1
, 𝐷

ℓ+1
)} ← AO𝑆 (𝑝𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑛

𝑏
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
)

if the following checks are true, return 1;
(i) 𝑠𝑒𝑏

𝑖
𝐻

2

1
(𝑚

𝑖
)𝐻

3
(𝜎

𝑖
‖ 𝐷

𝑖
) ≡ 𝐻

2
(𝐷

𝑖
) (mod 𝑛

𝑏
), ∀𝑖 ∈ {1, . . . , ℓ + 1};

(ii)𝑚
1
, . . . , 𝑚

ℓ+1
are all distinct

else return 0;

Algorithm 1: Experiment FG-1.

Step 6. B outputs 𝑏̂󸀠 ∈ {0, 1} as the guess of 𝑏̂. The bank B

wins the game if 𝑏̂󸀠 = 𝑏̂ andJ has not revoked the anonymity
of (𝑠̂

𝑏
, 𝑚̂

𝑏
, 𝜎̂

𝑏
, 𝐷̂

𝑏
) and (𝑠

1−
̂
𝑏
, 𝑚

1−
̂
𝑏
, 𝜎

1−
̂
𝑏
, 𝐷

1−
̂
𝑏
) toB. We define

the advantage ofB as

AdvLinkability
DAOECS (B) =

󵄨󵄨󵄨󵄨󵄨
2Pr [𝑏̂󸀠 = 𝑏̂] − 1

󵄨󵄨󵄨󵄨󵄨
, (13)

where Pr[𝑏̂󸀠 = 𝑏̂] denotes the probability of 𝑏̂󸀠 = 𝑏̂.

Definition 2 (Unlinkability). A DAOECS satisfies
the unlinkability property if and only if the advantage
AdvLinkability

DAOECS
(B) defined in Definition 1 is negligible.

Theorem 3. ADAOECS satisfies the unlinkability property
of Definition 2 if the adopted cryptosystems are semantically
secure.

Proof. If B is given ⊥ in the Step 5 of the game, it will
determine 𝑏̂ with probability 1/2, which is exactly the same
as a random guess of 𝑏̂.

Here, we assume that B gets two e-cash (𝑠
0
, 𝑚

0
, 𝜎

0
, 𝐷

0
)

and (𝑠
1
, 𝑚

1
, 𝜎

1
, 𝐷

1
). Let (𝛼

𝑖
, 𝛽

𝑖
, 𝑡
𝑖
, 𝜖
𝑖
, 𝐸

𝑘𝑖
(𝑏
𝑖
, 𝜎

𝑖
, 𝑟
𝑗𝑖
)), 𝑖 ∈

{0, 1}, be the view of data exchanged between 𝑈
𝑖
and

B in the withdrawal protocol (Section 3.2.2) and let
(𝑥

2𝑖
, 𝑟
2𝑖
, 𝑟
4𝑖
, 𝑟
𝑢𝑖
, 𝑟
𝑠𝑖
, 𝑠
󸀠

𝑖
, 𝑑

𝑖
) be the view of data exchanged when

B performs the payment protocol (Section 3.2.3) and the
deposit protocol (Section 3.2.4) by using (𝑠

𝑖
, 𝑚

𝑖
, 𝜎

𝑖
, 𝐷

𝑖
), where

𝑖 ∈ {0, 1}.
For (𝑠, 𝑚, 𝜎,𝐷, 𝑥

2
, 𝑟
2
, 𝑟
4
, 𝑟
𝑢
, 𝑟
𝑠
, 𝑠
󸀠

, 𝑑) ∈

{(𝑠
0
, 𝑚

0
, 𝜎

0
, 𝐷

0
, 𝑥

20
, 𝑟
20
, 𝑟
40
, 𝑟
𝑢0
, 𝑟
𝑠0
, 𝑠
󸀠

0
, 𝑑

0
) ,

(𝑠
1
, 𝑚

1
, 𝜎

1
, 𝐷

1
, 𝑥

21
, 𝑟
21
, 𝑟
41
, 𝑟
𝑢1
, 𝑟
𝑠1
, 𝑠
󸀠

1
, 𝑑

1
)}

(14)

and (𝛼
𝑖
, 𝛽

𝑖
, 𝑡
𝑖
, 𝜖
𝑖
, 𝐸

𝑘𝑖
(𝑏
𝑖
, 𝜎

𝑖
, 𝑟
𝑗𝑖
)), 𝑖 ∈ {0, 1}, there always exists a

pair (𝑎󸀠
𝑖
, 𝑏
󸀠

𝑖
) such that

𝑎
󸀠

𝑖
= [𝛼

𝑖
𝐻
2

1
(𝑚 ‖ 𝐷)]

−𝑑𝑏 mod 𝑛
𝑏

(via (1)) ,

𝑏
󸀠

𝑖
= [𝛽

𝑖
𝐻
3
(𝜎 ‖ 𝐷)]

−𝑑𝑏 mod 𝑛
𝑏

(via (2)) .
(15)

And from (3), 𝑡
𝑖
≡ (𝛼

𝑖
𝛽
𝑖
𝐻
2
(𝐷))

𝑑𝑏 (mod 𝑛
𝑏
), (4) always holds

as

𝑠 ≡ (𝑎
󸀠

𝑖
𝑏
󸀠

𝑖
𝑡
𝑖
)

≡ [(𝐻
2

1
(𝑚 ‖ 𝐷)𝐻

3
(𝜎 ‖ 𝐷))

−1

𝐻
2
(𝐷)]

𝑑𝑏

(mod 𝑛
𝑏
) .

(16)

Besides, 𝐸
𝑝𝑘𝑗

and 𝐸
𝑘𝑖

are semantically secure encryption
functions. B cannot learn any information from 𝜖

𝑖
and

𝐸
𝑘𝑖
(𝑏
𝑖
, 𝜎

𝑖
, 𝑟
𝑗𝑖
).

From the above, given any (𝑠, 𝑚, 𝜎,𝐷) ∈

{(𝑠
0
, 𝑚

0
, 𝜎

0
, 𝐷

0
), (𝑠

1
, 𝑚

1
, 𝜎

1
, 𝐷

1
)} and (𝛼

𝑖
, 𝛽

𝑖
, 𝑡
𝑖
), where

𝑖 ∈ {0, 1}, there always exists a corresponding pair (𝑎
󸀠

𝑖
, 𝑏
󸀠

𝑖
)

such that (1), (2), (3), and (4) are satisfied.
Thus, go back to Step 6 of the game, the bankB succeeds

in determining 𝑏̂ with probability (1/2) + 𝜀, where 𝜀 is
negligible since 𝐸 and 𝐸 are semantically secure. Therefore,
we have AdvLinkability

DAOECS
(B) = 2𝜀, which is negligible, so that

DAOECS satisfies the unlinkability property.

4.2. E-Cash Unforgeability. In this section, we will formally
prove that the proposed date attachable offline electronic cash
scheme (DAOECS) is secure against forgery attack. The
forgery attack can be roughly divided into two types, one is
the typical one-more forgery type (i.e., (ℓ, ℓ+1)-forgery) [37]
and the other is the forgery on some specific expiration date
of an e-cash after sufficient communications with the signing
oracle (i.e., bank). The details of definitions and our formal
proofs will be described as follows.

Definition 4 (Forgery Game 1 in DAOECS (FG-1)). Let
𝑙
𝑘

∈ N be a security parameter and A be an adversary
in DAOECS. OS is an oracle which plays the role of
the bank in DAOECS to be responsible for issuing e-
cash(s) (i.e., (𝑠, 𝑚, 𝜎,𝐷), where 𝑚 = (𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝐷))

according to the queries from A. A is allowed to query OS

for ℓ times; consider the experiment ExpFG-1A (𝑙
𝑘
) shown in

Algorithm 1. Awins the forgery game FG-1 if the probability
Pr[ExpFG-1A (𝑙

𝑘
) = 1] ofA is nonnegligible.

Definition 5 (Forgery Game 2 in DAOECS (FG-2)). Let
𝑙
𝑘

∈ N be a security parameter and A be an adversary in
DAOECS. OS is an oracle which plays the role of the bank
inDAOECS to take charge of the following two events:

(i) issue e-cash(s) (i.e., (𝑠, 𝑚, 𝜎,𝐷), where
𝑚 = (𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝐷)) according to the queries

fromA,
(ii) record the total number ℓ

𝐷𝑖
of each distinct expiration

date𝐷
𝑖
.

A is allowed to queryOS for ℓ times; consider the experiment
ExpFG-2A (𝑙

𝑘
) shown in Algorithm 2. A wins the forgery game

The Scientific World Journal 9

Experiment ExpFG-2A (𝑙
𝑘
)

(𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) ← Setup (𝑙

𝑘
)

{(𝑠
𝑖
, 𝑚

𝑖
, 𝜎

𝑖
, 𝐷

∗

) , 1 ≤ 𝑖 ≤ ℓ
𝐷
∗ + 1} ← AO𝑆 (𝑝𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑛

𝑏
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
)

if the following checks are true, return 1;
(i) 𝑠𝑒𝑏

𝑖
𝐻

2

1
(𝑚

𝑖
)𝐻

3
(𝜎

𝑖
‖ 𝐷

∗

) ≡ 𝐻
2
(𝐷

∗

) (mod 𝑛
𝑏
), ∀𝑖 ∈ {1, . . . , ℓ

𝐷
∗ + 1};

(ii)𝑚
1
, . . . , 𝑚

ℓ
𝐷
∗+1

are all distinct;
else return 0;

Algorithm 2: Experiment FG-2.

Experiment ExpRSA-ACTIA (𝑘)

(𝑁, 𝑒, 𝑑)
𝑅

←󳨀 𝐾𝑒𝑦𝐺𝑒𝑛 (𝑘).
(𝑦

1
, . . . , 𝑦

𝑚
) ← O

𝑡
(𝑁, 𝑒, 𝑘)

{𝜋, (𝑥
1
, 𝑦

1
) , . . . , (𝑥

𝑛
, 𝑦

𝑛
)} ← AOinv ,O𝑡 (𝑁, 𝑒, 𝑘)

if the following checks are true, return 1;
(i) 𝜋 : {1, . . . , 𝑛} → {1, . . . , 𝑚} is injective
(ii) 𝑥𝑒

𝑖
≡ 𝑦

𝑖
(mod𝑁), ∀𝑖 ∈ {1, ..., 𝑛}

(iii) 𝑛 > 𝑞
ℎ

else return 0;

Algorithm 3

FG-2 if the probability Pr[ExpFG-2A (𝑘) = 1] ofA is nonnegli-
gible.

Here we introduce the hard problems used in our proof
models.

Definition 6 (Alternative Formulation of RSA Chosen-Target
Inversion Problem (RSA-ACTI)). Let 𝑘 ∈ N be a security
parameter and A be an adversary who is allowed to access
the RSA-inversion oracle Oinv and the target oracle O

𝑡
. A is

allowed to queryO
𝑡
andOinv for𝑚 and 𝑞

ℎ
times, respectively.

Consider Algorithm 3.
We sayA breaks the RSA-ACTI problem if the probability

Pr[ExpRSA-ACTIA (𝑘) = 1] ofA is nonnegligible.

Definition 7 (The RSA Inversion Problem). Given (𝑒, 𝑛),
where 𝑛 is the product of two distinct large primes 𝑝 and
𝑞 with roughly the same length and 𝑒 is a positive integer
relatively-prime to (𝑝 − 1)(𝑞 − 1), and a randomly-chosen
positive integer 𝑦 less than 𝑛, find an integer 𝑥 such that
𝑥
𝑒

≡ 𝑦 (mod 𝑛).

Definition 8 (E-Cash Unforgeability). If there exists no prob-
abilistic polynomial-time adversary who canwin FG-1 or FG-
2, thenDAOECS is secure against forgery attacks.

Theorem 9. For a polynomial-time adversary A who can
win FG-1 or FG-2 with nonnegligible probability, there exists
another adversaryS who can break the RSA-ACTI problem or
RSA inversion problem with nonnegligible probability.

Proof. S simulates the environment and controls three hash
oracles, O

𝐻1
, O

𝐻2
, O

𝐻3
and an e-cash producing oracle O

𝑆

of DAOECS scheme to respond to different queries from
A in the random oracle model and takes advantage of A
to solve RSA-ACTI problem or RSA inversion problem,
simultaneously.Then, for consistency,Smaintains three lists
L

𝐻1
, L

𝐻2
, and L

𝐻3
to record every response of O

𝐻1
, O

𝐻2
,

and O
𝐻3
, respectively.

Here we will start to do the simulation for the two games
(i.e., FG-1 and FG-2) to prove DAOECS is secure against
forgery attacks. The details of simulation are set below and
illustrated in Figures 6 and 7, respectively.

Simulation in FG-1. In this proof model, S is allowed to
query the oraclesOinv (i.e., (⋅)

𝑑) andO
𝑡
of RSA-ACTI problem

defined inDefinition 6 for helpingS to produce e-cash(s) and
the corresponding verifying key is (𝑒, 𝑛).

(i) 𝐻
1
Query of O

𝐻1

Initially, every blank record in L
𝐻1

can be repre-
sented as (⊥, ⊥, ⊥). WhenA sends𝑚 for querying the
hash value𝐻

1
(𝑚), S will check the listL

𝐻1
:

(a) if 𝑚 = 𝑚
𝑖
for some 𝑖, then S retrieves the

corresponding𝐻
1
(𝑚

𝑖
) and returns it toA;

(b) else if 𝑚 = 𝐻
1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) ̸= ⊥ for some 𝑖,

then S retrieves the corresponding𝐻
2

1
(𝑚

𝑖
) and

returns it toA;
(c) else if 𝑚 = 𝐻

1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) = ⊥ for

some 𝑖, then S queries O
𝑡
to get an instance

𝑦 and returns it to A, then fills the record
(𝑚

𝑖
, 𝐻

1
(𝑚

𝑖
), ⊥) as (𝑚

𝑖
, 𝐻

1
(𝑚

𝑖
), 𝑦) inL

𝐻1
;

(d) otherwise, S selects a random 𝜌 ∈ Z
𝑛
, records

(𝑚, 𝜌, ⊥) inL
𝐻1
, and returns 𝜌 toA.

(ii) 𝐻
2
Query of O

𝐻2

WhenA asks for𝐻
2
query by sending𝐷 toS,S will

look up the listL
𝐻2
:

(a) if𝐷 = 𝐷
𝑖
for some 𝑖, the corresponding 𝜏will be

retrieved andS will send (𝜏𝑒 mod 𝑛) back toA;
(b) otherwise,Swill select a random 𝜏 ∈ Z

𝑛
, record

(𝐷, 𝜏) inL
𝐻2
, and return (𝜏𝑒 mod 𝑛) back toA.

(iii) 𝐻
3
Query of O

𝐻3

WhileA sends (𝜎, 𝐷) toS for𝐻
3
(𝜎 ‖ 𝐷),S will look

up the listL
𝐻3
:

10 The Scientific World Journal

mi

Di

H(mi)
yi

yi

𝒜

𝒮

𝜏ei mod n

(𝜎i, Di)
𝜂i mod n

(𝛼i, 𝜖i, Di)
ti, Ẽk𝑖(bi, 𝜎i, rj𝑖)

𝒪𝒮

𝛼i𝛽i𝜏
e
i

ti

RSA-ACTI

𝒪inv

𝒪t

Output Output

𝜌i
𝒪H1

𝒪H2

𝒪H3

≡ H2(Di) (mod n),sei H
2
1 (mi)H3(𝜎i ‖Di)

{(s1, m1, 𝜎1, D1), . . . , (s󰪓+1, m󰪓+1, 𝜎󰪓+1, D󰪓+1)}
∀i ∈ {1, . . . , 󰪓 + 1}

󰪓

󰪓

{(s−11 𝜂−11 (𝜏1), y1), (s−12 𝜂−12 (𝜏2), y2), . . . ,(s−1󰪓+1𝜂−1󰪓+1(𝜏󰪓+1), y󰪓+1)}
(yi)d ≡ (H2

1(mi ≡ s−1i (H3 (𝜎i ‖Di)−1H2(Di s−1i 𝜂−1i (𝜏i) (mod n)
d)))) ≡

d

Figure 6: The proof model of FG-1.

H3(𝜎i ‖Di)

mi

Di

H(mi)

𝒜

𝒮

𝜏ei mod n

(𝜎i, Di)

(𝛼i, 𝜖i, Di)

ti, Ẽk𝑖 (bi, 𝜎i, rj𝑖)

𝒪𝒮

Output Output

𝜌i 𝜍ei mod n 𝒪H1

𝒪H2

𝒪H3

sei H
2
1 (mi)H3(𝜎i ‖D󳰀) ≡ H2(D󳰀) (mod n),

󰪓D󳰀

{1, . . . ,∀i ∈ , 󰪓D󳰀 + 1}
{1, . . . ,(si, mi, 𝜎i, D

󳰀), ∀i ∈ , 󰪓D󳰀 + 1} { (si)
e ≡ (H2

1 (mi)H3) H2(D󳰀) ≡ ((𝜍ei)(𝜂ei y) (𝜏ei) (mod n)(𝜎i ‖D󳰀))−1 −1

x ≡ yd ≡ (si𝜍i𝜂i)−1𝜏i (mod n)

Figure 7: The proof model of FG-2.

(a) if (𝜎, 𝐷) = (𝜎
𝑖
, 𝐷

𝑖
) for some 𝑖, the correspond-

ing 𝜂 will be retrieved and (𝜂𝑒mod 𝑛) will be
returned toA;

(b) otherwise,Swill select a random 𝜂 ∈ Z
𝑛
, record

((𝜎, 𝐷), 𝜂) in L
𝐻3
, and return (𝜂𝑒 mod 𝑛) back

toA.

(iv) E-Cash Producing Query of OS

WhenA sends (𝛼, 𝜖, 𝐷) to S, S will do the following
steps:

(1) decrypt 𝜖, obtain (𝑘, ID);

(2) randomly select 𝑟
𝑗
and prepare 𝜎 = 𝐸

𝑝𝑘𝑗
(ID ‖

𝑟
𝑗
);

(3) choose 𝜂 ∈
𝑅
Z
𝑛
, set 𝐻

3
(𝜎 ‖ 𝐷) = (𝜂

𝑒 mod 𝑛),
and store ((𝜎, 𝐷), 𝜂) inL

𝐻3
;

(4) select 𝑏 ∈
𝑅
Z∗

𝑛
and compute 𝛽 = (𝑏

𝑒

𝜂
𝑒

)
−1 mod 𝑛;

(5) retrieve or assign 𝜏 such that 𝐻
2
(𝐷) = (𝜏

𝑒

) as
the O

𝐻2
query described above;

(6) send (𝛼𝛽𝜏
𝑒

) to oracle Oinv to get 𝑡 = (𝛼𝛽𝜏
𝑒

)
𝑑

mod 𝑛;
(7) return (𝑡, 𝐸

𝑘
(𝑏, 𝜎, 𝑟

𝑗
)) back toA.

The Scientific World Journal 11

Eventually, assume thatA can successfully output ℓ+1 e-cash
tuples

{(𝑠
1
, 𝑚

1
, 𝜎

1
, 𝐷

1
) ⋅ ⋅ ⋅ (𝑠

ℓ+1
, 𝑚

ℓ+1
, 𝜎

ℓ+1
, 𝐷

ℓ+1
)} , (17)

where 𝑚
𝑖
are all distinct, ∀𝑖, 1 ≤ 𝑖 ≤ ℓ + 1, such that

𝑠
𝑒

𝑖
𝐻
2

1
(𝑚)𝐻

3
(𝜎
𝑖
‖ 𝐷

𝑖
) = 𝐻

2
(𝐷

𝑖
) (mod 𝑛) after ℓ times to query

OS with nonnegligible probability 𝜖A.
According to L

𝐻1
, L

𝐻2
, and L

𝐻3
, S can compute and

retrieve RSA-inversion instances (∀𝑖, 1 ≤ 𝑖 ≤ ℓ + 1)

(𝑦
𝑖
)
𝑑

≡ (𝐻
2

1
(𝑚

𝑖
))
𝑑

≡ 𝑠
−1

𝑖
(𝐻

3
(𝜎

𝑖
‖ 𝐷

𝑖
)
−1

𝐻
2
(𝐷

𝑖
))
𝑑

≡ 𝑠
−1

𝑖
𝜂
−1

𝑖
(𝜏
𝑖
) (mod 𝑛) .

(18)

Via A querying the signing oracle O
𝑆
for ℓ times (i.e., query

Oinv for ℓ times by S), S can output ℓ + 1 RSA-inversion
instances

{(𝑠
−1

1
𝜂
−1

1
(𝜏
1
) , 𝑦

1
) , (𝑠

−1

2
𝜂
−1

2
(𝜏
2
) , 𝑦

2
) , . . . ,

(𝑠
−1

ℓ+1
𝜂
−1

ℓ+1
(𝜏
ℓ+1

) , 𝑦
ℓ+1

)}

(19)

and break the RSA-ACTI problem with nonnegligible proba-
bility at least 𝜖A.

Simulation in FG-2. Initially,S is given an instance (𝑦, 𝑒, 𝑛) of
RSA inversion problem defined in Definition 7 and simulates
the environment as follows.

(i) 𝐻
1
Query of O

𝐻1

Initially, every blank record in L
𝐻1

can be repre-
sented as (⊥, ⊥, ⊥). WhenA sends𝑚 for querying the
hash value𝐻

1
(𝑚), S will check the listL

𝐻1
:

(a) if 𝑚 = 𝑚
𝑖
for some 𝑖, then S retrieves the

corresponding 𝜌
𝑖
and returns it toA;

(b) else if 𝑚 = 𝐻
1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) ̸= ⊥ for some

𝑖, then S retrieves the corresponding 𝜍 and
returns (𝜍𝑒 mod 𝑛) toA;

(c) else if 𝑚 = 𝐻
1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) = ⊥ for

some 𝑖, then S selects a random 𝜍 ∈ Z
𝑛
,

returns (𝜍𝑒mod 𝑛) toA, and then fills the record
(𝑚

𝑖
, 𝐻

1
(𝑚

𝑖
), ⊥) as (𝑚

𝑖
, 𝐻

1
(𝑚

𝑖
), 𝜍) inL

𝐻1
;

(d) otherwise, S selects a random 𝜌 ∈ Z
𝑛
, records

(𝑚, 𝜌, ⊥) inL
𝐻1
, and returns 𝜌 toA.

(ii) 𝐻
2
Query of O

𝐻2

WhenA asks for𝐻
2
query by sending𝐷 toS,S will

look up the listL
𝐻2
:

(a) if𝐷 = 𝐷
𝑖
for some 𝑖, the corresponding 𝜏will be

retrieved andS will send (𝜏𝑒 mod 𝑛) back toA;
(b) otherwise,Swill select a random 𝜏 ∈ Z

𝑛
, record

(𝐷, 𝜏) inL
𝐻2
, and return (𝜏𝑒 mod 𝑛) back toA.

(iii) 𝐻
3
Query of O

𝐻3

WhileA sends (𝜎, 𝐷) toS for𝐻
3
(𝜎 ‖ 𝐷),S will look

up the listL
𝐻3
:

(a) if (𝜎, 𝐷) = (𝜎
𝑖
, 𝐷

𝑖
) for some 𝑖, the corresponding

𝐻
3
(𝜎
𝑖
‖ 𝐷

𝑖
)will be retrieved and returned toA;

(b) otherwise, S will select a random 𝜂 ∈ Z
𝑛
,

set 𝐻
3
(𝜎 ‖ 𝐷) = (𝜂

𝑒

𝑦 mod 𝑛), record
((𝜎, 𝐷), 𝜂,𝐻

3
(𝜎 ‖ 𝐷)) in L

𝐻3
, and return

𝐻
3
(𝜎 ‖ 𝐷) back toA.

(iv) E-Cash Producing Query of OS

Let ℓ
𝐷𝑖

be a counter to record the number of queries
on each expiration date 𝐷

𝑖
, which is initialized by 0.

WhenA sends (𝛼, 𝜖, 𝐷) to S, S will do the following
steps:

(1) decrypt 𝜖, obtain (𝑘, ID);
(2) randomly select 𝑟

𝑗
and prepare 𝜎 = 𝐸

𝑝𝑘𝑗
(ID ‖

𝑟
𝑗
);

(3) choose 𝜂 ∈
𝑅
Z
𝑛
, set 𝐻

3
(𝜎 ‖ 𝐷) = (𝛼𝜂

𝑒 mod 𝑛),
and store ((𝜎, 𝐷), ⊥, (𝛼𝜂

𝑒 mod 𝑛)) and (𝜎, 𝐷) in
L

𝐻3
andL

𝑥
, respectively;

(4) select 𝑏 ∈
𝑅
Z∗

𝑛
and compute 𝛽 = (𝑏

𝑒

𝛼𝜂
𝑒

)
−1 mod

𝑛;
(5) retrieve or assign 𝜏 such that 𝐻

2
(𝐷) = (𝜏

𝑒

) as
the O

𝐻2
query described above;

(6) compute 𝑡 ≡ (𝛼𝛽𝜏
𝑒

)
𝑑

≡ ((𝑏𝜂)
−1

𝜏) (mod 𝑛);
(7) set ℓ

𝐷
= ℓ

𝐷
+ 1 and return (𝑡, 𝐸

𝑘
(𝑏, 𝜎, 𝑟

𝑗
)) back

toA.

Eventually, assume that A can successfully output ℓ
𝐷
󸀠 + 1 e-

cash tuples for some expiration date 𝐷
󸀠

{(𝑠
1
, 𝑚

1
, 𝜎

1
, 𝐷

󸀠

) ⋅ ⋅ ⋅ (𝑠
ℓ
𝐷
󸀠+1

, 𝑚
ℓ
𝐷
󸀠+1

, 𝜎
ℓ
𝐷
󸀠+1

, 𝐷
󸀠

)} (20)

such that 𝑠𝑒
𝑖
𝐻
2

1
(𝑚

𝑖
)𝐻

3
(𝜎
𝑖
‖ 𝐷

󸀠

) = 𝐻
2
(𝐷

󸀠

) (mod 𝑛), ∀𝑖, 1 ≤

𝑖 ≤ ℓ
𝐷
󸀠 + 1, after ℓ

𝐷
󸀠 times to query OS on 𝐷

󸀠, with
nonnegligible probability 𝜖A.

Assume some (𝜎
𝑖
, 𝐷

󸀠

), 1 ≤ 𝑖 ≤ ℓ
𝐷
󸀠 + 1, is not recorded

inL
𝑥
; then by theL

𝐻1
,L

𝐻2
, andL

𝐻3
, S can compute and

retrieve

(𝑠
𝑖
)
𝑒

≡ (𝐻
2

1
(𝑚

𝑖
)𝐻

3
(𝜎

𝑖
‖ 𝐷

󸀠

))
−1

𝐻
2
(𝐷

󸀠

)

≡ ((𝜍
𝑒

𝑖
) (𝜂

𝑒

𝑖
𝑦))

−1

(𝜏
𝑒

𝑖
) (mod 𝑛) ,

𝑥 ≡ 𝑦
𝑑

≡ (𝑠
𝑖
𝜍
𝑖
𝜂
𝑖
)
−1

𝜏
𝑖
(mod 𝑛)

(21)

and solve the RSA inversion problem with nonnegligible
probability at least 𝜖A.

4.3. E-Cash Conditional-Traceability. In this section, we will
prove that the ID information embedded in e-cash(s) cannot
be replaced or moved out by any user against being traced
after some misbehavior or criminals. The details of our proof
model are illustrated in Figure 8.

Definition 10 (Tampering Game (TG)). Let 𝑙
𝑘

∈ N be a
security parameter and A be an adversary in DAOECS.
OS is an oracle which plays the role of bank in DAOECS

12 The Scientific World Journal

Output Output

𝜎󳰀 ∉ {𝜎1, . . . ,

𝒪H1

𝒪H2

𝒪H3

mi

Di

H(mi)

𝒜

𝒮

𝜏ei mod n

(𝛼i, 𝜖i, Di)
ti, Ẽk𝑖 (bi, 𝜎i, rj𝑖)

𝒪𝒮

𝜌i 𝜍ei mod n

yi

yi

yi

xi

(𝜎i, Di)
Store in

qt

qh

xi = ydi mod n

𝒪t

𝒪inv

RSA-ACTI

(s󳰀, m󳰀, 𝜎󳰀D󳰀)
𝜎󳰀

- Choose 𝜂i ∈ Zn

= 𝛼i𝜂
e
i mod n

- Store in ℒH3
ℒH3

and
ℒT

s󳰀eH2
1 (m󳰀)H3(‖D󳰀) ≡ H2(D󳰀) (mod n)

- Set H3(𝜎i ‖Di)

󰪓

(y󳰀)
d
≡ (H3

d
≡ s−1(H2

1(m󳰀)−1H2(D󳰀)))) ≡ s−1𝜍−1𝜏󳰀 (mod n)
d(𝜎󳰀 ‖D󳰀)

{(x1, y1), (x2, y2), . . . , (xq𝑡−1,yq𝑡−1), ((s−1𝜍−1𝜏󳰀), y󳰀)}𝜎󰪓}
Figure 8: The proof model of TG.

Experiment ExpTGA (𝑙
𝑘
)

(𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) ← Setup(𝑙

𝑘
)

(𝑠
󸀠

, 𝑚
󸀠

, 𝜎
󸀠

, 𝐷
󸀠

) ← AOS (𝑝𝑘
𝑇𝐴

, 𝑒
𝑅
, 𝑛

𝑅
, 𝐻

1
, 𝐻

2
)

{𝜎
1
, . . . , 𝜎

ℓ
} ← OS

if the following two checks are true, return 1;
(i) 𝜎󸀠 ∉ {𝜎

1
, . . . , 𝜎

ℓ
}

(ii) 𝑠󸀠𝑒𝐻2

1
(𝑚

󸀠

)𝐻
3
(𝜎

󸀠

‖ 𝐷
󸀠

) = 𝐻
2
(𝐷

󸀠

)mod 𝑛

else return 0;

Algorithm 4

to record parameters from the queries of A and issue e-
cash(s) (i.e., (𝑠, 𝑚, 𝜎,𝐷), where 𝑚 = (𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝐷))

accordingly. A is allowed to query OS for ℓ times; consider
Algorithm 4.

A wins the game if the probability Pr[ExpTGA (𝑘) = 1] of
A is nonnegligible.

Definition 11 (E-Cash Traceability). If there exists no proba-
bilistic polynomial-time adversary who can win the tracing
game TG, thenDAOECS satisfies the E-Cash Traceability.

Definition 12 (Alternative Formulation of RSA
Known-Target Inversion Problem (RSA-AKTI)). Let
𝑘 ∈ N be a security parameter and A be an adversary who
is allowed to access the RSA-inversion oracle Oinv and the
target oracle O

𝑡
.A is allowed to query O

𝑡
and Oinv for 𝑞𝑡 and

𝑞
ℎ
times (𝑞

ℎ
< 𝑞

𝑡
), respectively. Consider Algorithm 5.

We sayA breaks theRSA-AKTI problem if the probability
Pr[ExpRSA-AKTIA (𝑘) = 1] ofA is nonnegligible.

Theorem 13. For a polynomial-time adversaryAwho canwin
the tracing game TGwith nonnegligible probability, there exists

Experiment ExpRSA-AKTIA (𝑘)

(𝑁, 𝑒, 𝑑)
𝑅

←󳨀 𝐾𝑒𝑦𝐺𝑒𝑛(𝑘).
(𝑦

1
, . . . , 𝑦

𝑞𝑡
) ← O

𝑡
(𝑁, 𝑒, 𝑘)

{(𝑥
1
, 𝑦

1
) , . . . , (𝑥

𝑞𝑡
, 𝑦

𝑞𝑡
)} ← AOinv ,O𝑡 (𝑁, 𝑒, 𝑘)

if 𝑥𝑒
𝑖
≡ 𝑦

𝑖
(mod𝑁), ∀𝑖 ∈ {1, . . . , 𝑞

𝑡
}, return 1;

else return 0;

Algorithm 5

another adversary S who can break the RSA-AKTI problem
with nonnegligible probability.

Proof. S simulates the environment of DAOECS by con-
trolling three hash oracles, O

𝐻1
, O

𝐻2
, O

𝐻3
, to respond hash

queries and an e-cash producing oracle O
𝑆
ofDAOECS to

respond e-cash producing queries fromA, respectively, in the
randomoraclemodel. Eventually,Swill take advantage ofA’s
capability to solve RSA-AKTI problem.Then, for consistency,
S maintains three lists L

𝐻1
, L

𝐻2
, and L

𝐻3
to record every

response of O
𝐻1
, O

𝐻2
, and O

𝐻3
, respectively.

The Scientific World Journal 13

Besides, in the proof model, S is allowed to query the
oracles Oinv (i.e., (⋅)

𝑑) and O
𝑡
of the RSA-AKTI problem

defined inDefinition 12 for helpingS produce valid e-cash(s)
and the corresponding verifying key is (𝑒, 𝑛).

Here we will do the simulation for game TG to prove
that DAOECS satisfies the e-cash traceability. Details are
described as follows.

(i) 𝐻
1
Query of O

𝐻1

Initially, every blank record in L
𝐻1

can be repre-
sented as (⊥, ⊥, ⊥). WhenA sends𝑚 for querying the
hash value𝐻

1
(𝑚), S will check the listL

𝐻1
:

(a) if 𝑚 = 𝑚
𝑖
for some 𝑖, then S retrieves the

corresponding𝐻
1
(𝑚

𝑖
) and return it toA;

(b) else if 𝑚 = 𝐻
1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) ̸= ⊥ for some

𝑖, then S retrieves the corresponding 𝜍
𝑖
and

returns (𝜍𝑒
𝑖
mod 𝑛) toA;

(c) else if 𝑚 = 𝐻
1
(𝑚

𝑖
) and 𝐻

2

1
(𝑚

𝑖
) = ⊥

for some 𝑖, then S chooses 𝜍 ∈
𝑅
Z
𝑛
, sets

𝐻
2

1
(𝑚

𝑖
) = (𝜍

𝑒 mod 𝑛), and returns 𝐻2

1
(𝑚

𝑖
) toA

then fills the original record (𝑚
𝑖
, 𝐻

1
(𝑚

𝑖
), ⊥) as

(𝑚
𝑖
, 𝐻

1
(𝑚

𝑖
), 𝜍) inL

𝐻1
;

(d) otherwise, S selects a random 𝜌 ∈ Z
𝑛
, sets

𝐻
1
(𝑚

𝑖
) = 𝜌, records (𝑚,𝐻

1
(𝑚

𝑖
), ⊥) inL

𝐻1
, and

returns 𝜌 toA.

(ii) 𝐻
2
Query of O

𝐻2

WhenA asks for𝐻
2
query by sending𝐷 toS,S will

look up the listL
𝐻2
:

(a) if𝐷 = 𝐷
𝑖
for some 𝑖, the corresponding 𝜏will be

retrieved andS will send (𝜏𝑒 mod 𝑛) back toA;
(b) otherwise,Swill select a random 𝜏 ∈ Z

𝑛
, record

(𝐷, 𝜏) inL
𝐻2
, and return (𝜏𝑒 mod 𝑛) back toA.

(iii) 𝐻
3
Query of O

𝐻3

WhileA sends (𝜎, 𝐷) to S for 𝐻
3
(𝜎), S will look up

the listL
𝐻3
:

(a) if (𝜎, 𝐷) = (𝜎
𝑖
, 𝐷

𝑖
) for some 𝑖, the corresponding

𝑦
𝑖
will be retrieved and returned toA;

(b) otherwise, S will query O
𝑡
to get an instance

𝑦; record 𝑦 and ((𝜎, 𝐷), 𝑦) in L
𝑇
and L

𝐻3
,

respectively;
(c) return 𝑦 back toA.

(iv) E-Cash Producing Query of OS

WhileA sends (𝛼, 𝜖, 𝐷) to S, S will do the following
steps:

(1) decrypt 𝜖, obtain (𝑘, ID);
(2) randomly select 𝑟

𝑗
and prepare 𝜎 = 𝐸

𝑝𝑘𝑗
(ID ‖

𝑟
𝑗
);

(3) choose 𝜂 ∈
𝑅
Z
𝑛
, set 𝐻

3
(𝜎 ‖ 𝐷) = (𝛼𝜂

𝑒 mod 𝑛),
and store ((𝜎, 𝐷),𝐻

3
(𝜎 ‖ 𝐷)) inL

𝐻3
;

(4) select 𝑏 ∈
𝑅
Z∗

𝑛
and compute 𝛽 = (𝑏

𝑒

𝛼𝜂
𝑒

)
−1

mod 𝑛;
(5) retrieve or assign 𝜏 such that 𝐻

2
(𝐷) = (𝜏

𝑒

) as
the O

𝐻2
query described above;

(6) compute 𝑡 ≡ (𝛼𝛽𝜏
𝑒

)
𝑑

≡ ((𝑏𝜂)
−1

𝜏) (mod 𝑛);
(7) return (𝑡, 𝐸

𝑘
(𝑏, 𝜎, 𝑟

𝑗
)) back toA.

Assume that A can successfully output an e-cash tuples
(𝑠
󸀠

, 𝑚
󸀠

, 𝜎
󸀠

, 𝐷
󸀠

), where 𝜎
󸀠 never appeals as a part for some OS

query such that 𝑠󸀠𝑒𝐻2

1
(𝑚

󸀠

)𝐻
3
(𝜎

󸀠

‖ 𝐷
󸀠

) ≡ 𝐻
2
(𝐷

󸀠

) (mod 𝑛);
then byL

𝐻1
,L

𝐻2
, andL

𝐻3
, S can derive

(𝑦
󸀠

)
𝑑

≡ (𝐻
3
(𝜎

󸀠

‖ 𝐷
󸀠

))
𝑑

≡ 𝑠
󸀠
−1

(𝐻
2

1
(𝑚

󸀠

)
−1

𝐻
2
(𝐷

󸀠

))
𝑑

≡ 𝑠
󸀠
−1

𝜍
󸀠
−1

𝜏
󸀠

(mod 𝑛) .

(22)

Let |L
𝑇
| = 𝑞

𝑡
and L

𝑇
= {𝑦

1
, . . . , 𝑦

𝑞𝑡
}. S sends 𝑦

𝑖
∈ (L

𝑇
−

{𝑦
󸀠

}), 1 ≤ 𝑖 ≤ (𝑞
𝑡
− 1), to Oinv and obtains 𝑞𝑡 − 1 𝑥

𝑖
such that

𝑥
𝑖
= 𝑦

𝑑

𝑖
mod 𝑛.

Eventually S can output 𝑞
𝑡
RSA-inversion instances

{(𝑥
1
, 𝑦

1
) , (𝑥

2
, 𝑦

2
) , . . . , (𝑥

𝑞𝑡−1
, 𝑦

𝑞𝑡−1
) , ((𝑠

󸀠
−1

𝜍
󸀠
−1

𝜏
󸀠

) , 𝑦
󸀠

)}

(23)

after querying Oinv for 𝑞
ℎ
times, where 𝑞

ℎ
= 𝑞

𝑡
− 1 < 𝑞

𝑡

and thus, it breaks theRSA-AKTI problemwith nonnegligible
probability at least 𝜖A.

4.4. E-Cash No-Swindling. In typical online e-cash transac-
tions, when an e-cash has been spent in previous transactions,
another spending will be detected immediately owing to the
double-spending check procedure. However, in an offline e-
cash model, the merchant may accept a transaction involving
a double-spent e-cash first and then do the double-spending
check later. In this case, the original owner of the e-cash may
suffer from loss. Therefore, a secure offline e-cash scheme
should guarantee the following two events.

(i) No one, except the real owner, can spend a fresh and
valid offline e-cash successfully.

(ii) No one can double spend an e-cash successfully.

Roughly, it can be referred to as e-cash no-swindling property.
In this section, we will define the no-swindling property and
formally prove that our scheme is secure against swindling
attacks.

Definition 14 (Swindling Game in DAOECS). Let
𝑙
𝑘

∈ N be a security parameter and A be an adversary
in DAOECS. O

𝐵
is an oracle issuing generic e-

cash(s) (i.e., (𝑠, 𝑦
1
, 𝑤

1
, 𝑥

2
, 𝑟
2
, 𝑟
3
, 𝜎, 𝐷)) of DAOECS

to A. Ooff is an oracle to show the expanding form
(𝑠, 𝑦

1
, 𝑤

1
, 𝑥

2
, 𝑟
2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑠
, 𝑠
󸀠

) for the payment according to
the input (𝑠, 𝑚, 𝜎,𝐷). Consider the two experiments SWG-1
and SWG-2 shown in Algorithms 6 and 7, respectively.

A wins the game if the probability Pr[ExpSWG-1
A (𝑙

𝑘
) = 1]

or Pr[ExpSWG-2
A (𝑙

𝑘
) = 1] ofA is nonnegligible.

14 The Scientific World Journal

Experiment ExpSWG-1
A (𝑙

𝑘
)

(𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝑝, 𝑞,𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) ← Setup (𝑙

𝑘
)

{(𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑢
, 𝑟
𝑠
, 𝑠
󸀠

)} ← AO𝐵,Ooff (𝑝𝑘
𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑛

𝑏
, 𝑝, 𝑞,𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
)

if the following checks are true, return 1;
(i) 𝑠𝑒𝑏𝐻2

1
(𝑦

𝐻4(𝑟𝑢‖𝑟𝑠)𝑔
𝑠
󸀠

mod 𝑝 ‖ 𝑦
1
‖ 𝑤

2
‖ 𝑦

2
‖ 𝐷 ‖ 𝑟

3
)𝐻

3
(𝜎 ‖ 𝐷) = 𝐻

2
(𝐷)mod 𝑛

𝑏
;

(ii) (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷) never be a query to Ooff

else return 0;

Algorithm 6: Experiment SWG-1.

Experiment ExpSWG-2
A (𝑙

𝑘
)

(𝑝𝑘
𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝑝, 𝑞,𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) ← Setup(𝑙

𝑘
)

{(𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑢
, 𝑟
𝑠
, 𝑠
󸀠

)} ← AO𝐵 ,Ooff (𝑝𝑘
𝑗
, 𝑔

1
, 𝑔

2
, 𝑒
𝑏
, 𝑛

𝑏
, 𝑝, 𝑞,𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
)

if the following checks are true, return 1;
(i) 𝑠𝑒𝑏𝐻2

1
(𝑦

𝐻4(𝑟𝑢‖𝑟𝑠)𝑔
𝑠
󸀠

mod 𝑝 ‖ 𝑦
1
‖ 𝑤

2
‖ 𝑦

2
‖ 𝐷 ‖ 𝑟

3
)𝐻

3
(𝜎 ‖ 𝐷) = 𝐻

2
(𝐷)mod 𝑛

𝑏
;

(ii) (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷) is allowed to be queried to Ooff for once;

(iii) (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑠
, 𝑠
󸀠

) is not obtained from Ooff
else return 0;

Algorithm 7: Experiment SWG-2.

Definition 15 (E-Cash No-Swindling). If there exists no
probabilistic polynomial-time adversary who can win the
swindling game defined in Definition 14, then DAOECS
satisfies e-cash no-swindling.

Theorem 16. For a polynomial-time adversaryAwho canwin
the swindling game SWG with nonnegligible probability, there
exists another adversarySwho can solve the discrete logarithm
problem with nonnegligible probability.

Proof. Consider the swindling game defined in Definition 14.
S simulates the environment by controlling the hash oracles,
O
𝐻4
, to respond hash queries on 𝐻

4
of DAOECS in the

random oracle model. Eventually, S will take advantage of
A’s capability to solve the discrete logarithm problem. Then,
for consistency, S maintains a list L

𝐻4
to record every

response of O
𝐻4
. S is given all parameters (𝑝𝑘

𝑗
, 𝑠𝑘

𝑗
, 𝑔

1
,

𝑔
2
, 𝑒
𝑏
, 𝑑

𝑏
, 𝑝

𝑏
, 𝑞

𝑏
, 𝑛

𝑏
, 𝑝, 𝑞,𝐻

1
, 𝐻

2
, 𝐻

3
, 𝐻

4
, 𝐻

5
) of DAOECS

and an instance 𝑦
∗ of discrete logarithm problem (i.e., 𝑦∗ =

𝑔
𝑥
∗

mod 𝑝). Here we will describe the simulations for the two
experiments ExpSWG-1

A and ExpSWG-2
A , individually.

The simulation for ExpSWG-1
A is illustrated in Figure 9 and

each oracle is constructed as follows.
(i) Oracle O

𝐵

Initially, S guesses that the generic e-cash produced
from]th query will be the attack target. When A
sends 𝑖th query to O

𝐵
for an e-cash, O

𝐵
will do the

following:

(a) select 𝑟
1
, 𝑥

1
, 𝑟
3
∈
𝑅
Z
𝑞
and 𝑦

2
, 𝑤

2
∈
𝑅
Z
𝑝
;

(b) if 𝑖 =],
(1) compute (𝑤

1
= (𝑦

∗

)
𝑟1 mod 𝑝) and (𝑦

1
=

𝑔
𝑥1 mod 𝑝);

(c) if 𝑖 ̸=],

(1) compute (𝑤
1
= 𝑔

𝑟1 mod 𝑝) and (𝑦
1
= 𝑔

𝑥1

mod 𝑝);

(d) prepare 𝑠 = ((𝐻
2

1
(𝑚)𝐻

3
(𝜎 ‖ 𝐷))

−1

𝐻
2
(𝐷))

𝑑𝑏

mod 𝑛
𝑏
, where𝑚 = (𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝐷);

(e) record (𝑖, (𝑠, 𝑚, 𝜎,𝐷), (𝑟
1
, 𝑥

1
))) in list L

𝐵
and

return (𝑠, 𝑚, 𝜎,𝐷) toA.

(ii) Oracle Ooff

When A sends a valid e-cash tuple
(𝑠, 𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑠
) to Ooff , it will look

up the listL
𝐵
:

(a) if (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷) exists with prefix

index], then abort;
(b) otherwise, Ooff will retrieve the corresponding

(𝑟
1
, 𝑥

1
); choose a random 𝑟

𝑢
, compute 𝑢 =

𝐻
4
(𝑟
𝑢
‖ 𝑟

𝑠
) and (𝑠󸀠 = 𝑟

1
− 𝑢𝑥

1
mod 𝑞), and send

(𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑢
, 𝑟
𝑠
, 𝑠
󸀠

) back toA.

Assume that A can successfully output a valid offline e-
cash expansion tuple (𝑠

∗, 𝑤∗

1
, 𝑦∗

1
, 𝑤∗

2
, 𝑦∗

2
, 𝑟∗

3
, 𝜎∗, 𝐷∗, 𝑟∗

𝑢
,

𝑟
∗

𝑠
, 𝑠󸀠∗), where (𝑠

∗, 𝑤∗

1
, 𝑦∗

1
, 𝑤∗

2
, 𝑦∗

2
, 𝑟∗

3
, 𝜎∗, 𝐷∗

) is prefixed
with] and postfixed with (𝑟

∗

1
, 𝑥

∗

1
) in L

𝐵
. Then, since 𝑤

∗

1
=

𝑦
∗𝐻4(𝑟

∗

𝑢
‖𝑟
∗

𝑠
)

1
𝑔
𝑠
󸀠∗

mod 𝑝 and 𝑤
∗

1
= (𝑦

∗

)
𝑟
∗

1 , S can derive

𝑥
∗

= (𝑟
∗

1
)
−1

(𝑥
∗

1
𝐻
4
(𝑟
∗

𝑢
‖ 𝑟

∗

𝑠
) + 𝑠

󸀠∗

) mod 𝑞 (24)

The Scientific World Journal 15

i = '

- w1 = (y∗)r1 mod p
- y1 = gx1 mod p

𝒜

𝒮

(request, i)

(s, w1, y1, w2, y2, r3, 𝜎, D)
(s, w1, y1, w2, y2, r3, 𝜎, D, rs)

(s, w1, y1, w2, y2, r3, 𝜎, D, rs, ru, s󳰀)

(s∗, w∗
1 , y

∗
1 , w

∗
2 , y

∗
2 , r

∗
3 , 𝜎

∗, D∗, r∗s , r
∗
u , s

󳰀∗)

𝒪ℬ

Swindle

𝒪off

≡ H2(D∗) (mod nb)s∗e𝑏H2
1 (w∗1 ‖y∗1 ‖w∗

2 ‖y
∗
2 ‖D

∗ ‖ r∗3)H3(𝜎∗ ‖D∗)
w∗
1 = y

∗H4(r
∗
𝑢 ‖ r∗𝑠)

1 gs
󳰀∗

mod p

, w∗
1 = (y∗)r∗1 mod pw∗

1 = y
∗H4(r

∗
𝑢 ‖ r∗𝑠)

1 gs
󳰀∗

mod p

→ x∗ = (r∗1)−1(x∗1H4(r∗u ‖ r∗s) + s󳰀∗)mod q

Figure 9: The proof model of SWG-1.

and solve the discrete logarithm problem with nonnegligible
probability at least (1/𝑞O𝐵)𝜖A, where 𝑞O𝐵

is the total number
of O

𝐵
query.

The simulation for ExpSWG-2
A is illustrated in Figure 10 and

each oracle is constructed as follows.

(i) Oracle O
𝐵

Initially, S guesses that the generic e-cash produced
from]th query will be the attack target. When A
sends 𝑖th query to O

𝐵
for an e-cash, O

𝐵
will do the

followings.

(a) if 𝑖 =]:

(1) select 𝑠󸀠, 𝑢, 𝑥
1
, 𝑟
3
∈
𝑅
Z
𝑞
and 𝑦

2
, 𝑤

2
∈
𝑅
Z
𝑝
;

(2) compute (𝑦
1

= (𝑦
∗

)
𝑥1 mod 𝑝) and (𝑤

1
=

𝑦
𝑢

1
𝑔
𝑠
󸀠

mod 𝑝);
(3) prepare 𝑠 = ((𝐻

2

1
(𝑚)𝐻

3
(𝜎 ‖

𝐷))
−1

𝐻
2
(𝐷))

𝑑𝑏 mod 𝑛
𝑏
, where 𝑚 = (𝑤

1
,

𝑦
1
, 𝑤

2
, 𝑦

2
, 𝑟
3
,𝐷);

(4) record (𝑖, (𝑠, 𝑚, 𝜎,𝐷), (𝑢, 𝑠
󸀠

))) in listLB;

(b) if 𝑖 ̸=]:

(1) select 𝑟
1
, 𝑥

1
, 𝑟
3
∈
𝑅
Z
𝑞
and 𝑦

2
, 𝑤

2
∈
𝑅
Z
𝑝
;

(2) compute (𝑤
1
= 𝑔

𝑟1 mod 𝑝) and (𝑦
1
= 𝑔

𝑥1

mod 𝑝);
(3) prepare 𝑠 = ((𝐻

2

1
(𝑚)𝐻

3
(𝜎 ‖

𝐷))
−1

𝐻
2
(𝐷))

𝑑𝑏 mod 𝑛
𝑏
, where 𝑚 = (𝑤

1
,

𝑦
1
, 𝑤

2
, 𝑦

2
, 𝑟
3
,𝐷);

(4) record (𝑖, (𝑠, 𝑚, 𝜎,𝐷), (𝑟
1
, 𝑥

1
))) in listLB;

(c) return (𝑠, 𝑚, 𝜎,𝐷) toA.

(ii) Oracle Ooff

A status parameter sta is initialized by 0. When A
sends a valid e-cash tuple (𝑠, 𝑤

1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑠
)

to Ooff , it will look up the listLB:

(a) if (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷) exists with prefix

index] and sta = 0, Ooff will perform the
following procedures:

(1) set sta = 1

(2) retrieve the corresponding (𝑢, 𝑠
󸀠

) fromLB

and choose a random 𝑟
𝑢
;

(3) set 𝐻
4
(𝑟
𝑢
‖ 𝑟

𝑠
) = 𝑢 and record ((𝑟

𝑢
‖ 𝑟

𝑠
), 𝑢)

inL
𝐻
;

(4) record (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷, 𝑟

𝑢
, 𝑟
𝑠
, 𝑠
󸀠

) in
listLoff ;

(5) send (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟

3
, 𝜎, 𝐷, 𝑟

𝑢
, 𝑟

𝑠
, 𝑠󸀠)

back toA;

(b) if (𝑠, 𝑤
1
, 𝑦

1
, 𝑤

2
, 𝑦

2
, 𝑟
3
, 𝜎, 𝐷) exists with prefix

index ̸=], Ooff will retrieve the corresponding
(𝑟
1
, 𝑥

1
), choose random 𝑟

𝑢
and 𝑢, set 𝐻

4
(𝑟
𝑢

‖

𝑟
𝑠
) = 𝑢, record ((𝑟

𝑢
‖ 𝑟

𝑠
), 𝑢) in L

𝐻
, compute

(𝑠󸀠 = 𝑟
1
− 𝑢𝑥

1
mod 𝑞), and send (𝑠, 𝑤

1
, 𝑦

1
, 𝑤

2
,

𝑦
2
, 𝑟
3
, 𝜎,𝐷, 𝑟

𝑢
, 𝑟
𝑠
, 𝑠󸀠) back toA.

(c) Otherwise, abort.

(iii) Oracle O
𝐻4

WhileA sends (𝑟
𝑢
‖ 𝑟

𝑠
) to query for 𝐻

4
(𝑟
𝑢
‖ 𝑟

𝑠
), O

𝐻4

will check the listL
𝐻
:

(a) if (𝑟
𝑢

‖ 𝑟
𝑠
) exists as the prefix of some record,

O
𝐻4

will retrieve the corresponding 𝑢 and return
it toA;

16 The Scientific World Journal

𝒪off

i = '
- y1 = (y∗)x1 mod p
- w1 = yu1 g

s󳰀 mod p

index ', sta = 0

- Set sta = 1𝒜

𝒮

(request, i)

(s, w1, y1, w2, y2, r3, 𝜎, D)

(s, w1, y1, w2, y2, r3, 𝜎, D, rs)
(s, w1, y1, w2, y2, r3, 𝜎, D, rs, ru, s

󳰀)

𝒪ℬ

- Set H4(ru ‖ rs) = u, store in ℒH

u

u 𝒪H4

Swindle

(s∗, w∗
1 , y

∗
1 , w

∗
2 , y

∗
2 , r

∗
3 , 𝜎

∗, D
∗
, r∗s , r

∗
u , s

󳰀∗)

- Record in ℒoff

(ru ‖ rs)

≡ H2(D∗) (mod nb)s∗e𝑏H2
1 (w∗1 ‖y∗1 ‖w∗

2 ‖y
∗
2 ‖D

∗ ‖ r∗3)H3(𝜎∗ ‖D∗)
w∗
1 = y

∗H4(r
∗
𝑢 ‖ r∗𝑠)

1 gs
󳰀∗

mod p

gs
󳰀∗

≡ w∗
1 ≡ (y∗x∗1 gs

󳰀

(mod p)(y∗x∗1)u∗ gs󳰀∗ ≡ (y∗1)H4(r
∗
𝑢 ‖ r

∗
𝑠)

u)
→ x∗ = (x∗1 (u∗ − u) (s󳰀 − s󳰀∗) mod q)−1

Figure 10: The proof model of SWG-2.

(b) otherwise, O
𝐻4

will choose a random 𝑢, record
((𝑟

𝑢
‖ 𝑟

𝑠
), 𝑢) inL

𝐻
, and return 𝑢 toA.

Assume thatA can successfully output a valid offline e-cash
expansion tuple (𝑠

∗, 𝑤∗

1
, 𝑦∗

1
, 𝑤∗

2
, 𝑦∗

2
, 𝑟∗

3
, 𝜎∗, 𝐷∗, 𝑟∗

𝑢
, 𝑟∗

𝑠
, 𝑠󸀠∗),

where (𝑠
∗, 𝑤∗

1
, 𝑦∗

1
, 𝑤∗

2
, 𝑦∗

2
, 𝑟∗
3
, 𝜎∗, 𝐷∗

) is prefixed with] and
postfixed with (𝑢, 𝑠

󸀠

) inLB and𝐻
4
(𝑟
∗

𝑢
‖ 𝑟

∗

𝑠
) ̸= 𝑢.

Then, viaLH, since

(𝑦
∗𝑥
∗

1)
𝑢
∗

𝑔
𝑠
󸀠∗

≡ (𝑦
∗

1
)
𝐻4(𝑟
∗

𝑢
‖𝑟
∗

𝑠
)

𝑔
𝑠
󸀠∗

≡ 𝑤
∗

1

≡ (𝑦
∗𝑥
∗

1)
𝑢

𝑔
𝑠
󸀠

(mod𝑝) ,
(25)

S can derive

𝑥
∗

= (𝑥
∗

1
(𝑢

∗

− 𝑢))
−1

(𝑠
󸀠

− 𝑠
󸀠∗

) mod 𝑞 (26)

and solve the discrete logarithm problem with nonnegligible
probability at least (1/𝑞O𝐵)𝜖A, where 𝑞O𝐵

is the total number
of O

𝐵
query.

Summarize the proof models for the two experiments
shown above, if there exists a polynomial-time adversary who
can win the swindling game with nonnegligible probability,
then there exists another one who can solve the discrete
logarithm problem with nonnegligible probability. It implies
that there exists no p.p.t. adversarywho canwin the swindling
game, and our proposed offline e-cash scheme DAOECS
satisfies no-swindling property.

5. E-Cash Advanced Features and
Performance Comparisons

In this section, we compare the e-cash features and perfor-
mance of our proposed scheme with other schemes given
in [9, 13–15, 21, 22, 27, 38–40]. We analyze the features and
performance of the aforementioned schemes and form a table
(Table 1) for the summary.

5.1. Features Comparisons. All the schemes mentioned above
fulfill the basic security requirements stated in Section 1,
which are anonymity, unlinkability, unforgeability, and no
double-spending. Besides these features, there can be other
advanced features on an e-cash system discussed in the
literatures. We focus on three other advanced features, which
are traceability, date attachability, and no-swindling, and
we compare the proposed scheme with the aforementioned
schemes.

We also propose an e-cash renewal protocol for users to
exchange a new valid e-cash with their unused but expired
e-cash(s); therefore, users do not have to deposit the e-cash
before it expires and withdraw a new e-cash again. Our pro-
posed e-cash renewal protocol reduces the computation cost
by 49.5% as compared to withdrawal and deposit protocols,
which is almost half of the effort of getting a new e-cash, at the
user side. It does a great help to the users since their devices
usually have a weaker computation capability, such as smart
phones.

The Scientific World Journal 17

Ta
bl
e
1:
Ad

va
nc
ed

fe
at
ur
es
an
d
pe
rfo

rm
an
ce

co
m
pa
ris
on

s.

O
ur
s

[3
8]

[14
]

[1
5]

[9
]

[2
1]

[2
2]

[3
9]

[4
0]

[1
3]

[2
7]

Ad
va
nc
ed

fe
at
ur
es

O
n/
off

-li
ne

O
ff

O
ff

O
ff

O
ff

O
n

O
ff

O
ff

O
ff

O
ff

O
n

O
ff

C
on

di
tio

na
l-

tr
ac
ea
bi
lit
y

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

D
at
ea

tta
ch
ab
ili
ty

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o-
sw

in
dl
in
g

Ye
s

N
o

N
o

N
o

—
N
o

Ye
s

N
o

N
o

—
N
o

Re
ne
w
al
pr
ot
oc
ol

Ye
s

—
Ye
s

—
N
o

Ye
s

Ye
s

—
—

—
Ye
s

Fo
rm

al
pr
oo
f

Ye
s

Ye
s

N
o

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Pe
rfo

rm
an
ce

Tr
an
sa
ct
io
n
co
st⋆

5
𝐸

+
7
𝑀

+
7
𝐻

+
1
in
v

+
1
𝐴

≈
1
4
5
4
𝑀

1
4
𝐸

+
1
4
𝑀

+
1
𝐻

+
5
𝐴

≈
3
3
7
5
𝑀

6
𝐸

+
8
𝑀

≈
1
4
4
8
𝑀

2
3
𝐸

+
1
4
𝑀

+
1
𝐴

≈
5
5
3
4
𝑀

2
𝐸

+
2
𝑀

+
2
𝐻

≈
9
6
6
𝑀

5
𝐸

+
9
𝑀

+
1
𝐻

+
1
in
v

+
2
𝐴

≈
1
4
5
0
𝑀

2
𝐸

≈
4
8
0
𝑀

1
8
𝐸

+
1
5
𝑀

+
2
𝐻

+
8
𝐴

≈
4
3
3
7
𝑀

3
1
𝐸

+
2
2
𝑀

+
6
𝐻

+
1
0
𝐴

≈
7
4
6
8
𝑀

2
2
𝐸

+
1
1
𝑀

+
4
𝐴

≈
5
2
9
1
𝑀

6
𝐸

+
8
𝑀

+
1
𝐻

≈
1
4
4
9
𝑀

C
om

m
un

ic
at
io
n

co
st⬦

1
0
9
2

5
7
6

1
2
8
8

9
3
9

7
6
9

6
4
4

3
0
0

8
2
8

9
6
8

1
5
3
6

7
2
8

Ac
co
rd
in
g
to

[4
1]
,𝐻

≈
𝑀
,
𝐸
≈
in
v
≈
2
4
0
𝑀
.

𝐸
:a

m
od

ul
ar

ex
po

ne
nt
ia
tio

n;
𝑀
:a

m
od

ul
ar

m
ul
tip

lic
at
io
n;
𝐻
:a

ha
sh

op
er
at
io
n;
zk
p:
az

er
o-
kn

ow
le
dg
ep

ro
of
.

𝐴
:a

m
od

ul
ar

ad
di
tio

n;
in
v:
am

od
ul
ar

in
ve
rs
io
n.

⋆

Th
ec

om
pu

ta
tio

n
co
st
of
w
ith

dr
aw

al
an
d
pa
ym

en
tp

ro
to
co
ls
at
us
er

sid
e.

⬦

Th
ec

om
m
un

ic
at
io
n
co
st
of
ea
ch

tr
an
sa
ct
io
n
at
us
er

sid
ei
n
by
te
s.

18 The Scientific World Journal

5.2. Performance Comparisons. According to [41], we can
summarize and induce the computation cost of all operations
as follows.The computation cost of amodular exponentiation
computation is about 240 times of the computation cost of a
modular multiplication computation, while the computation
cost of a modular inversion almost equals to that of a
modular exponentiation. Also, the computation cost of a hash
operation almost equals to that of a modular multiplication.

With the above assumptions, the total computation cost
of users during withdrawal and payment phases of our
proposed scheme can be induced as 1452 times of a modular
multiplication computation, while other works [9, 13–15,
21, 22, 27, 38–40] need 3375, 1448, 5534, 966, 1450, 480,
4337, 7468, 5291, and 1449 times of a modular multiplication
computation to finish withdrawal and payment phases at the
user ends.

According to [15], we assume the RSAparameters 𝑛, 𝑝, 𝑞

are 1024, 512, and 512 bits, respectively. We adopt AES and
SHA-1 as the symmetric cryotsystem and one-way hash
function used in all protocols, respectively; therefore, the
signed message and hash massage are in 128 and 160 bits,
respectively. We assume the expiration date is in 32 bits.

With the above assumptions, we compute the commu-
nication cost of each offline transaction, withdrawal, and
payment, at the user side. Our scheme needs 2048 bits for
withdrawing an e-cash and 6688 bits for spending an e-cash,
which is 1092 bytes for each transaction.

The details of the comparisons are summarized in
Table 1.

6. Conclusion

In this paper, we have presented earlier a provably secure
offline electronic cash scheme with an expiration date and
a deposit date attached to it. Besides, we have also designed
an e-cash renewal protocol, where users can exchange their
unused and expired e-cash(s) for new ones more efficiently.
Compared with other similar works, our scheme is efficient
from the aspect of considering computation cost of the user
side and satisfying all security properties, simultaneously.
Except for anonymity, unlinkability, unforgeability, and no
double-spending, we also formally prove that our scheme
achieves conditional-traceability and no-swindling. Not only
does our scheme help the bank to manage their huge
databases against unlimited growth, but also it strengthens
the preservation of users’ privacy and rights as well.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the National Science
Council of Taiwan under Grants NSC 102-2219-E-110-002,

NSYSU-KMU Joint Research Project (NSYSUKMU 2013-
I001), and Aim for the Top University Plan of the National
Sun Yat-sen University and Ministry of Education, Taiwan.

References

[1] H. Chen, P. P. Y. Lam, H. C. B. Chan, T. S. Dillon, J. Cao, and R.
S. T. Lee, “Business-to-consumer mobile agent-based internet
commerce system (MAGICS),” IEEE Transactions on Systems,
Man and Cybernetics C: Applications and Reviews, vol. 37, no. 6,
pp. 1174–1189, 2007.

[2] S. C. Fan and Y. L. Lai, “A study on e-commerce applying in
Taiwan’s restaurant franchise,” in Proceedings of the IET Interna-
tional Conference on Frontier Computing. Theory, Technologies
and Applications, pp. 324–329, August 2010.

[3] D. R. W. Holton, I. Nafea, M. Younas, and I. Awan, “A class-
based scheme for E-commerceweb servers: formal specification
and performance evaluation,” Journal of Network and Computer
Applications, vol. 32, no. 2, pp. 455–460, 2009.

[4] Z. Jie and X. Hong, “E-commerce security policy analysis,” in
Proceedings of the International Conference on Electrical and
Control Engineering (ICECE ’10), pp. 2764–2766, June 2010.

[5] D. R. Liuy andT. F.Hwang, “An agent-based approach to flexible
commerce in intermediary-Centric electronicmarkets,” Journal
of Network and Computer Applications, vol. 27, no. 1, pp. 33–48,
2004.

[6] S. J. Lin and D. C. Liu, “An incentive-based electronic payment
scheme for digital content transactions over the Internet,”
Journal of Network and Computer Applications, vol. 32, no. 3,
pp. 589–598, 2009.

[7] H. Wang, Y. Zhang, J. Cao, and V. Varadharajan, “Achieving
Secure and FlexibleM-Services throughTickets,” IEEETransac-
tions on Systems, Man, and Cybernetics A:Systems and Humans,
vol. 33, no. 6, pp. 697–708, 2003.

[8] C. Yue and H. Wang, “Profit-aware overload protection in
E-commerce Web sites,” Journal of Network and Computer
Applications, vol. 32, no. 2, pp. 347–356, 2009.

[9] C. C. Chang and Y. P. Lai, “A flexible date-attachment scheme
on e-cash,” Computers and Security, vol. 22, no. 2, pp. 160–166,
2003.

[10] C. L. Chen and J. J. Liao, “A fair online payment system for
digital content via subliminal channel,” Electronic Commerce
Research and Applications, vol. 10, no. 3, pp. 279–287, 2011.

[11] C. I. Fan, W. K. Chen, and Y. S. Yeh, “Date attachable electronic
cash,” Computer Communications, vol. 23, no. 4, pp. 425–428,
2000.

[12] C. I. Fan and W. Z. Sun, “Efficient encoding scheme for date
attachable electronic cash,” in Proceedings of the 24th Workshop
on Combinatorial Mathematics and Computation Theory, pp.
405–410, 2007.

[13] T. Nakanishi, M. Shiota, and Y. Sugiyama, “An efficient online
electronic cash with unlinkable exact payments,” Information
Security, vol. 3225, pp. 367–378, 2004.

[14] Y. Baseri, B. Takhtaei, and J. Mohajeri, “Secure untraceable off-
line electronic cash system,” Scientia Iranica, vol. 20, pp. 637–
646, 2012.

[15] J. Camenisch, S.Hohenberger, andA. Lysyanskaya, “Compact e-
cash,” inProceedings of the 24thAnnual International Conference
on the Theory and Applications of Cryptographic Techniques:
Advances in Cryptology (EUROCRYPT ’05), pp. 302–321, May
2005.

The Scientific World Journal 19

[16] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Balancing
accountability and privacy using E-cash,” in Security and Cryp-
tography for Networks, vol. 4116 of Lecture Notes in Computer
Science, pp. 141–155, 2006.

[17] J. Camenisch, A. Lysyanskaya, and M. Meyerovich, “Endorsed
e-cash,” in Proceedings of the IEEE Symposium on Security and
Privacy, pp. 101–115, May 2007.

[18] S. Canard, A. Gouget, and J. Traoré, “Improvement of efficiency
in (unconditional) anonymous transferable E-cash,” in Finan-
cial Cryptography and Data Security, vol. 5143 of Lecture Notes
in Computer Science, pp. 202–214, 2008.

[19] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic
cash,” in Advances in Cryptology-CRYPTO ’88, vol. 403 of
Lecture Notes in Computer Science, pp. 319–327, Springer, Berlin,
Germany, 1990.

[20] G. Davida, Y. Frankel, Y. Tsiounis, and M. Yung, “Anonymity
control in E-cash systems,” in Proceedings of the First Interna-
tional Conference on Financial Cryptography, pp. 1–16, 1997.

[21] Z. Eslami and M. Talebi, “A new untraceable off-line electronic
cash system,” Electronic Commerce Research and Applications,
vol. 10, no. 1, pp. 59–66, 2011.

[22] C. I. Fan, V. S. M. Huang, and Y. C. Yu, “User efficient recov-
erable off-line e-cash scheme with fast anonymity revoking,”
Mathematical and Computer Modelling, vol. 58, pp. 227–237,
2013.

[23] X. Hou and C. H. Tan, “Fair traceable off-line electronic cash in
wallets with observers,” in Proceedings of the 6th International
Conference on Advanced Communication Technology, pp. 595–
599, February 2004.

[24] X. Hou and C. H. Tan, “A new electronic cash model,” in
Proceedings of the International Conference on Information
Technology: Coding and Computing, pp. 374–379, April 2005.

[25] W. S. Juang, “A practical anonymous off-line multi-authority
payment scheme,” Electronic Commerce Research and Applica-
tions, vol. 4, no. 3, pp. 240–249, 2005.

[26] J. K. Liu, V. K. Wei, and S. H. Wong, “Recoverable and
untraceable e-cash,” in International Conference on Trends in
Communications (EUROCON ’01), vol. 1, pp. 132–135, 2001.

[27] C. Wang, H. Sun, H. Zhang, and Z. Jin, “An improved off-line
electronic cash scheme,” in Proceedings of the 5th International
Conference on Computational and Information Sciences (ICCIS
’13), pp. 438–441, 2013.

[28] W. S. Juang, “D-cash: a flexible pre-paid e-cash scheme for date-
attachment,” Electronic Commerce Research and Applications,
vol. 6, no. 1, pp. 74–80, 2007.

[29] D. Chaum, “Blind signatures for untraceable payments,” in
Advances in Cryptology-CRYPTO ’82, Lecture Notes in Com-
puter Science, pp. 199–203, Springer, Berlin, Germany, 1983.

[30] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS ’00), pp. 143–154, 2000.

[31] S. Pearson, Trusted Computing Platforms: TCPA Technology in
Context, Prentice Hall, New York, NY, USA, 2002.

[32] S. Pearson, “Trusted computing platforms: the next security
solution,” Tech. Rep. HPL-2002-221, Hewllet-Packard Labora-
torie, 2002.

[33] C. I. Fan andV. S.M.Huang, “Provably secure integrated on/off-
line electronic cash for flexible and efficient payment,” IEEE
Transactions on Systems, Man and Cybernetics C: Applications
and Reviews, vol. 40, no. 5, pp. 567–579, 2010.

[34] S. Bajikar, Trusted platform module (TPM) based security
on notebook pcs—white paper, Mobile Platform Group, Intel
Corporation, 2002.

[35] M. Abe and T. Okamoto, “Provably secure partially blind
signatures,” in Proceedings of the 20th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO
’00), pp. 271–286, Springer, 2000.

[36] A. Juels, M. Luby, and R. Ostrovsky, “Security of blind digital
signatures,” in Proceedings of the 17th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO
’97), pp. 150–164, Springer, 1997.

[37] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko,
“The one-more-RSA-inversion problems and the security of
chaum’s blind signature scheme,” Journal of Cryptology, vol. 16,
no. 3, pp. 185–215, 2003.

[38] S. Brands, “Untraceable off-line cash in wallets with observers
(extended abstract),” CRYPTO, pp. 302–318, 1993.

[39] Y. Hanatani, Y. Komano, K. Ohta, and N. Kunihiro, “Provably
secure electronic cash based on blind multisignature schemes,”
Financial Cryptography, vol. 4107, pp. 236–250, 2006.

[40] C. Popescu, “An off-line electronic cash system with revokable
anonymity,” in Proceedings of the 12th IEEE Mediterranean
Electrotechnical Conference, pp. 763–767, May 2004.

[41] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, New York, NY, USA, 1997.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

